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Mean-field nucleation and growth modeling is important for understanding various adsorbate-substrate sys-
tems, particularly in the context of epitaxial growth. Conventional mean-field theory does not take into account
nonlocal interactions, but adparticles may interact with strained islands via long range elastic interactions
mediated by the substrate. We show that recent extensions of mean-field theory to deal with nonlocal interac-
tions do not describe such processes faithfully. Here, we derive a generally applicable mean-field theory of
adparticle dynamics on strained surfaces, when interdiffusion is neglected. This approach enables us to deter-
mine the transport coefficients from the microscopic physics; in particular, we find explicit expressions for the
diffusion coefficient and drift velocity at all positions relative to an arbitrarily strained island. We demonstrate
the role of strain on island growth, using island strain fields that are dynamically updated, for Ge /Si�001�
parameters. This approach has important applications in the modeling of nucleation and growth of many
nanostructures, such as metal nanoclusters, semiconductor hut clusters, and silicide nanowires.
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Over the past few years, it has become clear that capture
of adparticles �atoms, molecules, and/or small clusters� on
surfaces cannot always be treated in the diffusion-controlled
limit and that adparticle interactions are often important in
forming nanostructures. For example, repulsive interactions
are thought to play an important role in the nucleation and
growth of metal nanoclusters, hut clusters, and nanowires.
Recent papers on the early stages of �epitaxial� growth, in
which repulsive fields may be important, are given by Fich-
thorn and Scheffler,1 Merrick et al.,2 Ovesson,3 Venables and
Brune,4 and Niu et al.5 This field has been reviewed by
Ratsch and Venables.6

Consider adparticles on a solid substrate, which are ini-
tially deposited at a rate determined by the flux. In the early
stages, diffusive movement leads to the formation of island
nuclei which dissociate or grow depending on whether their
size is below or above a critical value. As time progresses,
these adparticles are more likely to be captured by already
formed nuclei rather than forming new ones; the interplay of
short and long range interactions between adparticles to-
gether with diffusive movement leads to the growth of vari-
ous nanostructures.

The time evolution of the adparticle concentration ci�t� at
site i is described via an equation of the type

�ci�t�
�t

= F − Fdes − Fcap + Frel + �
j

�Wj→icj�t� − Wi→jci�t�� ,

�1�

where the first two terms denote deposition and desorption
fluxes, the next two terms account for the capture and release
of adparticles from islands, and the sum over nearest neigh-
bors of site i represents hopping to and from site i with
hopping rates Wj→i and Wi→j, respectively. These transition
rates are modified by adsorbate interactions or the applica-
tion of an external field.

Conventional mean-field theory �MFT� typically ignores

adsorbate interactions during diffusion and capture.
Ovesson3 made a first attempt to include such interactions.
Here, we analyze the assumptions behind Ovesson’s ap-
proach and show that they are inapplicable to the case of
strain fields. We then construct an extension of MFT which
correctly describes nucleation and growth in the presence of
strain fields and apply this theory to calculate island growth
quantities of interest.

As mentioned by Ovesson,3 the challenge to deriving a
continuum mean-field description from Eq. �1� stems from
calculating the sum. Hence, we shall focus solely on this sum
and ignore the other terms. According to transition-state
theory, the hopping rate between two sites i and j take the
general form,

Wi→j = Wi→j
0 e−�Ei→j , �2�

where Ei→j is the energy barrier jump from site i to j and
�= �kbT�−1. In the absence of an external field, the diffusion
barrier is given by Ei→j =Es−Ei, where Ei and Es are the
adparticle energies at site i and at the saddle point between
sites i and j, respectively. This energy difference is usually
denoted as the diffusion energy Ed.3,4 Here, we use Ed for the
zero-strain value.

The application of an external field V changes the diffu-
sion barrier to Ei→j =Es+Vs−Ei−Vi. Assuming that the
change of saddle-point energy in an external field equals the
average changes at the binding sites, i.e., Vs= �Vi+Vj� /2, we
get

Ei→j = Ed +
Vj − Vi

2
. �3�

Note that this is exactly the expression used by Ovesson3 in
the derivation of his nonlocal MFT. Thus, we stress that an
implicit assumption is that the change of saddle-point energy
in an external field equals the average changes at the binding
sites. This assumption may perhaps work well in a particular
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situation, e.g., Ref. 1; however, we show here that it is not
generally satisfied, for the important case of fields due to
strain. We illustrate this flaw using an analytic one-
dimensional �1D� model.

Consider a 1D substrate in which substrate atoms are pe-
riodically placed with a lattice spacing a. The interactions
between an adatom and substrate atoms and between the sub-
strate atoms themselves are via a Lennard-Jones �LJ� 6-12
potential: V�r�=4���� /r�12− �� /r�6�. The equilibrium spac-
ing between the substrate atoms is a0=21/6�, but since the
spacing is kept fixed at a value a, this implies that the surface
is under a strain given by �= �a−a0� /a0=2−1/6�−1a−1. This
model was considered by Shu and Gong7 in the context of
carbon nanotubes, in which case, it was solved numerically.
We are interested in deriving explicit expressions for the
changes in potential energy at the binding sites and at the
saddle points as a function of strain; thus, we can assess
directly whether the assumption discussed in previous para-
graphs holds or not for the cases of compressive and tensile
strain fields. Note that the substrate is “frozen;” i.e., once the
spacing a �and thus the strain� is changed to a new value, the
substrate atoms are not allowed to relax back to the equilib-
rium spacing but remain in a stressed state with the new
spacing a. Positive values of � correspond to strain due to a
tensile stress and negative values to compressive strain.

The binding sites and the saddle points in this model natu-
rally correspond to the hollow and the atop sites. To a first
approximation, the adatom will adopt a configuration such
that the distance to its nearest neighbors is equal to a0 �see
Ref. 8 for a general discussion of this point�. Then, it is
easily shown that the potential energy of the adatom includ-
ing interactions up to next-next nearest neighbors, at a bind-
ing site �V1� and at a saddle point �V2�, is given by

V1 = 2��4���/r1�12 − ��/r1�6� + 4���/r2�12 − ��/r2�6� − 1� ,

�4�

V2 = ��8���/r3�12 − ��/r3�6� + 8���/r4�12 − ��/r4�6� − 1� ,

�5�

where distances are given by r1
2=a0

2+2a2, r2
2=a0

2+6a2, r3
2

=a0
2+a2, and r4

2=a0
2+4a2. Using the previously stated rela-

tion between a and �, one can Taylor expand these equations
in the strain to obtain

V1 = − ��2.16 − 0.63�� + O��2� , �6�

V2 = − ��1.50 − 1.47�� + O��2� . �7�

Using the notation introduced in the prelude to Eq. �3�, the
changes in saddle-point energy and binding energy due to the
strain field are Vs=1.47�� and Vi=0.63��. This explicitly
shows that the assumption that the saddle-point energy is an
average of the neighboring binding site energies is incorrect
when a small strain field is applied to a given surface. Since
the barrier energy will vary with strain, then the local diffu-
sion coefficient D must also depend on the local magnitude
of the strain; this feature is missing from Ovesson’s extended
version of conventional MFT. These results can also be ob-
tained from a two-dimensional �2D� analog of our model; in

this more general case, the saddle-point and binding energies
�and hence values of D� at a site are linear combinations of
the local strain tensor components.

We note that the dependence of the diffusion barrier on
the strain is also known from first-principles calculations of
adatom diffusion on Si�001� surfaces.9,10 In line with the
predictions of these more detailed models, we find that D
generally increases with the application of compressive
strain �negative �� and decreases for tensile strain �positive
��. First-principles calculations show that these effects are
still present when the substrate is allowed to relax due to the
adatom9 and that quantitative differences between this case
and the frozen substrate case are small,8 at least for the LJ
potential.

We now develop the continuum mean-field theory of ad-
particle dynamics on strained surfaces. Generally, the strain
at a given point on the surface will be due to nonlocal islands
or other nanostructures. The general case is that of an inho-
mogeneously strained surface such that the strain is given by
some function of space and time �=��x ,y , t�. We will use the
results previously derived for homogenously strained sur-
faces locally; the use of the results for homogeneous fields to
understand the case of heterogeneous fields has been previ-
ously verified to yield qualitatively correct predictions using
microscopic simulations.8

We shall assume that the adparticles move on a 2D square
lattice of substrate atoms. Let the strain at lattice site i
be �i; then, the extra potential at binding site i due to
the application of a strain field is Vi=�1�i. Similarly, the
change in the saddle-point potential Vs=�2��i+� j� /2. The
values of these two parameters depend on the specific
type of adparticles, surfaces, and interactions under consid-
eration. Note that since �1, �2, and � are generally tensors
�and functions of position�, a summation convention is
implied in our equations for the potential energies, e.g.,
�1�=�1xx�xx+�1yy�yy. . .. In the spirit of mean-field approxi-
mation, we assume that the strain is slowly varying between
neighboring lattice points. Thus, the equation for the energy
barrier takes the form

Ei→j = Ed + Vs − Vi = Ed +
�2

2
��i + � j� − �1�i, �8�

which leads to transition rates of the form

Wi→j = Wi→j
0 e−�Ede−�1/2���2�je−���1/2��2−�1��i. �9�

The factor Wi→j
0 e−�Ed has units of inverse time and so can be

expressed as D1 /h2, where D1 is the diffusion coefficient of
the adparticles in the absence of external fields and h is the
lattice spacing. Hence, the previous expression can be rewrit-
ten in the convenient form

Wi→j = f jgi/h2, �10�

where

f j = �D1e−�1/2���2�j , �11�

gi = �D1e−���1/2��2−�1��i. �12�

In a separate but related development, Grima and
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Newman11 showed that advection-diffusion equations of the
general form

�c

�t
= � · �D � c� − � · �cv� , �13�

where D= fg and v=g� f − f �g are the continuum limit of
discrete master equations of the form

�ci

�t
= �

j

�Wj→icj − Wi→jci� , �14�

where the sum is over nearest neighbors of site i and the
transition rates are of the form of Eq. �10�. Note that f and g
are some functions of space and time and f j represents the
value of the function f at site j on a regular lattice of step
size h. This result is valid in all dimensions; it is useful in the
context of this Brief Report in that it enables us to immedi-
ately construct the macroscopic dynamical equation from the
underlying microscopic equations since our rate equations
are exactly of the above form. Substituting the forms of f and
g which we previously derived, Eqs. �11� and �12�, into the
expressions for the macroscopic diffusion and drift velocity
following Eq. �13�,

D�x,y� = D1e−���2−�1���x,y�, �15�

v�x,y� = − �D�x,y�	 ���1��
�x

x̂ +
���1��

�y
ŷ
 . �16�

Hence, the continuum mean-field description of adparticle
diffusion on homogeneously or inhomogeneously strained
surfaces is given by Eq. �13� with Eqs. �15� and �16�.

We now use these equations to investigate adatom kinet-
ics near an island. This shall be done in two distinctive ways:
first, by means of an analytical approach to distill the main
features of adparticle movement in the neighborhood of an
island and second, by direct numerical integration of the
mean-field equations for the specific case of Ge islands on
Si�001�.

The calculation of the strain field around an island is the
subject of ongoing research. However, it is well known that
for a relatively flat island in a one-dimensional space, an
approximative expression is given by12,13

��x� = �0 + 2�0 tan���
1 + �

�

	ln� �x − H cot��� + L2��x + H cot��� − L2�
�x + L2��x − L2�

� ,

�17�

where � is the angle of the island facets, H is the height, �0 is
the misfit strain, � is the Poisson ratio, and L2 is half the base
length L. Here, the edges are at x= ±L2. This approximation
is valid for a relatively flat island satisfying H /L
1; this has
been verified by molecular dynamics simulations of Ge on
Si�001�.13 A two-dimensional �1+1� model of this type also
captures the main features of the strain field close to a 2D
island edge, though it neglects corner effects �see Zinovyev
et al.13 and references therein�.

Using the above expression and Eq. �15�, one can easily
get an expression for D as a function of distance from the
island. Close to the island, this expression reduces to
D�x�� �x−L2�� in the range xL2, where the proportionality
constant is positive and �=2��0 tan�����2−�1��1+�� /�.
Using Eq. �16�, one can similarly calculate v in the
vicinity of the island, finding that the leading term is
v�x���1�0�x−L2��−1. It is difficult to generalize beyond this
point because the exact behavior depends on the signs of �1
and �2−�1. If we consider the case of Ge on Si, �1 and
�2−�1 are known from Refs. 9 and 10 to be negative in the
case of �1 and positive in the case of �2−�1. Since �0 is also
negative for this case,13 then it follows that the drift velocity
is away from the island on each side. The diffusion coeffi-
cient increases monotonically as the island is approached
from either side. Note that these predictions are different
than those from Ovesson’s theory;3 the latter corresponds to
the special case �=0 in our theory which implies a constant
diffusion coefficient and a drift velocity which decays artifi-
cially slowly with distance from the island.

Now, we consider the case of monolayer �ML� thick is-
lands of Ge on Si�001�, which we study by direct numerical
integration of the mean-field equations. The case of aniso-
tropic but spatially constant D has already been studied.14

Here, we extend this by a brief study of the effect of strain on
island growth, with a more detailed study to follow.15 The
adparticle dynamics follows the continuum equation �Eq.
�13�� with the diffusion coefficient and drift velocity given
by Eqs. �15� and �16� and with the strain field given by Eq.
�17�. This equation is integrated using the master equation
discretization approach;11 the stability analysis is given in
Ref. 16.

We study the case of an island with H=1 in the 128	1
periodic simulation space, the facet angle �=45°, and initial
length L=11 units, at T=450 °C. We use �0=−0.042,
�=0.26, �1=−1.75 eV, and ��2−�1�=0.75 eV; all values are
appropriate for Ge on Si.9,10,13 Illustrative results are given in
Figs. 1 and 2.

Figure 1 shows the plots of diffusion coefficient, drift ve-
locity, and strain as a function of distance from the island
center. The deposited dose Ft at t=400 is 0.4 ML in units of
H; the initial adparticle concentration is 0.005 ML.17 The
zero-strain values of D1=5 and �t=0.03 are chosen such that
stability is assured for all strains encountered. The data are
for the end of a run in which the island size and strain field
are updated when the amount of material added to each side
of the island has increased by one lattice constant. Time-
lapse movies have been made to visualize the growth pro-
cesses, as MATLAB movies �mov� and video clips �avi�.14,15

The diffusion constant D and strain are both symmetric in
position x, whereas the drift velocity v is antisymmetric; the
case of �2−�1=0.75 eV is highlighted, with the �2=�1 case
shown by the dotted line for comparison. Note that strain
causes a 60% increase in the diffusion constant far away
from the island and a much larger enhancement close to the
island edges.

Figure 2 shows the corresponding adparticle concentra-
tion profiles and final island sizes. We see directly that
�2=�1, curve �a�, leads to incorrect predictions of island
growth rates. In our case ���0 and �2�1, curves �b� and
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�c��, the concentrations are lower, and the island width is
larger, than those predicted by nonlocal MFT3 based on the
�2=�1 assumption. This occurs because for the � and � pa-
rameter values illustrated here, strain-enhanced diffusion is
able to overcome the general trend of drift away from the
island. More cases are considered elsewhere.15

To summarize, we have introduced a quantitative treat-
ment of nucleation and growth on a lattice, in which the
transport coefficients are directly deduced from the micro-
scopic dynamics for the case of strain. For specific systems,
such as Ge /Si�001�, this may limit application to relatively

low temperatures, where interdiffusion is unimportant. Epi-
taxial growth in such systems at high temperatures is
complex18 and is specific to all the �nonlinear� processes,
such as reconstruction and nucleation5 that need to be con-
sidered. Our general approach allows such processes to be
added one at a time to study particular regimes in any spe-
cific system.

It is a pleasure to thank Jeff Drucker, Feng Liu, and Chris-
tian Ratsch for interesting discussions.
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FIG. 1. �Color online� ��a� and �b�� Diffusion coefficient, �c�
drift velocity, and �d� strain as a function of distance from the island
center. The dotted and dash-dotted lines are for �2=�1=−1.75 eV.
The solid �red/gray, black, and green/light gray� lines are for
�2−�1=0.75 eV, with �1=−1.75 eV.

FIG. 2. �Color online� Final concentration profiles around an
island; the initial island width=11, as shown by the shaded region.
The parameter �2−�1 equals �a� 0 eV �dash blue line�, �b� 0.75 eV
�full black line�, and �c� 1.5 eV �dashed-dotted red line�. In all cases
�1=−1.75 eV. See text for discussion.
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