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We study Josephson current in superconductor/diffusive ferromagnet/superconductor junctions by using the
recursive Green function method. When the exchange potential in a ferromagnet is sufficiently large compared
to the pair potential in a superconductor, an ensemble average of Josephson current is much smaller than its
mesoscopic fluctuations. The Josephson current vanishes when the exchange potential is extremely large so
that a ferromagnet is half-metallic. Spin-flip scattering at junction interfaces drastically changes the character-
istic behavior of Josephson current. In addition to spin-singlet Cooper pairs, equal-spin triplet pairs penetrate
into a half metal. Such equal-spin pairs have an unusual symmetry property called odd-frequency symmetry
and carry the Josephson current through a half metal. The penetration of odd-frequency pairs into a half metal
enhances the low energy quasiparticle density of states, which could be detected experimentally by scanning
tunneling spectroscopy. We will also show that odd-frequency pairs in a half metal cause a nonmonotonic
temperature dependence of the critical Josephson current.
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I. INTRODUCTION

Ferromagnetism and spin-singlet superconductivity are
competing orders because the exchange potential breaks
down spin-singlet pairs. Spin-singlet pairs, however, do not
always disappear under the influence of an exchange poten-
tial. A long time ago, Fulde-Ferrell1 and
Larkin-Ovchinnikov2 discussed inhomogeneous spin-singlet
superconductivity in the presence of an exchange potential. It
was shown that the superconducting order parameter oscil-
lates in real space because the exchange potential shifts the
center-of-mass momentum of a Cooper pair. Similarly, a
Cooper pair has been discussed in superconductor/
ferromagnet �SF� and superconductor/ferromagnet/
superconductor �SFS� junctions.3–10 These studies showed
that a pairing function in a ferromagnet changes its sign pe-
riodically in real space. As a consequence, SFS junctions
may undergo so-called 0-� transition with varying length of
a ferromagnet or temperature.

Previous theoretical studies of the proximity effect in a
ferromagnet were mainly based on solving the quasiclassical
Usadel equations11 valid when the exchange potential Vex is
comparable to or smaller than the pair potential in a super-
conductor at zero temperature �0. Cooper pairs can penetrate
into a ferromagnet within a short distance �h=�D /Vex, where
D is the diffusion constant in a ferromagnet. Thus, penetra-
tion of spin-singlet Cooper pairs into a ferromagnet with
large Vex would be impossible and the Josephson coupling
via such a strong ferromagnet would be vanishingly small. A
recent experiment,12 however, demonstrated the existence of
Josephson coupling through a strong ferromagnet with Vex
��0. In addition to this, the experiment13 has even shown
Josephson coupling in superconductor/half metal/
superconductor �S/HM/S� junctions. A half metal is an ex-

treme case of a completely spin polarized material because
its electronic structure is insulating for one spin direction and
metallic for the other. Thus, one has to seek a new state of
Cooper pairs in a strong ferromagnet. The experiment by
Keizer et al. has motivated a number of theoretical studies in
this direction.14–17

Prior to the experiment,13 Eschrig et al.18 have addressed
this challenging issue. In the clean limit, they have shown
that p-wave spin-triplet pairs induced by spin-flip scattering
at a junction interface can carry Josephson current. In prac-
tical S/HM/S junctions, however, a half metal is close to the
dirty limit in the diffusive transport regime; the elastic mean
free path � may be smaller or comparable to the coherence
length and is much smaller than the size of the half metal LN.
Thus, the effects of the impurity potential on the Josephson
current should be clarified in a SFS junction consisting of a
strong ferromagnet. In this paper, we discuss the Josephson
effect in SFS junctions for arbitrary magnitude of Vex. When
Vex is much larger than �0, an ensemble average of the Jo-
sephson current is much smaller than its mesoscopic
fluctuations.19,20 Fluctuations of the pairing function in a fer-
romagnet is responsible for the large fluctuations of Joseph-
son current. The Josephson current vanishes in S/HM/S in
the absence of spin-flip scattering at junction interfaces.
Spin-flip scattering at junction interfaces drastically changes
the characteristic behavior of Josephson current and proper-
ties of Cooper pairs in a ferromagnet. Spin-flip scattering
allows for the penetration of equal-spin-triplet Cooper pairs
which have an unusual symmetry property called odd-
frequency symmetry.6 When the contribution of equal-spin-
triplet Cooper pairs to the Josephson current is dominant, the
self-averaging property of the Josephson current is recov-
ered. In particular, in diffusive S/HM/S junctions, all Cooper
pairs in a half metal are in the odd-frequency equal-spin-
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triplet pairing state.14 We also discuss local density of states
in a ferromagnet, which reflects the existence of odd-
frequency Cooper pairs. A part of this study has already been
published elsewhere.14 Throughout this paper, we use the
unit of �=kB=1, where kB is the Boltzmann constant.

This paper is organized as follows. In Sec. II, we explain
the model of SFS junctions on two-dimensional tight-binding
lattice and the method of calculation. The characteristic fea-
tures of Josephson current in SFS junctions are discussed in
Sec. III. In Sec. IV, we introduce spin-flip scattering at junc-
tion interfaces and discuss symmetry properties of Cooper
pairs in a ferromagnet. We propose an experiment to observe
odd-frequency pairs in SFS junctions based on calculated
results of local density of states in Sec. V. The conclusions
are formulated in Sec. VI.

II. MODEL

Let us consider the two-dimensional tight-binding model
as shown in Fig. 1�a�. A vector r= jx+my indicates a lattice
site, where x and y are unit vectors in the x and y directions,
respectively. A junction consists of five segments: a ferro-
magnet �3� j�LN−2�, two thin ferromagnetic layers �j
=1,2, LN−1, and LN�, and two superconductors �−�� j�0
and LN+1� j���. In the y direction, the number of lattice
sites is W, and we assume a periodic boundary condition.
Electronic states in a superconducting junction are described
by the mean-field Hamiltonian

HBCS =
1

2�
r,r�

�c̃r
†hr,r�c̃r� − c̃r

thr,r�
* �c̃r�

† �t�

+
1

2 �
r,r��S

�c̃r
†�̂r,r��c̃r�

† �t − �c̃r�t�̂r,r�
* c̃r�� , �1�

ĥr,r� = �− t		r−r�	,1 + �
r − � + 4t�	r,r���̂0 − V�r� · �̂	r,r�,

�2�

�̂r,r� = ei
ji��̂2	r,r�, �3�

c̃r = 
cr,↑

cr,↓
�, �c̃r�t = �cr,↑,cr,↓� , �4�

where cr,�
† �cr,�� is the creation �annihilation� operator of an

electron at r with spin �= �↑or↓ �, S in the summation means
superconductors, �̂ j with j=1-3 are the Pauli matrices, and
�̂0 is the 2�2 unit matrix. The hopping integral t is consid-
ered among the nearest neighbor sites. In a ferromagnet, on-
site potential is given randomly in a range of −VI /2�
r
�VI /2, where we take the probability distribution for 
r uni-
form on this interval, and 
r at different points are uncorre-
lated. The uniform exchange potential in a ferromagnet is
given by V�r�=Vexe3, where el for l=1-3 is a unit vector in
spin space. The Fermi energy � is set to be 2t in a normal
metal with Vex=0, while a ferromagnet and a half metal are
respectively described by Vex / t=1 and 2.5 as shown in Fig.
1�b�. Spin-flip scattering is introduced at j=1,2, LN−1, and
LN, where we choose V�r�=VSe2. In a superconductor, we
take 
r=0, and � is an amplitude of the pair potential in
s-wave symmetry. The macroscopic phases are given by 
 j
=
L in the left superconductor and by 
 j =
R in the right
one.

The Hamiltonian is diagonalized by the Bogoliubov trans-
formation,

� c̃r

�c̃r
†�t
 = �

�
�û��r� v̂�

*�r�

v̂��r� û�
*�r�


� �̃�

��̃�
†�t
 , �5�

�̃� = 
��,↑

��,↓
� , �6�

where ��,�
† ���,�� is the creation �annihilation� operator of a

Bogoliubov quasiparticle. The wave functions, û� and v̂�,
satisfy the Bogoliubov-de Gennes equation,21

�
r�
� ĥr,r� �̂r,r�

− �̂r,r�
* − ĥr,r�

* 
�û��r��
v̂��r��


 = �û��r�
v̂��r�


Ê�. �7�

The eigenvalue matrix Ê� is diagonal and depends on spin
channels. To solve the Bogoliubov-de Gennes equation, we
apply the recursive Green function method.22,23 In this
method, we calculate the Matsubara Green function

Ǧ�n
�r,r�� = �

�
�û��r�

v̂��r�

�i�n − Ê��−1�û�

†�r��, v̂�
†�r���

+ �v̂�
*�r�

û�
*�r�


�i�n + Ê��−1�v̂�
t �r��, û�

t �r��� �8a�

j= 0 1 ... LNLN−1 ......
m=1

m=W
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FIG. 1. �Color online� �a� A schematic figure of a SFS junction
on a tight-binding lattice. �b� Density of states for each spin direc-
tion. The Josephson junction is of the SNS, SFS, and S/HM/S type
for Vex / t=0, 1, and 2.5, respectively.
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=
 ĝ�n
�r,r�� f̂�n

�r,r��

− f̂�n

* �r,r�� − ĝ�n

* �r,r��
� , �8b�

where �n= �2n+1��T is a Matsubara frequency, n is an in-
teger number, and T is the temperature. The Josephson cur-
rent is given by

J = − ietT�
�n

�
m=1

W

Tr�Ǧ�n
�r�,r� − Ǧ�n

�r,r��� , �9�

with r�=r+x. In this paper, 2�2 and 4�4 matrices are

indicated by ¯̂ and ¯̌, respectively.
In simulations, we first compute the Josephson current for

a single sample with a specific random impurity configura-
tion. After calculating the Josephson current over a number
of different samples, ensemble averages of the Josephson
current and its fluctuations are obtained as

�J� =
1

Ns
�
i=1

Ns

Ji, �10�

	J = ��J2� − �J�2, �11�

where Ji is the Josephson current in the ith sample and Ns is
the number of samples. Strictly speaking, Ns should be taken
to be infinity. In this paper, we increase Ns until sufficient
convergence of �J� and 	J is obtained. In the following, Ns is
typically taken to be 100–2000.

To study the characteristics of Cooper pairs in a ferromag-
net, we also analyze the anomalous Green function in Eq.
�8b�. The pairing function is defined by the anomalous Green
function and is decomposed into four components,

�
�c��n��0

1

W
�
m=1

W

f̂�n
�r,r� = i�

�=0

3

f��j��̂��̂2, �12�

where r= jx+my, �c=0.01�0 is a low energy cutoff, and the
pairing functions are averaged over whole lattice sites at j
before ensemble averaging. In Eq. �12�, f0 �f3� is the pairing
function of spin-singlet �spin-triplet� pairs with spin structure
of �	↑ ↓ �− �+�	↓ ↑ �� /�2. The pairing functions of 	↑↑� and
	↓↓� pairs are given by f↑↑= if2− f1 and f↓↓= if2+ f1, respec-
tively.

The quasiclassical Green function method11,24 is a power-
ful tool to study the proximity effect when the pair potential
is much smaller than the Fermi energy. The quasiclassical
Green function, however, cannot be constructed in a half
metal because the Fermi energy for one spin direction is no
longer much larger than the pair potential. On the other hand,
there is no such difficulty in our method. These are advan-
tages of the recursive Green function method. Throughout
this paper, we fix the following parameters: LN=74, W=25,
�=2t, and VI=2t. This parameter choice corresponds to the
diffusive transport regime in the N, F, and HM layers.25 The
results presented below are not sensitive to variations of
these parameters.

III. SUPERCONDUCTOR/FERROMAGNET/
SUPERCONDUCTOR JUNCTION WITHOUT SPIN-

ACTIVE INTERFACE

In this section, we do not consider spin-flip scattering at
the interfaces �i.e., VS=0�. We first discuss the Josephson
current in SFS junctions as shown in Fig. 2, where T
=0.1Tc, �0=0.01t, Tc is the superconducting transition tem-
perature, and the phase difference across a junction 
=
L
−
R is fixed at � /2. The presented results are normalized by
J0, which is the ensemble average of Josephson current in the
superconductor/normal metal/superconductor �SNS� junc-
tions �i.e., Vex=0�. The Josephson current oscillates as a
function of Vex and changes its sign almost periodically. The
sign changes of �J� correspond to the 0-� transition of a SFS
junction. At the same time, the amplitude of �J� decreases
rapidly with increasing Vex. For Vex�0.1t, we should pay
attention to the relation �J��	J, which means that the Jo-
sephson current is not a self-averaging quantity. It is impos-
sible to predict the Josephson current in a single sample Ji
from �J� because Ji strongly depends on the microscopic
impurity configuration. In fact, the Josephson current flows
in a single sample even if �J�=0 at the transition points.
Roughly speaking, �J� vanishes because half of the samples
are 0-junctions and the rest are the �-junctions.20,26 Since
�J�=0, 	J approximately corresponds to the typical ampli-
tude of the Josephson current expected in a single sample. In
Fig. 2, we also show �	J	�, which agrees well with 	J even
quantitatively. The relation �J�=0 has different meanings for
SFS and S/HM/S cases. In a SFS junction, the fact that �J�
=0 at the transition points is a result of ensemble averaging,
and the Josephson current remains finite in a single sample.
The characteristic temperature and length of a ferromagnet at
the 0-� transitions vary from one sample to another. In
S/HM/S junctions at Vex=2.5t, however, �J�=0 means that
the Josephson current vanishes even in a single sample be-
cause 	J=0 holds at the same time.

The large fluctuations of Josephson current were dis-
cussed by Zyuzin et al.20 by using the diagrammatic expan-

FIG. 2. Josephson current is plotted as a function of the ex-
change potential Vex for VS=0 and �0=0.01t. At Vex=2t, a ferro-
magnet becomes half-metallic as indicated by an arrow. The vertical
axis is normalized by J0, which is an ensemble average of Joseph-
son current at Vex=0. The number of samples used for averaging Ns

is 500.
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sion. Ensemble averages of critical Josephson current and its
fluctuations have a relation for W�LN,

	J

�J�
�� 1

W

exp�− LN/�T�
exp�− LN/�h�

�13a�

�� 1

W
exp���Vex − ��0�

�ETh
� , �13b�

where ETh=D /LN
2 is the Thouless energy, �T=�D /2�T, and

�h=�D /Vex is estimated to be about four lattice constants
�see also Appendix A�. In the second line, we replace T by
�0 because the measuring temperature must be smaller than
Tc. For a weak ferromagnet �i.e., Vex��0�, the ratio can be
less than unity and the Josephson current is a self-averaging
quantity. On the other hand, in a strong ferromagnet with
Vex��0, the ratio becomes much larger than unity. Thus, the
large fluctuation of Josephson current is a robust feature of
SFS junctions with Vex��0. The only way to suppress fluc-
tuations is by taking the junction width sufficiently large be-
cause fluctuations are a mesoscopic effect.

The origin of the large fluctuations in the Josephson cur-
rent can be understood by analyzing pairing functions of
Cooper pairs. We plot a pairing function of spin-singlet pairs
f0 in a SNS junction as a function of position in a normal
metal j in Fig. 3�a�, where j=1 and 37 correspond respec-
tively to the junction interface and the center of the normal
metal. The pairing function is calculated for 
=0, and is
normalized by its bulk value in a superconductor fB. In SNS
junctions, �f0� is a real value and is almost constant as shown
in Fig. 3�a�, which means that spin-singlet Cooper pairs exist
everywhere in the normal metal. The pairing function for
spin-singlet pairs in SFS junctions is shown in Fig. 4�a�. An
average �f0� decreases exponentially with j according to
exp�−j /�h�. At the same time, �f0� oscillates in real space and
changes its sign. In addition to spin-singlet pairs, opposite-
spin-triplet pairs appear in a ferromagnet for Vex�0. Since f3
is a pure imaginary value, the imaginary part of �f3� is plot-
ted in Fig. 4�b�. The behavior of �f3� is qualitatively the same
as that of �f0� in Fig. 4�a�. Thus, opposite-spin-triplet pairs
also contribute to the Josephson current. Both 	f0 and 	f3
remain finite at the center of a ferromagnet j=37. Spin-

singlet and opposite-spin-triplet pairs penetrate deeply into a
ferromagnet far beyond �h even though �f0� and �f3� are al-
most zero there. We numerically confirm the relation 	f0
�e−j/�T, in agreement with Ref. 20.

In Figs. 5�a� and 5�b�, we show f0 and f3 in SFS junctions
for three samples with different impurity distributions. The
vertical axis is shifted as indicated by horizontal lines. The
pairing functions are in phase near the interface �j��h�,
whereas they are out of phase far from the interface. Al-
though the pairing function in a sample has a finite value for
j��h, an ensemble average of them vanishes. Cooper pairs
do exist in a single sample of ferromagnet even for j��h.
Mesoscopic fluctuations of the pairing function provide the
origin of the large fluctuations in the Josephson current. In
S/HM/S junctions, as shown in Fig. 3�b�, �f0� and �f3� vanish
for j�1. We have also confirmed that 	f0=	f3=0 for j�1
at the same time. Thus, no Cooper pairs exist in a half metal
for VS=0.

Since �J��	J, the temperature dependence of Josephson
current also depends on the impurity configuration. In Fig. 6,
we show the Josephson critical current as a function of tem-
perature for five different samples, where the critical current
is estimated from the current-phase relation at each tempera-
ture. The solid line in Fig. 6�a� corresponds to a SFS junction
in the 0-state, where the critical current monotonically in-
creases with the decrease of temperature. On the other hand,
the broken line corresponds to a junction in the �-state. In
Fig. 6�b�, a junction undergoes the transition from 0- to
�-state when temperature decreases across 0.5Tc. On the
contrary, the 0-state is more stable than the �-state at low
temperatures in Fig. 6�c�. The Josephson current is decom-

FIG. 3. Pairing functions are plotted as a function of position j
for �a� SNS at Vex / t=0 and �b� S/HM/S at Vex / t=2.5, where VS

=0, �0=0.01t, and Ns=200. The vertical axis is normalized by a
pairing function in a superconductor fB.

FIG. 4. Pairing functions in SFS junctions with Vex / t=1, VS

=0, �0=0.01t, and Ns=500.

FIG. 5. Pairing functions in three different samples of SFS junc-
tion at Vex / t=1.
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posed into a series of J=�k=1Jk sin�k
�. In Fig. 6, J1=0 char-
acterizes the 0-� transition temperature. At the transition
temperature, the critical current is not exactly zero because a
higher harmonic such as J2 sin�2
� contributes to the Joseph-
son current. Some SFS junctions undergo the 0-� transition
twice as shown in Fig. 6�d�. The temperature dependence of
the critical current in one sample can be very different from
that in other samples.

IV. SUPERCONDUCTOR/FERROMAGNET/
SUPERCONDUCTOR JUNCTION WITH SPIN-ACTIVE

INTERFACE

The relation �J��	J is a characteristic feature of the Jo-
sephson current in diffusive SFS junctions with Vex��0.
This feature, however, is drastically changed by spin-flip
scattering at junction interfaces. In this section, we study the
Josephson current in the presence of spin-flip scattering �i.e.,
VS�0�. In Figs. 7�a� and 7�b�, we show �J� as a function of
the spin-flip potential VS for Vex / t=1 and 2.5, respectively. In
both cases �a� and �b�, we find that 	�J�	�	J for VS�0.3t.

The Josephson current recovers the self-averaging property
in the presence of spin-flip scattering. Reasons can be found
by analyzing the pairing functions in a ferromagnet, as
shown in Figs. 8 and 9, where four pairing functions are
plotted as a function of position j at VS / t=0.4. In SFS junc-
tions as shown in Fig. 8�a�, equal-spin-triplet Cooper pairs
penetrate into a ferromagnet by spin-flip scattering at inter-
faces. Although averages of the pairing function for
opposite-spin pairs vanish at j�37, their fluctuations remain
finite as shown in Figs. 8�a� and 8�b�. Thus, four types of
Cooper pairs carry the Josephson current in a SFS junction.
In a S/HM/S junction, on the other hand, only ↑↑ pairs exist
in a half metal as shown in Figs. 9�a� and 9�b�. The pairing
functions �f↓↓�, �f0�, and �f3� vanish for j�1. We note that
fluctuations of these pairing functions behave similar to their
averages. In both SFS and S/HM/S, �f↑↑� becomes much
larger than 	f0 because the exchange potential does not break
down equal-spin-triplet Cooper pairs and f↑↑ does not suffer
a sign change in real space. Thus, the Josephson current be-
comes a self-averaging quantity as shown in Figs. 7�a� and
7�b�.

Here, we address an unusual symmetry property of Coo-
per pairs in SFS junctions. In Fig. 10, we show four pairing
functions in a SFS junction as a function of �n, where j
=37, VS=0.2t, 
=0, and Vex= t. Although the Green function
at �n=0 is not defined, we put f↑↑= f↓↓= f3=0 at �n=0, and
connect results for positive �n with those for negative �n.
The pairing function f0 is an even function of �n, whereas
f↑↑, f↓↓, and f3 are an odd function of �n.6 Since electrons

FIG. 6. Critical current versus temperatures for five different
samples of SFS junction, where Vex / t=1, VS=0, and �0 / t=0.01.

FIG. 7. �a� Josephson current and its fluctuations for T=0.1Tc,

=� /2, and Ns=200 as a function of interface spin-flip scattering
VS for Vex / t=1 and �b� for Vex / t=2.5. The vertical axis is normal-
ized by an ensemble average of Josephson current at Vex=0 and
VS=0.

FIG. 8. Pairing functions in SFS junctions are plotted as a junc-
tion of j. Ensemble averages and some of their fluctuations are
shown in �a� and �b�, respectively. The number of samples are taken
to be 500.

FIG. 9. Pairing functions in S/HM/S junctions are plotted as a
junction of j. The number of samples are taken to be 200.
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obey Fermi statistics, pairing functions must be antisymmet-
ric under interchanging two electrons,

f̂�n
�r,r�� = − � f̂−�n

�r�,r��t, �14�

where � f̂�t denotes the transpose of f̂ , meaning the inter-
change of spins. It is well known that ordinary even-
frequency pairs are classified into two symmetry classes:
spin-singlet even-parity symmetry and spin-triplet odd-parity
one. In the former case, the negative sign on the right hand
side of Eq. �14� arises due to the interchange of spins, while
in the latter case is due to r↔r�. In the present calculation,
all components on the right hand side of Eq. �12� have
s-wave symmetry. This is because the pairing functions are
isotropic in both real and momentum spaces due to diffusive
impurity scatterings.27 As a result, f↑↑, f↓↓, and f3 must be
odd functions of �n to obey Eq. �14�. The fraction of odd-
frequency pairs depends on parameters such as the exchange
potential and the spin-flip potential. As shown in Fig. 3�a�,
all Cooper pairs have even-frequency symmetry in SNS
junctions at Vex=0 and VS=0. Even- and odd-frequency pairs
have almost the same fraction in SFS junctions at Vex= t and
VS=0 as shown in Fig. 4. In the presence of spin-flip poten-
tial, odd-frequency pairs become dominant as shown in Fig.
8. In particular, all Cooper pairs have odd-frequency symme-
try in S/HM/S junctions as shown in Fig. 9. The Josephson
current in Fig. 7�b� is carried purely by odd-frequency pairs
in S/HM/S junctions.

The results in Fig. 7 show that the amplitude of Josephson
current first increases with the increase of VS then decreases.
Here, we discuss the analytical expression of the Josephson
current in S/HM/S junction at T=0,

�J� = − J1��VL · VR − VL
�3�VR

�3��sin 
 + e3 · �VL � VR�cos 
� ,

�15�

J1 =
7��3�

�
eEThgNb2 � 0, �16�

b =
1

2
�

0

�/2

d�
cos5 �

�VS
2 + 1

4�cos4 � − VS
2 cos2 � + VS

4 . �17�

Here, VR=�k=1
3 VR

�k�ek and VL=�k=1
3 VL

�k�ek are the dimension-
less magnetic moments at the right and left junction inter-
face, respectively. We assume that 	VR	= 	VL	=VS and
�e2 /h�gN is the normal conductance of a half metal. Details
of derivation are discussed in Appendixes A and B. To com-
pare Eq. �15� with the results in Fig. 7�b�, we choose VR
=VL=VSe2. We also note that the magnetic moment in a half
metal is Vex=Vexe3. For VS�1, the amplitude of the Joseph-
son current increases with VS

2 because b=2 and VL ·VR

−VL
�3�VR

�3�=VS
2. In this case, spin-flip scattering assists the Jo-

sephson current. For large VS, on the other hand, the Joseph-
son current decreases proportionally to VS

−6 because the spin-
flip potential acts like a potential barrier and suppresses the
transmission probability of the interface. The Josephson cur-
rent shows reentrant behavior as shown in Fig. 7. The Jo-
sephson current in Fig. 7�b� is calculated at 
=� /2. The
results indicate that the S/HM/S junction is a �-junction.
This conclusion depends on the direction of the magnetic
moments at the spin-flip interfaces. In the case of VL=VR,
the Josephson current in Eq. �15� is proportional to −J1 sin 
,
in agreement with Fig. 7�b�. In the case of antiferromagnetic
alignment, VL=−VR, the junction is in the 0-state. Thus, we
conclude that the stability of the 0-state and that of the
�-state depend on the alignment of the magnetic moments at
the two interfaces.28,29 This feature indicates a different di-
rection to controlling the �-phase shift by using ferromag-
netic materials. For Vex · �VL�VR��0, the Josephson current
flows even at 
=0 because such spin configuration breaks
the chiral symmetry of a junction. We have numerically con-
firmed Eq. �15�.

At the end of this section, we discuss the temperature
dependence of the Josephson critical current in SFS and
S/HM/S junctions in Fig. 11, where we choose �0=0.005t in
connection with the density of states in the next section. The
Josephson current has almost a sinusoidal current-phase re-
lationship. The critical current for VS / t=0.2 and 0.3 in a SFS
junction first increases with the decrease of temperature, then
decreases as shown in Fig. 11�a�. Such reentrant behavior is
seen more clearly in a S/HM/S junction as shown for VS / t
=0.2, 0.3, and 0.4 in Fig. 11�b�. In a Josephson junction
consisting of conventional s-wave spin-singlet superconduct-

FIG. 10. Pairing functions in a SFS junction are plotted as a
junction of �n for Vex / t=1 and VS / t=0.2.

FIG. 11. Temperature dependence of critical Josephson current
in �a� SFS and �b� S/HM/S junctions. Ns is taken to be 200.
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ors, such reentrant behavior is very unusual. This behavior
has also been reported in Ref. 16. The results for VS / t=0.4 in
SFS and VS / t=0.5 in S/HM/S junctions, on the other hand,
show a monotonic temperature dependence.

V. DENSITY OF STATES

The proximity effect changes the low energy spectra of a
quasiparticle in a normal metal. In a SNS junction, it is well
known that the penetration of usual even-frequency spin-
singlet s-wave Cooper pairs suppresses the quasiparticle den-
sity of states for E�ETh. This suppressed density of states is
called minigap. In this section, we discuss the proximity ef-
fect of odd-frequency pairs on the quasiparticle density of
states. In our method, the density of states is given by

N�E, j� = −
1

�

1

W �
m=1

W

Im Tr ǦE+i��r,r� , �18�

where � is a small imaginary part. In Fig. 12, we show the
local density of states �LDOS� at j=37 in SFS junctions,
where 
=0 and �=0.1�0. The results for S/HM/S junctions
are presented in Fig. 13. The LDOS is normalized by its
value at E=1.2�0. Here, we choose �0=0.005t so that ETh
�0.3�0 is slightly smaller than �0. In the absence of spin-
flip scattering, the ensemble average of LDOS is almost con-
stant in both Figs. 12 and 13. At VS / t=0.3, the penetration of
odd-frequency pairs enhances LDOS for E�0.5�0. On the
other hand, LDOS is suppressed around E�0.8�0 because
of a sum rule for the density of states �i.e., �dEN�E , j�
=const�. The low energy spectra of LDOS increase with in-
creasing VS / t as shown in Figs. 12�b� and 13�b�. At VS / t

=0.5, LDOS has a peak at E=0. Thus, the penetration of
odd-frequency pairs enhances the quasiparticle density of
states for E�ETh. This tendency is just opposite to the mini-
gap structure due to penetration of even-frequency pairs. The
shape of the zero-energy peak in Figs. 12�b� and 13�b� is
almost independent of the position in a half metal. The peak
is much stronger than the enhancement of the LDOS found
in weak ferromagnets.3,10,30–32 In such SF junctions,31 the
LDOS has an oscillatory peak/dip structure at E=0, which
rapidly decays with the distance from the SF interface.
Therefore, the large peak at E=0 in the LDOS is a robust and
direct evidence of the odd-frequency pairing in a ferromag-
net. Scanning tunneling spectroscopy could be used to detect
such a peculiar pairing state.

As shown in Fig. 13, however, the penetration of odd-
frequency pairs does not always give rise to a zero-energy
peak in LDOS. The results for VS / t=0.3 and 0.4 have a
broad peak at a finite energy smaller than ETh. This situation
is slightly different from the large zero-energy peak in a nor-
mal metal due to the penetration of odd-frequency pairs from
spin-triplet odd-parity superconductors.33–36 In a spin-triplet
superconductor junction, LDOS in a normal metal always
has a large zero-energy peak because a midgap Andreev
resonant state37 assists the zero-bias peak. In ferromagnetic
junctions, on the other hand, such a quasiparticle state is
absent at the junction interface. The broad peak structure in
the LDOS is responsible for the nonmonotonic temperature
dependence of the critical current in Fig. 11�b�. At high tem-
peratures, quasiparticle states around the peak contribute to
the Josephson current. At low temperatures, however, such
quasiparticle states cannot contribute to the Josephson
current.38 We conclude that odd-frequency pairs could also
be confirmed by measuring the dependence of the critical
current on temperature.

VI. CONCLUSION

In conclusion, we have studied the Josephson effect in
SFS junctions by using the recursive Green function method.
When the exchange potential in a ferromagnet is much larger
than the pair potential in a superconductor, the Josephson
current is not a self-averaging quantity. This is because spin-
singlet Cooper pairs penetrating into a ferromagnet far be-
yond �h cause large fluctuations of the pairing function. As a
consequence, the temperature dependence of the critical Jo-
sephson current in one sample can be very different from that
in another sample. When a ferromagnet is half-metallic, the
Josephson current vanishes in the absence of spin-flip scat-
tering at junction interfaces. Spin-flip scattering at interfaces
allows equal-spin-triplet odd-frequency Cooper pairs to pen-
etrate into a ferromagnet. The ratio of odd-frequency pairs to
even-frequency ones depends on the exchange potential in a
ferromagnet and the spin-flip potential at interfaces. The Jo-
sephson current recovers the self-averaging property when
the fraction of equal-spin-triplet pairs becomes large. In half-
metallic SFS junctions, all Cooper pairs have odd-frequency
symmetry. The penetration of odd-frequency pairs enhances
low energy quasiparticle density of states in a ferromagnet.
Such low energy spectra could be probed by scanning tun-

FIG. 12. Local density of states at j=37 in a ferromagnet of SFS
junction, where Ns=2000.

FIG. 13. Local density of states at j=37 in a half metal of
S/HM/S junction, where Ns=2000.
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neling spectroscopy and by determining a nonmonotonic
temperature dependence of the critical Josephson current. We
also discuss a way to realize a �-junction by controlling
magnetic moments in ferromagnetic layers.
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APPENDIX A: FLUCTUATIONS OF JOSEPHSON
CURRENT

The purpose of this appendix is to explain Eq. �13a�.
Since fluctuations of Josephson current have been calculated
by the diagrammatic expansion,19,20,39 we also calculate the
Josephson current in SFS junctions in the same method. We
assume that relations ETh��0 ,Vex��, and LN�� are satis-
fied. In the lowest coupling, the Josephson current is given
by a formula40

J = ie�
l,r

T�
�n

Tr�r̂l
eh · t̂lr

h · r̂r
he · t̂rl

e − r̂l
he · t̂lr

e · r̂r
eh · t̂rl

h � ,

�A1�

where l �r� denotes a propagating channel at the left �right�
junction interface. In Fig. 14�a�, a propagation process of the
first term in Eq. �A1� is schematically illustrated. We calcu-
late the transmission coefficients in a ferromagnet such as t̂rl

e

and t̂lr
h , and Andreev reflection coefficients at interfaces such

as r̂r
he and r̂l

eh by parts. The Andreev reflection coefficients
are calculated at an ideal NS interface as shown in the left
figure of Fig. 14�b�. The results are given by

r̂l�r�
he = − �̂2

�0

�n + �n
e−i
L�R�, �A2�

r̂l�r�
eh = �̂2

�0

�n + �n
ei
L�R�, �A3�

where �n=��n
2+�0

2. The effect of the exchange potential is
considered through transmission coefficients of an electron
in a ferromagnet

t̂lr
e = 
tlr

e �↑� 0

0 tlr
e �↓�

� . �A4�

The transmission coefficients of a hole are defined in the
same way by e→h in the equation above. The transmission
coefficients are represented by the Green function as

trl
e ��� = ieiklxL−ikrxRvl� � dyLdyRYr

*�yR�Yl�yL�

�G�n

� �xR,yR;xL,yL� , �A5�

tlr
h ��� = − ie−iklxL+ikrxRvr� � dyLdyRYl

*�yL�Yr�yR�

�G−�n

� �xR,yR;xL,yL� , �A6�

where Yl�y� is a wave function in the y direction and vl

=kl /m, with kl being a wave number in the x direction on the
Fermi surface in the lth propagating channel. In the above
expression, we have assumed that two ideal lead wires are
attached to both sides of a diffusive ferromagnet, and xL
�0 and xR�LN are taken to be in the lead wires. The Green
function is given by

G�n

� �r,r�� =
1

�2��2 � dkeik·�r−r��

i�n − �k + Vexs +
i

2�
sgn��n�

,

�A7�

where � is the elastic mean free time, �k=k2 /m−�, and s
=1 �−1� for �= ↑ �↓�. An ensemble average of transmission
coefficients is calculated by the diagrammatic expansion

σεn σ

−l m l m

εn

εn−

Pσ σ'
C

εn σ

εn σ'ω l+

Pσ σ'
D

εn σ

εn σ'ω l+

r r’ r r’

εn− σ σ

Pσ σ
C Pσ σ

C

(a)

l

l

m

m

εn

σ

σ

σ'
σ'

ω l+

εn

Pσ σ'
C Pσ σ'

D

(b)

σ

σ

σ'
σ'

S F S

0 LN

r̂leh r̂ rhe
t̂ l rh

t̂ r le

(c)

(d)

x

y

SN

r̂rhe

SN

r̂rhe
e
h

(e)

V σ. ^RvF δ(x−L )N

FIG. 14. �a� A propagation process of a quasiparticle in a SFS
junction. We describe the Andreev reflection coefficients in Eq.
�A1� by those at an ideal normal metal/superconductor interface as
shown in �b�. �c� Cooperon and diffusion propagators. The diagrams
for Josephson current �d� and its fluctuations �e�.
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�
lr

�tlr
e ���trl

h ����� =
vF

2

2
�

0

W

dyL�
0

W

dyRPC
����L + 	,yR;

− 	,yL;2�n� , �A8�

PC
����r,r�� = �G�n

� �r,r��G−�n

�� �r,r��� , �A9�

where PC
��� is the Cooperon propagator, which satisfies the

equation

�	�l	 − 2iVexs�1 − 	�,��� − D�2�PC,D
����r,r�;�l�

= 2�N0	�r − r�� . �A10�

Since ��Vex, the diffusion constant D, the Fermi velocity
vF, and the density of states at the Fermi energy N0 do not
depend on spin directions. In Fig. 14�c�, we illustrate the
Cooperon and diffusion propagators, where �l=2�lT is a
boson Matsubara frequency. In Fig. 14�d�, we show two dia-
grams which contribute to the Josephson current. The left
�right� diagram in Fig. 14�d� corresponds to the first �second�
term of Eq. �A1�. Only PC

↑↓ and PC
↓↑ contribute to the Joseph-

son current because the Andreev reflection coefficients are
off-diagonal in spin space. To calculate the Cooperon propa-
gator, we solve the diffusion equation with appropriate
boundary conditions26

D�2h��r� = �h��r� , �A11�

	h��r�	x=0,LN
= 0, �A12�

� �h��r�
�y

�
y=0,W

= 0. �A13�

The Cooperon propagator is represented by using wave func-
tions and their eigenvalues of the diffusion equation. The
results are

PC
����r,r�;2�n� = 2�N0�

n=1

�

�
m=0

� 
 2

LN
�

�Bm
sin�pnx�sin�pnx��cos��my�cos��my��

2�	�n	 − iVexs�1 − 	�,���� + D�pn
2 + �m

2 �
,

�A14�

pn =
n�

LN
, �m =

m�

W
, �A15�

Bm = �1/W for m = 0

2/W for m � 0.
� �A16�

By substituting the above results into Eq. �A8�, we arrive at

�
lr

�tlr
e ���trl

h ��̄�� = gN
 ���̄

sinh ���̄� , �A17�

gN = �N0DW/LN, �A18�

���� =��
2	�n	 − 2isVex

ETh
, �� = �̄

�2	�n	
ETh

, �� = � ,� �A19�

where �2e2 /h�gN is the conductance of a ferromagnet, �̄ de-
notes the opposite spin state of �, and integration in the y
direction in Eq. �A8� is carried out at 	=� /�2. The Joseph-
son current becomes

�J� = 2egN sin 
T�
�n

�
�

���̄

sinh ���̄� �0

�n + �n

2

. �A20�

By substituting equations

�
�

���̄

sinh ���̄
= 4�2Vex

ETh
e−LN/�h sin
LN

�h
+

�

4
� , �A21�

T�
�n


 �0

�n + �n
�2

=
2�0

3�
, �A22�

into the above expression, the Josephson current at T=0 re-
sults in

�J� =
16�2

3�
egN�0�Vex

ETh
e−LN/�h sin
LN

�h
+

�

4
�sin 
 .

�A23�

This expression is also valid for Vex��0 because the relation
Vex��0 was not explicitly used in the derivation.

In Fig. 14�e�, we show two typical diagrams for fluctua-
tions. Not only P��̄ but also P�� contributes to fluctuations.
The Cooperon P��̄ behaves like e−LN/�h similar to the Joseph-
son current. On the other hand, P���e−LN/�T. Thus, the am-
plitude of fluctuations in SFS junctions is almost the same as
that in SNS junctions. Our approach, however, is not suitable
for calculating fluctuations because a number of diagrams
contribute to fluctuations in addition to Fig. 14�e�. Here, we
present the result for SNS junctions at T=0 and 
=� /2 ob-
tained by a slightly different approach,39

	J =��

6
eETh�W

LN
. �A24�

The fluctuations in SFS junctions are given by 	J /�2 be-
cause contribution of P�,�̄ is negligible for Vex�ETh. Thus,
the ratio is described by

	J

�J�
�

�6�3

16
�LN

W

1

kF�
eLN/�h

ETh
3/2

�0
�Vex

. �A25�

Since P���e−LN/�T, temperature dependence of fluctuations
is also expected to be e−LN/�T. Thus, we arrive at Eq. �13a�. In
a recent paper, mesoscopic fluctuations of the Josephson cur-
rent were calculated within the quasiclassical Green function
technique.41 In this approach, the fluctuations are slightly
larger than those within the diagrammatic expansion.19,39 The
difference may stem from the proximity effect on electronic
structure in a normal metal such as the minigap in the qua-
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siparticle density of states. In the diagrammatic expansion,
such effect is not taken into account.

APPENDIX B: NEGATIVE JOSEPHSON COUPLING

Here, we express the Josephson current in S/HM/S junc-
tions with a spin-active interface on the basis of the diagram-
matic expansion. In a half metal, we assume that the mag-
netic moment is parallel to e3. Thus, transmission
coefficients of an electron become

t̂rl
e =

�̂0 + �̂3

2
trl
e �↑� �B1�

because electric structure for ↓ spin is insulating in a half
metal. Transmission coefficients of a hole are defined in the
same way by e→h. Andreev reflection coefficients r̂r

he and
r̂r

eh in Eq. �A1� are calculated at a normal metal/
superconductor interface at which a spin-flip potential
vFVR · �̂	�x−LN� is introduced as shown in the right figure of
Fig. 14�b�. Andreev reflection coefficients r̂l

he and r̂l
eh are also

calculated at a normal metal/superconductor interface at
which a spin-flip potential vFVL · �̂	�x� is considered. We as-
sume that VL�R�=�k=1

3 VL�R�
�k� ek and 	VL	= 	VR	=VS. The calcu-

lated results of Andreev reflection coefficients are given by

r̂l
he = − Ql�̂2�Al�̂0 + iBlVL · �̂�e−i
L, �B2�

r̂l
eh = Ql�Al�̂0 + iBlVL · �̂��̂2ei
L, �B3�

Ql =
�0

Al
2 + VS

2Bl
2

ql
2

2
, �B4�

Al = − �nVS
2 + ql

2 ��n + �n�
2

, �B5�

Bl = ql��n + �n� , �B6�

where ql=kl /kF�0 are the normalized wave number of the
lth propagating channel in the current direction. Andreev re-
flection coefficients at the right interface r̂r

he and r̂r
eh are also

obtained by l→r, VL→VR, and 
L→
R in the above expres-
sion. Since the half metal is in the diffusive transport regime,
transmission coefficients across the half metal, namely, t̂lr

e ,
t̂rl
e , t̂lr

h , and t̂rl
h are independent of propagating channels l and

r. Thus, the average of the Andreev reflection coefficients
over all propagating channels contribute to the Josephson
current.26 We define such Andreev reflection coefficients as

r̂l�r�
he =

1

Nc
�
l�r�

r̂l�r�
he �B7a�

=− �̂2�a�̂0 + ibVL�R� · �̂�e−i
L�R�, �B7b�

r̂l�r�
eh =

1

Nc
�
l�r�

r̂l�r�
he �B8a�

=�a�̂0 + ibVL�R� · �̂��̂2ei
L�R�, �B8b�

where Nc=WkF /� is the number of propagating channels at
the Fermi energy, and a and b are real numbers depending
only on �n, �0, and VS. A part of Eq. �A1� becomes

I1 = �
l,r

�Tr�r̂l
eh · t̂lr

h · r̂r
he · t̂rl

e �� �B9a�

=− �
l,r

�tlr
h �↑�trl

e �↑��
ei


4
Tr��a + ibVR · �̂�

���̂0 − �̂3��a + ibVL · �̂���̂0 + �̂3�� �B9b�

=ei
b2gN
�↑↑

sinh �↑↑ �VL · VR − VL
�3�VR

�3� + ie3 · �VR � VL�� ,

�B9c�

where we used Eq. �A17�. In the same way, we obtain

I2 = �
l,r

�Tr�r̂r
eh · t̂rl

h · r̂l
he · t̂lr

e �� �B10a�

=e−i
b2gN
�↑↑

sinh �↑↑ �VL · VR − VL
�3�VR

�3� − ie3 · �VR � VL�� .

�B10b�

As a result, the expression for the Josephson takes the form

�J� � − J1��VL · VR − VL
�3�VR

�3��sin 
 + e3 · �VL � VR�cos 
� ,

�B11�

J1 = 2egNT�
�n

�↑↑

sinh �↑↑b2 � 0. �B12�

The Josephson current is zero in the absence of spin-flip
scattering at the interface �i.e., VL=VR=0�. We note that the
ratio �↑↑ /sinh �↑↑ rapidly decreases to zero for �n /ETh�1,
whereas �n dependence of b is scaled by �0. For ETh��0,
we find at T=0

J1 =
7��3�

�
eEThgNb2, �B13�

b =
1

2
�

0

�/2

d�
cos5 �

�VS
2 + 1

4�cos4 � − VS
2 cos2 � + VS

4 . �B14�

Although Eq. �B11� describes well the dependence of the
Josephson current on VL and VR, it does not explain the
nonmonotonic temperature dependence of the critical current
shown in Fig. 11�b�. This is because the proximity effect on
the density of states in a half metal is not taken into account
in the above estimate.
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