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We study the photonic band structures and the attenuation behavior of waves in configuration-periodic
square networks where nearest-neighbor nodes are connected by more than one segment. It is shown that even
though the period of the unit cell of a square network cannot be defined by the lengths of the segments and the
nodes may not be arranged periodically in space, one can still use the Floquet-Bloch theorem in this network
system if the theorem is modified. We find that the attenuation can be extremely large even though there is no
absorption in the networks and its strength does not have a quasiparabolic profile as a function of wave
frequency inside a gap. Large gaps and narrow passbands created by resonances and antiresonances are found.
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I. INTRODUCTION

Dielectric structures with periodicities of their dielectric
constant on a wavelength scale are capable of exhibiting a
photonic band gap �PBG�, where the propagation of electro-
magnetic �EM� waves is inhibited.1,2 In a PBG, the wave is
Bragg scattered and the incident wave becomes an attenuate
evanescent mode. This feature offers the possibility to con-
fine and control the propagation of EM waves in PBG
materials.3,4 One of the very important aspects of PBG sys-
tems is the wave attenuation at frequencies within the
PBGs.5–7 PBG-based devices can have higher efficiency and
be made smaller if the attenuation in the PBGs is larger.

A kind of PBG structure is a network system composed of
one-dimensional �1D� waveguides.8,9 These systems are ex-
perimentally easily realizable, and the phase and amplitude
can be measured anywhere inside the systems. It was found
that introducing some loops in a network can produce band
gaps and the loops will produce resonance at certain fre-
quency range.8 However, to the best of our knowledge, the
investigation of networks where all the adjacent nodes are
connected by more than one segment has not been reported
yet. In fact, connecting the adjacent nodes by more segments
is equivalent to adding more loops to the system, and conse-
quently, the possibility of producing resonance and antireso-
nance would be increased.

In this paper we study the band structures and the attenu-
ation behavior of different EM modes inside the PBGs of
square networks where nearest-neighbor nodes are connected
by more than one segment in the same way. The configura-
tion of this network is shown in Fig. 1, where the dashed
lines between the adjacent nodes denote the same set of seg-
ments �shown on the left-hand side of Fig. 1�. We call these
networks square multiconnected networks �SMCNs�.

It should be pointed out that only the configuration is
necessarily periodic for the SMCNs. If the lengths of the
segments connecting the nodes are different from each other,
one cannot define the spatial period of the unit cell by these
lengths. Additionally, the nodes may not be arranged in a
square lattice. Consequently the conventional Floquet-Bloch
theorem depending on spatial periodicity cannot be directly

applied. In this article we develop a dimensionless Floquet-
Bloch theorem to study the present subject. This modified
theorem can be used to investigate the networks of which
only the configuration is periodic. In addition, by our method
one can directly obtain the analytical results of the attenua-
tion behavior of an EM wave in any direction inside the
PBGs.

We find that due to resonances and antiresonances arising
from the coherent waves of the segments between nearest-
neighbor nodes, extremely narrow passbands near strong at-
tenuation gaps are created and the attenuation inside the
PBGs can be very large. In some circumstances, the stron-
gest attenuation waves may appear near the band edges,
rather than at the center of a band gap.

This paper is organized as follows: In Sec. II, we intro-
duce the method for studying the mentioned network sys-
tems. An example of the use of this method is also presented.
The band structures and the attenuation properties of SMCNs
are investigated in Sec. III. Finally the conclusions are drawn
in Sec. IV.

II. THEORY AND METHOD

The networks we study are formed by waveguide seg-
ments where only monomode propagation of EM waves
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FIG. 1. Schematic diagram of a 2D square multiconnected net-
work. The dashed lines denote n segments of various lengths con-
necting neighbor nodes. An N= �2,1� is indicated by a dot-dashed
arrow.
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needs to be considered. The electromagnetic wave function
with angular frequency � in any segment between nodes i
and j can be regarded as a linear combination of two oppo-
site traveling plane waves:

�ij = �ije
ıkx + �ije

−ıkx, �1�

with k=� /c, where c is the speed of the EM wave in the
segment. For networks consisting of coaxial cables, the func-
tion �ij represents the voltage wave.8 The wave function is
continuous at the nodes of a network:

��ij�x=0 = �i,

��ij�x=lij
= � j , �2�

where �i and � j are the wave functions at nodes i and j,
respectively, and lij is the length of the segment between
nodes i and j. At any node i, the energy flux conservation
gives

�
j

1

��
�ij� ��ij

�x
Aij�

x=0
= 0, �3�

where the summation is over all segments linked directly to
node i. When the cross-sectional area Aij for each segment is
the same, the boundary conditions, Eqs. �2� and �3�, yield

�
j
� ��ij

�x
�

x=0
= 0. �4�

By means of the continuity condition, Eq. �2�, one can re-
write Eq. �1� as follows:

�ij =
sin�k�lij − x��

sin klij
�i +

sin kx

sin klij
� j . �5�

Substituting Eq. �5� into Eq. �4�, we obtain the network
equation10

− �i�
j

cot klij + �
j

� j csc klij = 0, �6�

where cot and csc are the cotangent and cosecant functions,
respectively. Equation �6� is valid when the cross-sectional
diameter for each waveguide segment is much smaller than
the length and thus only monomode propagation of electro-
magnetic waves needs to be considered in these waveguide
segments. For systems with dissipation, the wave vector k in
Eq. �6� is a complex number,8 but we only consider ideal
lossless waveguides in this paper, where k is always real.

Generally, for the network systems where nearest-
neighbor nodes are connected by one or some segments of
the same length, one can obtain the band structures by solv-
ing a set of coupled equations �6� with the use of the
Floquet-Bloch theorem.11 However, as we have mentioned
previously, the Floquet-Bloch theorem cannot be directly ap-
plied to networks where the spatial period is not defined.

We notice that the conventional Floquet-Bloch theorem
states that, for example, in the case of 1D when we make a
lattice translation of a unit cell, the Bloch function is multi-
plied by a phase factor exp�ıK�a�, where K� is the Bloch
wave vector and a the lattice constant. Actually, this phase

factor can be denoted more generally by exp�ıK�, where K is
dimensionless. This phase change for the Bloch function
should be more universal and should still hold in network
systems in which only the configuration is periodic. Hence,
we consider that under a discrete configuration translation
for a network system the Bloch function is multiplied by a
factor exp�ıK�, even though the spatial period is not defined.
The K mentioned above can be regarded as a dimensionless
Bloch wave vector and does not depend on the lattice con-
stant.

More explicitly, for a configuration-periodic network,
there is the following relation for the Bloch function when a
discrete configuration translation T is made:

�K�N + T� = �K�N�eıK·T, �7�

where T, N, and K are all dimensionless and their values
depend on the configuration of the network.

In a 2D network, T= �T1 ,T2�, N= �N1 ,N2�, and K
= �K1 ,K2� all have two components with respect to the con-
figuration “directions” e1 and e2. T1 and T2 being integers
are, respectively, the numbers of discrete configuration trans-
lations along e1 and e2. The location of a node is indicated by
a pair of node indices N1 and N2. An N= �2,1� is shown in
Fig. 1 as an example. The elements of the dimensionless
Bloch wave vector K—namely, K1 and K2—are the phase
changes. If a system has a spatial period, for example, with a
2D translation vector a= �a1 ,a2�, then � K1

a1
,

K2

a2
� represents the

conventional Bloch wave vector.
Then the Floquet-Bloch theorem has been modified to a

dimensionless one. One can then obtain the band structure or
dispersion relation ��K� for any periodic network by using
Eqs. �6� and �7�.

When K is real, the wave is a propagation mode and can
travel through the network without attenuation, whereas in
the PBG wave is an evanescent mode with complex K.12 The
imaginary part of K, Im K, describes quantitatively the at-
tenuation of the wave amplitude as it propagates through the
network. In this paper Im K denotes only the positive solu-
tion of Eq. �7�, since if K is a solution, so is −K and a
positive Im K corresponds to the amplitude attenuation
constant13 �dimensionless�.

The attenuation within a gap is due to the destructive
interference of scattered waves. In a PBG the incident wave
is Bragg reflected and the wave intensity decays away from
the boundary with a certain decrement. If the nodes of a 1D
network are arranged periodically in space, this decrement
can also be described by the Bragg attenuation length �local-
ization length� �Refs. 14 and 15� LB. With this condition, the
Bragg attenuation length is given by LB=a / Im K, where a is
the spatial period. Hence, a larger Im K will cause a shorter
Bragg attenuation length LB.

We use the following example to illustrate the use of Eqs.
�6� and �7� and to evaluate our suggestion. Consider a
quasi-1D periodic serial loop network shown in Fig. 2, which
has been investigated in Ref. 16 by a method based on inter-
face response theory.17 The lengths of the segments in a pe-
riodic unit and some node indices are indicated in the figure.
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From Eq. �6�, we obtain the relation of the wave functions
for nodes at N=0, 2, and 4:

− ��
j=1

3

cot klj	2

�K�2� + �csc2 kl1 + �csc kl2 + csc kl3�2��K�2�

+ csc kl1�csc kl2 + csc kl3���K�0� + �K�4�� = 0. �8�

The discrete configuration translation of this structure ex-
ists. Hence, from Eq. �7� the wave functions at nodes 0 and 4
are related to that at node 2 in the following equations:

�K�4� = exp�ıK��K�2� ,

�K�0� = exp�− ıK��K�2� . �9�

The dispersion relation of this network is then obtained by
substituting Eq. �9� into Eq. �8� and from the condition of
existence of nontrivial solutions,

cos K =
1

2 sin� kL

2
	cos� k�L

2
	
cos kl1 sin kL

+ sin kl1�5

4
cos kL −

1

4
cos k�L − 1	� , �10�

with L= l2+ l3 and �L= l2− l3, which is exactly the result ob-
tained by a different approach reported in Ref. 16. It shows
that our approach is convenient and powerful.

III. BAND STRUCTURES AND ATTENUATION OF
SQUARE MULTICONNECTED NETWORKS

Consider a 2D square multiconnected network where
nearest-neighbor nodes are connected by n segments �Fig. 1�.
We first deduce the dispersion relation of this network. Equa-
tion �6� for the node at N= �0,0� reads

− 4�K�0,0��
j=1

n

cot kdj + �
j=1

n

csc kdj��K�− 1,0� + �K�1,0�

+ �K�0,− 1� + �K�0,1�� = 0, �11�

where dj is the length of the jth segment connecting the same
pair of adjacent nodes, and Eq. �7� gives

�K�1,0� = exp�ıK1��K�0,0� ,

�K�− 1,0� = exp�− ıK1��K�0,0� ,

�K�0,1� = exp�ıK2��K�0,0� ,

�K�0,− 1� = exp�− ıK2��K�0,0� . �12�

The dimensionless Bloch wave vector K= �K1 ,K2� has two
components corresponding to the phase changes along e1 and
e2, respectively.

By substituting Eq. �12� into Eq. �11� and from the con-
dition of existence of nontrivial solutions, the dispersion re-
lation of this network is obtained:

cos K1 + cos K2 = f�k� = f��

c
	 , �13�

where

f�k� = 2��
j=1

n

cot kdj	���
j=1

n

csc kdj	 . �14�

Similarly, the dispersion relation of a square multiconnected
network in � dimensions can be deduced,

�
i=1

�

cos Ki = ���
j=1

n

cot kdj	���
j=1

n

csc kdj	 . �15�

For simplicity, we only discuss the results for the 2D net-
works, since other dimensional ones will have similar prop-
erties. We first consider the SMCNs that every pair of adja-
cent nodes is connected by n=2 segments, and their band
structures are shown in Fig. 3 for different ratios of d2 /d1.
The symmetry points �, X, and M correspond to K= �0,0�,
�� ,0�, and �� ,��, respectively.

When d2=d1, Eq. �14� reduces to a very simple form, i.e.,
f�k�=2 cos kd1. Therefore, for any frequency Eq. �13� always
has real solutions for K. Thus no gap exists in the SMCNs
with this condition, which can be seen in Fig. 3�b�. Actually,
a SMCN which satisfies this condition is equal to a square
network where nearest-neighbor nodes are connected by one
segment, since the only difference between these two net-
works is the magnitude of waves traveling from one node to
the other node, which does not break the scattering patterns.

When d2 is slightly different from d1, the symmetry of the
two propagation channels is broken and a small resonance
occurs, which results in a narrow gap �Fig. 3�c��. The seg-
ments with different lengths between every pair of adjacent
nodes form an asymmetric loop similar to an acoustic loop
filter device.18 The band structure of a SMCN with d2=2d1 is
plotted in Fig. 3�a�, where a large gap with a width of �c /d1
can be seen. The gap to midgap ratio for this large gap is as
large as 100%. This gap is mainly due to the destructive
interference, since the path difference 	d=d2−d1 between
the long and short segments differs by one-half wavelength
at the frequency �c=�c /d1, which also is the midgap fre-
quency of the gap. It is easy to see from Eq. �6� that the band
structure is periodic in � with a period 2�c /d1. Hence the
stop bands and the passbands are periodically separated and
of the same width 	�=�c.

It is interesting that a very narrow passband can be cre-
ated at about the center of the large band gap when d2 is
slightly different from 2d1, as can be seen in Fig. 3�d�, where
d2=1.98d1 and a narrow passband appears around
1.005�c /d1 with a width of approximately 0.01�c /d1. The

-1 0 1 2 3 4
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FIG. 2. Schematic diagram of a quasi-1D periodic serial loop
network.
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width of this narrow passband is related to the relative
lengths of the two segments, and it can be obtained from the
dispersion relation �13�. If we denote d2= �2+�d�d1, where
�d is a small number comparing to unity, then the width
	�nar of the narrow band is approximately

	�nar 
�c

2d1
�d . �16�

A finite-size SMCN can be studied by injecting waves
into the node located at the center of the sample where all
boundary nodes are connected to leads, from which the
waves can leak out.11 The waves in a finite-size SMCN with
this kind of boundary condition will behave similarly to
those in an infinite SMCN, since the waves in both situations
are not confined. In our study, we inject a wave with unit
amplitude into the sample for simplicity. The wave function
at each node can be calculated by the generalized eigenfunc-
tion method,19 which was first introduced in studying the
electronic transport properties.

The real part of the wave function at the frequency of
approximately �=1.77��c /d1� for a sample with a size of
21
21 nodes and with n=2 and d2=2d1 is shown in Fig. 4,
from which one can see that a Bloch mode is periodic with
respect to the radial direction. Two real solutions of Eq. �13�
for this frequency are approximately K= �0.5� ,0� and
�0.33� ,0.33��. Hence the propagating Bloch wave is re-
quired to be periodic with four discrete configuration trans-
lations along e1 and six along e1,2=e1+e2, which is still ap-
proximately satisfied in the finite-size sample that all the
boundary nodes are connected by leads.

We also plot the total transmission spectra of a finite-size
SMCN in Fig. 3�e� for n=2 and d2=1.98d1, the same param-
eters used in Fig. 3�d�. The total transmission spectra are
calculated by summing over all the transmission coefficients
at the boundary leads.11 The comparison of Figs. 3�d� and
3�e� shows that the calculated band structure is consistent
with the transmission spectra. The solid curve and the dashed
curve plotted in Fig. 3�e� are the total transmission spectra of

the samples with a size of 10
10 and 15
15 nodes, respec-
tively. The narrow peak in the vicinity of �=�c /d1 arises
from the transmission of propagation waves, and hence the
amplitude will not decrease exponentially with the sample
size. The large dips in the spectrum indicate that the attenu-
ation in the band gaps is very strong. Notice that the largest
attenuation is near the upper edge of the narrow passband.
We will give more discussion on this feature later.

If we introduce a defect in a SMCN with parameters n
=2 and d2=2d1 by changing the length of one segment at the
center of the sample from 2d1 to 2.2d1, a defect state will be
created. From the calculation of transmission spectra we
found that the defect state locates at the frequency of ap-
proximately 1.43�c /d1. The corresponding intensity map
���N��2 is shown in Fig. 5, from which a sharply localized
state at the defect nodes is clearly seen �notice the two dark
squares�.

When the frequencies are inside a PBG, K is complex
with an imaginary part Im K= �Im K1 , Im K2�. The factor
e−2 Im K1, which measures the attenuation of the wave inten-
sity along e1, for a SMCN with n=3 and d3=d2=2d1 for
different evanescent modes, is plotted in Fig. 6�b�, including
K1=K2 �circles�, K2=0 �crosses�, and K2=� �triangles�. We

FIG. 3. �a�–�d� Band structures of the SMCNs
with n=2 for different relative lengths of seg-
ments. �e� Total transmissions of the SMCNs
with a size of 10
10 nodes �solid curve� and
15
15 nodes �dashed curve�. The parameters n,
d1, and d2 are the same as those used in �d�.

FIG. 4. Intensity map for the real part of � at the nodes of a
SMCN with a size of 21
21 nodes and with parameters n=2 and
d2=2d1. The frequency is approximately �=1.77�c /d1.
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also calculated the total transmission coefficient T11
11 for a
finite-size SMCN with 11
11 nodes and T9
9 with 9
9
nodes. The average attenuation per configuration translation
for waves with frequencies in the band gap traveling in all
directions can be obtained approximately by T11
11 /T9
9,
which is plotted by the solid curve in Fig. 6�b�. One can see
that this solid curve in the band gaps is between maximum
and minimum of e−2 Im K1 for different modes. So the analyti-
cal attenuation calculation for different EM modes is consis-
tent with the transmission calculation. The solid curve is
closer to the larger e−2 Im K1, since the corresponding modes
with less energy attenuation give a dominant contribution to
the transmission spectrum.

As can be seen from Fig. 6�b�, the attenuation for waves
with frequency within the second gap is extremely large.
Even for only one configuration translation, the EM waves
are attenuated at least 40 dB at the frequency range from
0.886�c /d1 to 1.114�c /d1. The factor e−2 Im K1 approaches
zero rapidly when the frequencies get closer to �c /d1. For
the first and third gaps, the attenuation is relatively small

compared with that in the second gap; however, e−2 Im K1 can
still be smaller than 0.1 for certain modes. Note that the
attenuation for the K2=0 mode is larger than that one with
K2=� in the first and third gaps, whereas in the second gap
the attenuation for the K2=� mode is stronger.

For clarity, we plot the function f�� /c� in Eq. �13� in Fig.
7�a� by a solid curve for n=3 and d3=d2=2d1. From the
figure one can see that f�� /c� is slightly smaller than −2 in
the first and third gaps, while in the second gap it is much
larger than 2 and approaches infinity when the frequencies
get closer to �c /d1, which is quite different from the case
with frequencies within the first and second gaps. We also
show f�� /c� with parameters used in Fig. 3�a� in Fig. 7�a� by
a dashed curve. It can be seen that even though the width of
the large gap shown in Fig. 3�a� is larger than that of the
second gap in Fig. 6�a�, the attenuation in the former is
smaller. This difference is due to the occurrence of strong
resonance at resonance frequencies for which f�� /c� ap-
proaches infinity.

If we change the ratios of the lengths of the three seg-
ments connecting the same nodes being not integers, d3
=2.05d1 and d2=2.15d1, then f�� /c� changes and more gaps
and several narrow passbands are created, which can be seen
from Fig. 7�b�. Actually, the existence of an extremely nar-
row passband, such as the narrow band shown in Fig. 3�d�, is
a consequence of the strong resonance and antiresonance. At
frequencies where there is an antiresonance, which inhibits
forming a gap, �f�� /c�� is required to be smaller than 2. If in
the vicinity of these frequencies a strong resonance occurs,
f�� /c� tends towards infinity, and its slope will be very
large; consequently a narrow passband is created near a gap
with large attenuation.

FIG. 5. Intensity map ���2 of a defect state at approximately �
=1.43�c /d1. The two darkest squares correspond to the nodes be-
tween which a defect segment was introduced. The sample size is
11
11 nodes.

FIG. 6. �a� Band structure for a SMCN with n=3 and d3=d2

=2d1. �b� The attenuation per configuration translation. Circles,
crosses, and triangles show the e−2 Im K1 for different attenuation
modes with K1=K2, K2=0, and K2=�, respectively. The solid curve
is T11
11 /T9
9, the ratio of the total transmissions of two SMCNs
for 11
11 and 9
9 nodes.

FIG. 7. �a� Solid curve is the plot of f�� /c� for n=3 and d3

=d2=2d1. Dashed curve is the case of n=2 and d2=2d1. �b� f�� /c�
with parameters n=3 and d3=2.05d1 and d2=2.15d1.
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For conventional PBG structure Im K has a quasipara-
bolic profile as a function of wave frequency inside a band
gap.7,20 However, in SMCNs, Im K can reach infinity and its
maximum may not locate at the center of the gap. These
differences are due to the strong resonance and antiresonance
in the segments connecting the same nodes.

If the number n of segments connecting every pair of
nearest-neighbor nodes increases, more resonance modes
will appear. As an example, we show the band structure for a
SMCN with n=4 and d4 :d3 :d2 :d1=1.98:1.83:0.91:1 in
Fig. 8, from which one can see that more gaps are created
and three narrow passbands appear in the vicinity of �c /d1.

IV. CONCLUSIONS

We have shown that if the conventional Floquet-Bloch
theorem is modified to be dimensionless, then it can still
work in configuration-periodic networks, such as the SMCNs
studied in this paper, in which the space translation symme-
try may not hold and the period of the systems cannot be
defined.

Due to the resonance and antiresonance behavior arising
in the segments between nearest-neighbor nodes, wide gaps
and narrow passbands are created. The phase K, correspond-
ing to the conventional Bloch wave vector, is complex in a
band gap. Its imaginary part Im K describes the attenuation
of a wave inside a PBG. We found that Im K has a uncon-
ventional profile as a function of wave frequency inside a
band gap which results from a strong resonance and antireso-
nance. Im K �and hence the attenuation� can be very large in
a system with appropriate parameters and approaches infinity
at the resonance frequencies, which, however, may not be the
midgap frequencies of the gaps. Since the attenuation is very
large in the PBG, then the corresponding localization length
is small; consequently, waves can be strongly confined in the
defects. The attenuation constants are different for different
K values, even though the evanescent modes are of the same
frequency and decay in the same direction.

The propagation properties of a SMCN can be tunable if
the waveguide segments of different lengths are made of
different materials. For example, changing temperature will
alter the relative lengths of the segments. Therefore the band
structures and the attenuation of waves can be tuned by tem-
perature. The SMCNs with controllable gaps and passbands
have potential applications.

Recently, coaxial photonic crystals �i.e., 1D networks
made of alternating segments of two different types of ordi-
nary coaxial cable� have been used to study the effects ob-
served in conventional photonic crystals, including defect
modes, superluminal wave-packet tunneling, and slow EM
propagation.21–23 It can be expected that SMCNs consisting
of coaxial cables can be also used to study these effects in
2D and 3D.
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