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Screening of a large external charge in graphene is studied. The charge is assumed to be displaced away or
smeared over a finite region of the graphene plane. The initial decay of the screened potential with distance is
shown to follow the 3 /2 power. It gradually changes to the Coulomb law outside of a hypercritical core whose
radius is proportional to the external charge.
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Recent discovery of graphene—a two-dimensional �2D�
form of carbon1—brought an exciting link between solid-
state physics and quantum electrodynamics �QED�. The half-
filled �-band of graphene has a relativistic massless Dirac
spectrum �= ±�v�k� where ��0 for the electrons and ��0
for holes, k is the deviation of the quasimomentum from the
Brillouin zone corner, and v�106 m /s. The role of the fine-
structure constant is played by the dimensionless parameter

� = e2/��v, e2/�v � 2.2, �1�

where � is the dielectric constant at the interface of substrate
and vacuum. For conventional SiO2 substrates ��2.4; hence
Coulomb interaction is strong, ��1.

In this work, we consider the problem of screening of a
Coulomb potential V0=eZ /�r that can be induced in
graphene by a group of charged impurities in the substrate,
by a nearby gate, or by a cluster of dopants. This problem is
important for a number of properties of graphene nanostruc-
tures, including transport,2–5 local gating,6–9 controlled
doping,10,11 and chemical sensing.12 Not surprisingly, it has
attracted much attention.2,4,5,13–19 In particular, it has been
noted16–18 that at half-filling the problem of a Coulomb
charge in graphene has an interesting parallel with that of a
hypothetical supercritical atom with Z��c /e2�137. For
such an atom, the standard solution20 of the Dirac equation
breaks down and a physically acceptable atomic structure is
obtained only after accounting for a finite radius of the
nucleus.21 This structure is characterized by a vacuum recon-
struction: a certain number of electrons is spontaneously cre-
ated �liberating positrons�, they bind to the nucleus, and ren-
der it subcritical. In graphene the critical charge16–18,22 Zc
�1 /2� is much smaller than in QED; hence solid-state ana-
logs of supercritical atoms may be realizable even at Z�1.

According to all prior investigations, screening properties
of an undoped graphene resemble those of a dielectric: the
screened potential V of a supercitical charge has been argued
not to deviate much from the Coulomb law,

V�r� =
e

�r

F�r�
2�2 . �2�

Here F�r� is a slow logarithmic function. Such a conclusion
follows from the standard linear response theory—random
phase approximation �RPA�2,14—and was supposedly con-
firmed by calculations within the Thomas-Fermi �TF�

method13,15,16 that is able to go beyond the linear response.
Below we reexamine these conclusions for the case of a hy-
percritical charge Z	1, which lets itself to a controlled treat-
ment and adds new physics. Without loss of generality we
assume that the external charge attracts electrons, Z�0.

Since it was not always made clear previously, we empha-
size that the problem is ill-defined unless one explicitly regu-
larizes the strong Coulomb singularity at the origin. This is
as crucial as introducing a finite size of a nucleus in QED.
Therefore, the charge Z must be either displaced away from
graphene plane by some distance d or spread over the area of
some radius r0 in this plane. In order to deal exclusively with
Dirac fermions the smearing parameter max�d ,r0� must ex-
ceed a�	Z where a=2.5 Å is the graphene lattice constant;
otherwise, the quasiparticle energy shift due to the potential
V would exceed the modest energy separation 4 eV�e2 /a of
the Dirac point and the nearest 
 bands.23 These other bands
would then also need to be included, leading one to a three-
dimensional �3D� problem that has little to do with special
properties of graphene.

Our main result is that the induced 2D electron density
and the screened potential have the form

n�r� �
1

4��2

r1

r3 , V�r� �
e

2�2�
	r1

r3 , r1 
 2�2Zd ,

�3�

in the range of distances max�d ,r0��r�r1. Based on elec-
trostatics, the law �3� is robust and universal. How then does
one reconcile it with Eq. �2�? As we clarify below, the situ-
ation is as follows. In the strongly interacting case, ��1,
Eq. �3� controls the entire supercritical core, i.e., the circle
around the origin where the net charge exceeds Zc. This fact
has eluded previous studies. However, if � is small, the do-
main of validity of Eq. �3� narrows down, opening up a
window where Eq. �2� is realized. Although current experi-
ments are not in this regime, small � can be achieved using
large � substrates, e.g., HfO2 �Ref. 6� or simply liquid water,
��80.

The three-line derivation of Eq. �3� can be given if, as
discussed above, the charge Z is pointlike but removed from
the graphene plane13 by an appropriate distance d. The key
idea is that if we treat the graphene sheet as a perfect metal,
then classical electrostatics dictates that the induced charge
density is given by n=ncl, where
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ncl�r� =
1

2�

Zd

�r2 + d2�3/2 =
1

4��2

r1

�r2 + d2�3/2 . �4�

At r	d we get the first formula in Eq. �3�. To derive V�r� we
employ the TF approximation,

��n�r�� − eV�r� = 0. �5�

Combined with the formula for the chemical potential,

��n� = sgn�n�	��v�n�1/2, �6�

specific for the 2D Dirac spectrum, it yields the second for-
mula in Eq. �3�, concluding the derivation. The rest of our
paper is needed mainly to explain why the above reasoning
is correct, why Eq. �3� is completely general rather than re-
stricted to the case of a remote charge, and finally, where the
room may still exist for the differing predictions for n and V
advocated in Refs. 13, 15, and 16.

First, let us clarify why it was legitimate to approximate
the density response of graphene—a complicated quantum
system—simply by that of an ideal metal. The reason is this.
At r�r1 the local screening length rs= �� /2�e2��d� /dn�
��−1�n�−1/2 is much smaller than the characteristic scale
max�r ,d� over which the potential V�r�, or equivalently, the
effective background 2D charge density ncl�r� vary. There-
fore, the unscreened charge density, 
�r�
ncl�r�−n�r�, is
smaller than the background one, ncl�r�, by some large factor
related to the ratio of rs and max�r ,d�. �The precise relation
is expressed by Eqs. �11� and �12� below.�

The next step is to explain why or rather where the TF
approximation can be trusted. This is determined by the con-
ditions that max�r ,d� exceeds the local Fermi wavelength

F�r��n−1/2�r�. For ��1 we can use n�r� from Eq. �3� to
write this condition as r�r2=Zd. Thus, for ��1 the do-
mains of validity of the TF and the perfect screening ap-
proximations coincide, r1�r2. At r�r2 all corrections to Eq.
�3�, both smoothly varying with r and Friedel oscillations16,24

are subleading.
Let us briefly discuss the nature of screening at r�r2

where the TF approximation breaks down. Define Q�r� to be
the net effective charge inside the circle of radius r,

Q�r� 
 

0

r

2�
�r��r�dr�. �7�

At r=r2, Q drops to a number of the order of the critical one
Zc�1 /2�. Consideration of screening now requires a de-
tailed analysis of the eigenstates of the Dirac equation16–18 in
the potential created by the charge Q�r2�. According to Ref.
16, some amount of charge, in fact, exactly the critical one
remains unscreened: Q���=Zc. The saturation of Q at this
value occurs near a certain r=r*. However for ��1, r* and
r2 must coincide up to a factor of the order of unity. Thus Eq.
�3� governs the entire supercritical core except perhaps a
nonparametrically wide outer region r�r2 where a more
complicated dependence16 may apply. At even larger dis-
tances the potential V�r� follows the RPA prediction

V�r� � eZc/�r, r 	 r2, �8�

where �=��1+ �� /2��� is the RPA dielectric constant.2,14 A
more careful examination of the behavior of V�r� at such r
requires accounting for the infrared renormalization of �
�which enters ��,14,19,27 that is not directly related to the prob-
lem at hand.

Let us return to the analysis of the supercritical region and
show how to refine our results by computing corrections to
Eq. �3�. For this we complete the set of the TF Eqs. �5� and
�6� by adding another one for V�r�:

�

e
V =
 d2r�
�r��

�r − r��
= 


0

�

dq J0�qr�
̃�q� = 

0

r g�s�ds
	r2 − s2

,

�9�

where J0�z� is the Bessel function25 and 
̃, aptly param-
etrized by 
̃�q�=�0

�ds g�s�cos qs,26 is the 2D Fourier trans-
form of 
. Inverting the last equation of Eq. �9�, we get
g�u�= �2� /�e��d /du��0

uV�s�s ds /	u2−s2 and

Q�r� = Q��� −
2

�

�

e2

r

� u du
	u2 − r2

d

du



0

u eV�s�s ds
	u2 − s2

. �10�

The leading correction to the perfect screening can be ob-
tained by substituting ��ncl�s�� in lieu of eV�s�; cf. Eq. �5�.
The resultant expression is cumbersome, and so we quote
only the limiting forms:


�r�
ncl�r�

� �− �2�5/4�	 8d

�r1
, r � d , �11�

16

�2�4�5/4�	 r

r1
, d � r � r1, �12�

where the Gamma-function25 ��5 /4��0.906. In agreement
with the above physical argument, the deviation from the
perfect screening at all r�r1 is small.

These analytical predictions were verified by numerical
simulations. To this end we solved the TF equations �5�–�9�
inside a finite square of the 2D plane. The integrals were
replaced by discrete sums over a uniform 256�256 grid
defined therein and the periodic boundary conditions were
imposed. The solution for n�r� and V�r� was found by a
standard iterative method, using underrelaxation to ensure
convergence. As shown in the inset of Fig. 1, the analytical
and the numerical results agree extremely well for a suitably
large hypercritical charge �2Z=20.

Small-� regimes. Let us now show that Eq. �2� can be
reconciled with our theory under the condition ��1, i.e.,
�	1. In this case there is a gap between the above defined
characteristic length scales r1 and r2. This gap is filled by an
additional regime where the TF approximation regime is still
valid but the screening is ineffective.

To see that consider first moderately small �, such that
1 /	Z���1. Since the screening is weak, Eq. �10� is no
longer convenient. Instead, the derivation of V and n can be
done along the lines of Ref. 15 but with several important
refinements. First, we trade the two last equations of Eq. �9�
for
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�

e
V�r� = 


0

� 4r�dr�

r� + r
K�2	rr�

r + r�
��ncl�r�� − n�r��� , �13�

where K�z� is the complete elliptic integral of the first kind.25

Next, we treat Eq. �2� as the definition of yet unknown func-
tion F and use Eqs. �5� and �6� to obtain

n�r� = F2�r�/4��2r2. �14�

Taking the limit d→0 at fixed r1, we get the equation

F�t� = 

−�

�

du���t − u� + ��u − t���e−u − F2�u�� , �15�

where t=ln�r /r1� and ��t� is the unit step function. Function
��t�, defined by Eq. �12� of Ref. 15, has the following prop-
erties: It is a logarithmically divergent at t=0, is exponen-
tially small at �t�	1, and satisfies ���t�dt=ln 4. It is easy to
see that at large negative t, we must have perfect screening,
F2�t��e−t. The asymptotic behavior of F at large t�0 can
be deduced by replacing ��t� with �ln 4���t�.28 After this, we
can differentiate the integral equation �15� to get

F−1 − �2 ln 4�ln F = ln�r/r1� + c, c = const, �16�

where we returned to the original linear coordinate r. The
direct numerical solution of Eq. �15� shows in excellent
agreement with Eq. �2� and Eq. �16� if the constant c is set to
0.6; see Fig. 1. At r�r1, this solution crosses over to the
strong screening regime, Eq. �12�.

The range of r�r2 where Eq. �16� is valid is again deter-
mined by the condition r	n−1/2�r�, which yields

r2 � r1 exp�1/2	��� . �17�

At r	r2 the screened potential is given by Eq. �8�.
Consider even smaller �, such that 1 /Z���1 /	Z. Here

the Coulomb interactions are so weak that the smearing of
the external charge is no longer necessary: The “dangerous”

region r�a�	Z is smaller than the lattice constant. In addi-
tion, the domain of the perfect screening, r�r1, which is the
region of validity of Eq. �3� disappears. �Weak interactions
entail poor screening.� In this case c→ �2�2Z�−1+ln�r1 /a�,
so that the solution

V�r� �
eZ

�r

1

1 + 2�2Z ln�r/a�
, �18�

advocated in Ref. 15 actually applies, at ln�r /a��1 /�.
In-plane charge. In the concluding part of the paper we

wish to return to the structure of the hypercritical core and
show that Eq. �3� remains valid if the charge Z resides within
the 2D plane. To gain some intuition consider first an artifi-
cial scenario where the external charge is highly localized
yet the 
 bands of graphene can be neglected. In this case the
maximum possible electron density �relative to that of the
half-filled � band� is nmax=2 /	3a2. This density is indeed
reached at r smaller than some radius b as a result of attrac-
tion of electrons to the hypercritical charge Z. At r�b, elec-
tron density is gradually decreases, which can be thought of
appearance of “holes” at the top of the conduction band.

Incidentally, the charge profile of these holes within the
perfect screening approximation is known exactly. It can be
read off the results of Ref. 29 where the structure of a deple-
tion region around a disk of a negative charge in a semicon-
ductor was studied. For a high density of the external charge
these authors found that b= �Z /2�n��1/2, where n� is the uni-
form electron density far away from the depletion. They also
found29 that the density profile at large r is given by n�r�
=n�− �Zb /2�r3� at r	b. Adopting these results to our prob-
lem, we get

n�r� = Zb/2�r3, r 	 b = �Z/2�nmax�1/2, �19�

leading to Eq. �3� with r1=2�2Zb�aZ3/2 for ��1.
Consider now a more realistic setup where the external

charge next�r� is distributed over a disk of radius r0	a	Z.
Then n�n�0��Z /�r0

2�nmax, so that 
 bands can indeed be
disregarded. Let us show that

n�r� �
Zrs

2�r3 , r0 � r � r1 = 2�2Zrs, �20�

where the screening length rs�1 /�	n�0�.
Based on the near-perfect screening framework used in

the first part of the paper �and justified a posteriori by Eq.
�20�� we can claim that V�r� is substantial only in the region
r�r0 and is greatly reduced at r�r0. This implies that the
Fourier transform of V is nearly wave-vector-independent
over a range of q,

Ṽ�q� = c1Zers/� + O�Z1/2�, r1
−1 � q � r0

−1.

The first term, with c1�1, follows from Eq. �5�. In turn, the
Fourier transform of the charge density, 
̃�q�= ñext�q�− ñ�q�
= Ṽ�q� / �2�e /�q�, that produces this potential behaves as

̃�q�=c2Zrsq+O�Z1/2�, where c2�1. After the inverse Fou-
rier transform, the net charge density 
�r� is seen to be
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FIG. 1. �Color online� Main panel: Density profile in the limit of
d→0 at fixed r1. The quantity plotted on the vertical axis is
4��2r1

2n�r�=F2�r�r1
2 /r2. The thin line is the numerical solution of

Eq. �15�; the dashed line is the perfect screening, F=r1 /r; the thick
line is for F from Eq. �16� with c=0.6. Inset: expanded view of n�r�
inside the hypercritical core. The thin line and the dashed line have
the same meaning as before; the dots correspond to an analytical
formula whose limits are given by Eqs. �11� and �12�.
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dominated by the term −c2Zrs /2�r3 at r0�r�r1. Since
next�r�=0 for such r, this term is entirely due to n, proving
our statement.

In summary, we considered the problem of nonlinear
screening of a large charge by the massless electrons in
graphene. The consistent formulation of the problem requires
the charge to be either displaced from the graphene plane or
to be spread over a disk of finite radius r0. In both cases the
screening is nonlinear within a region of a parametrically
large radius r1. In the interval between r0 and r1 the screened
potential decays as 1 /r3/2. Our results are relevant for current

and future experiments that involve local charging or doping
of graphene. Thus, if small � can be achieved experimen-
tally, it may be possible to verify the predicted crossover
from Eq. �3� to Eq. �2� and finally to Eq. �18� by using
scanned probe techniques.9
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