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The density matrix formalism is employed to calculate pump-probe spectra of BCS superconductors in the
coherent regime. Two dynamical regimes, one adiabatic and one nonadiabatic, can be clearly distinguished. In
the adiabatic regime, the modulus of the BCS order parameter can be identified with half the gap in the probe
spectra. In the nonadiabatic regime, the order parameter oscillates in real time, whereas the gap observed in the
spectra reflects its temporal average. The transition between these regimes is accompanied by a qualitative
change of the intensity dependence of the dynamical gap renormalization. Furthermore, a hole-burning effect
occurs if the spectral shape of the pump pulse is sufficiently sharp. A probe pulse preceding the pump pulse
leads to spectral oscillations, and both the gap before and after the pump pulse are visible in the probe spectra.
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I. INTRODUCTION

The nonequilibrium dynamics of superconductors has
been of active interest for a long time. In recent years, in
particular, the ultrafast response to optical excitations has
been studied experimentally.1–4 Most profoundly understood
from a theoretical viewpoint are BCS superconductors. Tra-
ditional approaches for the nonequilibrium dynamics of the
latter systems are based either on the time-dependent
Ginzburg-Landau theory5,6 �TDGL� or the Boltzmann
equation6,7 �BE�. The TDGL is a phenomenological descrip-
tion where the dynamical problem is reduced to tracing a
single variable, the order parameter ��t�. This procedure is
applicable when a local thermal equilibrium compatible with
the instantaneous value of ��t� is established on a time scale
much shorter than the typical variation of ��t�. This require-
ment restricts the validity of the TDGL to only a few limiting
cases. The BE approach goes beyond the TDGL by keeping
all quasiparticle distributions as dynamical variables, but co-
herences are left out. It usually also involves a gradient ex-
pansion for the spatial and momentum dependences of the
distribution functions and is, thus, applicable only when the
latter variations are slow.

Recently, BCS-type systems have been analyzed on short
time scales for situations far away from thermal equilibrium.
Here, a nonadiabatic regime is reached where it is no longer
sufficient to follow only the dynamics of quasiparticle distri-
bution functions. In particular, it is necessary to fully account
for the time evolution of anomalous expectation values, i.e.,
coherences between different quasiparticle states. Indeed, a
number of recent papers have been devoted to the derivation
of explicit solutions to initial-value problems within the
framework of the mean-field approximation.8–11 The initial-
value problems are meant to model a system immediately
after a sudden change of parameters, e.g., a fermionic alkali
gas where the strength of the pairing interaction can be
abruptly readjusted by switching external magnetic fields.

In this paper, we explore the nonadiabatic regime for con-
ventional metallic superconductors driven by ultrashort laser
pulses. As the action of the laser is not restricted to a single
point in time, we cannot apply the solution to the initial-
value problem; we rather use the density matrix formalism to

model the coherent collisionless response of the system.
Such a description has been worked out many years ago for
the linear response.12 Here, we extend this description to the
nonlinear regime. This approach allows us to fully account
for the dynamics of all quasiparticle occupations and coher-
ences within the limits of the mean-field theory.

Driving a system into the regime of nonadiabatic coherent
dynamics by ultrafast laser excitations has been routinely
done for many systems. This holds not only for systems with
long decoherence times like, e.g., atomic systems, but also
for systems such as semiconductors with decoherence times
on the subpicosecond time scale.13 For BCS superconduct-
ors, however, such scenarios are widely unexplored, even
though typical quasiparticle lifetimes are of the order of
nanoseconds.14,15 Resonant studies of BCS systems in the
coherent regime require sources generating pulses much
shorter than these times with carrier frequencies of the
order of the superconductor gap, that is, in the terahertz
scale. Only recently, ultrashort terahertz sources have be-
come available16,17 and, thus, paved the way toward the
nonadiabatic regime.

Compared to other materials like semiconductors, such
studies for BCS-type systems are interesting because the
BCS model has a number of distinct features such as a
ground state exhibiting a coherent superposition of states
with different numbers of electrons. In view of these unique
properties, also the coherent dynamics within the BCS model
should be characteristically different from other systems. It is
the goal of the present paper to provide a model study re-
vealing the special dynamical behavior of a BCS supercon-
ductor driven by ultrafast pulses in the coherent regime. In a
first part, we study the reaction of the superconductor to a
single laser pulse. We show that by reducing the pulse
length, a transition takes place from an adiabatic to a nona-
diabatic regime, where the order parameter oscillates and a
description only in terms of quasiparticle occupations be-
comes insufficient. In addition, we calculate pump-probe
spectra which are directly observable quantities. Interest-
ingly, the oscillations of the order parameter that occur in the
nonadiabatic regime are not reflected by corresponding shifts
of the pump-probe spectra. From the pump-probe spectra,
the dynamical gap renormalization can be extracted as a
function of the pulse intensity. We find that the transition to
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the nonadiabatic regime is accompanied by a change in the
intensity dependence of the shift. The intensity dependence
also deviates characteristically from corresponding results
for the dynamical Stark shift in atomic or semiconductor
systems.18–21

II. THEORY

A. Mean-field approximation of the BCS model

We begin with the BCS-Hamiltonian22,23

HBCS = �
k,�

�kck,�
† ck,� − W0 �

k,k��W
ck�↑

† c−k�↓
† c−k↓ck↑, �1�

where ck,�
† and ck,� are the creation and annihilation opera-

tors for electrons with momentum �k and spin �, �k
=�2k2 /2m−EF, m is the effective mass, and EF is the Fermi
energy. The second sum describes the attractive interaction
induced by electron-phonon coupling; as usual, the retarda-
tion is neglected so that the interaction becomes instanta-
neous. It is restricted to electrons whose energies deviate
from EF by no more than ��D ��D is the Debye frequency�,
so W is the set of all k vectors with ��k����D. We have also
adopted the standard BCS assumption that pairing only oc-
curs between electrons with opposite momentum and spin
orientation, because in a translationally invariant system
these are the dominant terms for the formation of the BCS
ground state.24,25 W0 is a positive number that determines the
strength of this interaction.

We now apply a mean-field �MF� approximation to
the interaction part of the Hamiltonian:26 ab��a�b+a�b�
− �a��b�, with a=ck�↑

† c−k�↓
† and b=c−k↓ck↑. Neglecting a con-

stant, this yields

HMF = �
k,�

�kck,�
† ck,� − � �

k�W
ck↑

† c−k↓
† − �* �

k�W
c−k↓ck↑,

�2�

where �=W0�k�W�c−k↓ck↑� is the �complex� mean-field pa-
rameter.

We can diagonalize HMF for a fixed � with the aid of a
Bogoliubov transformation.23,27 The order parameter � can
change with time, so we will call the value for which the
transformation is done �1 in order to distinguish it more
easily from the current value of the order parameter. This
transformation is usually done with �1=�0, where �0 is the
order parameter in the BCS ground state, but we will later on
need to diagonalize HMF with an arbitrary complex order
parameter. The transformation is defined by two constants uk
and vk, which are allowed to be complex in order to account
for a complex �1, and by

�k = ukck↑ − vkc−k↓
† , �k

† = uk
*ck↑

† − vk
*c−k↓,

	k = ukc−k↓ + vkck↑
† , 	k

† = uk
*c−k↓

† + vk
*ck↑. �3�

This transformation has the important property that as long
as the condition �uk�2+ �vk�2=1 holds, the new quasiparticle
operators �k, �k

†, 	k, and 	k
† satisfy the fermionic commuta-

tion relations just like ck↑, ck↑
† , ck↓, and ck↓

† . The following

choice of uk and vk satisfies this condition and, furthermore,
diagonalizes HMF:

uk = 0, vk = 1 if �k 
 − ��D

uk = 1, vk = 0 if �k � ��D

� uk =	1
2
1 +

�k

Ek
�

vk =
�1

��1�
	1

2
1 −
�k

Ek
� � if ��k� � ��D, �4�

with

Ek = 	�k
2 + ��1�2. �5�

This choice is not mandatory; in particular, a phase param-
eter remains free, which we have used to ensure that uk is
always real, whereas vk is complex whenever �1 is complex.
For �1=�0, the vacuum state defined by �k�0�=	k�0�=0 is
the BCS ground state.

For �1=�, this transformation turns HMF into the diago-
nal form �again, an additive constant is being ignored�

HMF = �
k�W

��k���k
†�k + 	k

†	k� + �
k�W

Ek��k
†�k + 	k

†	k� .

�6�

However, � changes with time, and we have to take this
into account by one of the following means: First, we can
take our quasiparticle basis to be time dependent and include
in our equations of motions additional terms which arise
through such a time-dependent transformation.28 Second, we
can keep the transformation parameter �1 at a fixed value
and take into account that HMF is no longer diagonal. Both
options are equivalent; here, we will stick to the second one.
For an arbitrary value of �, HMF reads

HMF = �
k�W

��k���k
†�k + 	k

†	k� + �
k�W

Rk��k
†�k + 	k

†	k�

+ Ck
*�k

†	k
† + Ck	k�k� , �7a�

with

Rk =
�k

2 + Re��*�1�
Ek

�7b�

and

Ck = �1
*� �k

Ek
�1 − Re
 �

�1
�� + i Im
 �

�1
�� , �7c�

which, of course, is reduced to the above diagonal form Eq.
�6�� if �1 is equal to �.

B. Interaction with an electromagnetic field

The superconductor is exposed to a laser field with wave
vector q0=q0ex and angular frequency �0=q0c, which in the
Coulomb gauge is described by a transverse vector potential
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Aq�t� = A0 exp�− 
2	ln 2t

�
�2��q,q0

e−i�0t + q,−q0
ei�0t� ,

�8�

with amplitude A0=A0ey and full width at half maximum
�FWHM� �.

This vector potential affects the electrons through the
Hamiltonian

Hem = �
k,q,�

1

2m�e��2k + q� · Aq + e2�
qi

Aq−qi
· Aqi�ck+q,�

† ck,�.

�9�

Using Eq. �3� again, this becomes

Hem = Hem
�1� + Hem

�2� + complex number, �10a�

Hem
�1� =

e�

2m
�
k,q

�2k + q� · Aq�uk
*uk+q + vk

*vk+q��k+q
† �k

− �ukuk+q
* + vkvk+q

* �	k
†	k+q + �uk+qvk − ukvk+q��k+q

† 	k
†

+ �uk
*vk+q

* − uk+q
* vk

*�	k+q�k� , �10b�

Hem
�2� =

e2

2m
�
k,q

�
qi

Aq−qi
· Aqi

�uk
*uk+q − vk

*vk+q��k+q
† �k

+ �ukuk+q
* − vkvk+q

* �	k
†	k+q + �uk+qvk + ukvk+q��k+q

† 	k
†

+ �uk
*vk+q

* + uk+q
* vk

*�	k+q�k� . �10c�

We are interested in pump-probe spectra, so we need to
calculate the electric current density j�r0 , t�. The spatial Fou-
rier transform of its Fock space operator is

ĵq0
= ĵq0

�1� + ĵq0

�2�, �11a�

ĵq0

�1� =
− e�

2mV
�
k,�

�2k + q0�ck,�
† ck+q0,�, �11b�

ĵq0

�2� = −
e2

mV
�

k,q,�
Aq0−qck,�

† ck+q,�, �11c�

where V is the normalization volume. When calculating the
linear spectrum of our probe pulse, we neglect jq0

�2� as it only
entails an offset in the imaginary part � Im � of the
spectrum.24

Finally, we transform ĵq0

�1� according to Eq. �3�:

ĵq0

�1� =
− e�

2mV
�
k

�2k + q0��ukvk+q0
− uk+q0

vk��k
†	k+q0

†

+ �uk+q0

* vk
* − uk

*vk+q0

* �	k�k+q0
+ �ukuk+q0

*

+ vkvk+q0

* ��k
†�k+q0

− �uk
*uk+q0

+ vk
*vk+q0

�	k+q0

† 	k� .

�12�

C. Calculating the superconductor’s response

To determine jq0

�1�, it obviously suffices to know the fol-
lowing expectation values:

��k
†	k+q

† �, ��k
†�k+q� ,

�	k�k+q�, �	k+q
† 	k� . �13�

Starting from Heisenberg’s equation of motion with the
Hamiltonian H=HMF+Hem Eqs. �7a� and �10��, we obtain a
set of differential equations for these variables. As an ex-
ample, the equation of motion for the first variable is shown
in the Appendix Eq. �A1��. The others have a similar struc-
ture. We observe that the equations contain no other expec-
tation values than those in Eq. �13�. This means that we have
found a closed set of differential equations; that we do not
get an infinite hierarchy of equations is a virtue of the mean-
field approximation.

There is still an infinite number of k’s and q’s. However
by looking closely at the equations of motion, we can see
that there is no interaction with the electromagnetic field for
every term with k ,k+q�W, as long as we start from the
BCS ground state; so we will impose the restriction k ,k
+q�W.34

As we can see from Eq. �A1�, only expectation values
with indices �k ,k+nq0� with an integer n have to be consid-
ered. We can further reduce the number of tuples �k ,k
+nq0� we have to calculate because Hem

�1� couples only tuples
with n1−n2��n= ±1 and Hem

�2� couples only those with �n
� �−2,0 ,2�. New excitations can only arise for n= ±1
through Hem

�1� and for n=−2, 0, and 2 through Hem
�2�. Now Hem

�1�

is proportional to A0 and Hem
�2� is proportional to A0

2. This
means that if A0 is small enough, we may ignore all tuples
with n�N. We have found that it suffices to set N=4, which
we have done in all the calculations presented herein.

For simplicity, we have computed these equations in two
and not in three dimensions. Two-dimensional calculations
may be of interest on their own, but they should also provide
us with a good approximation for the three-dimensional su-
perconductor for the following reason: As we can see from
Eqs. �8� and �10�, the laser field couples only indices �k ,k
+nq0� and �k� ,k�+n�q0� with k−k�= jq0 with an integer j.
So, leaving the second index aside for a moment, we have
one-dimensional subspaces of the k space, wherein the ma-
trix elements are strongly coupled, but two different sub-
spaces are completely independent of each other except for
the weak indirect coupling through the mean-field parameter
�, which is, of course, dependent on all of these subspaces
and vice versa affects all of them. As all of these subspaces
are similar to each other, it seems like a good approximation
to choose a very coarse discretization in the directions per-
pendicular to q0 or even to reduce the number of dimensions.
So we have made our calculations in two dimensions using
the rather coarse discretization of 32 points in the direction
perpendicular to q0. Using 128 discretization points instead
produces very similar results indeed, and even using only
one dimension leads to the same qualitative behavior, as will
be seen later.
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III. RESULTS

For our numerical computation we use the following
parameters which are motivated by the experimental values
for lead:29 2�0=2.7 meV ��0 is the order parameter for
the BCS ground state and, therefore, half the energy gap�,
��D=8.3 meV, EF=9.47 eV, and m=1.9m0 with the free
electron mass m0. The pump and probe pulse frequencies
are �0=4.50�1012 s−1 and �p=3.80�1012 s−1, so ��0
=2.96 meV is greater and ��p=2.50 meV is less than the
energy gap 2�0.

The calculations start from the BCS ground state at zero
temperature. Pump and probe pulses are Gaussian in time,
but are cut off at a thousandth of their maximum amplitude.
The pulses do not overlap.

A. Effects of the pump pulse

Figure 1 shows twice the modulus of the order parameter
��� as a function of time for different widths of the pump
pulse. As a consequence of the action of the pump pulse, ���
decreases. We observe an adiabatic and a nonadiabatic re-
gime: If the pulse is sufficiently wide ��=10 ps�, ��� remains
constant after the pump pulse has ended. However, for short
pump pulses, ��� continues to oscillate even when the pump
pulse has been switched off long ago. The amplitude of this
oscillation increases with decreasing pulse width. The de-
crease of ��� is due to the fact that the laser pulse populates
the expectation values ��k

†�k� and �	k
†	k�, just as an increase

in temperature does.
If we change into the instantaneous Bogoliubov space

�1=��t�� for any given time t after the pump pulse has
expired, the time derivative of these expectation values is
zero as HMF is diagonal. In the adiabatic regime, the expec-
tation value ��k

†	k
†� now is almost zero, so ��� stays constant

when the pump pulse has subsided. This means that the new
state can be described by a quasiparticle distribution without
coherences, although the quasiparticles are not the same as in
the ground state.

The short pulse ��=0.4 ps� lies beyond the adiabatic re-
gime. Setting �1=��t� again, the expectation value ��k

†	k
†� is

not zero, so a description that takes into account only the
quasiparticle distribution is no longer possible. Its time de-
rivative is not zero; as ��k

†	k
†� changes, it affects �, and then

HMF is no longer diagonal, so ��k
†�k� and �	k

†	k� will also
change. This gives rise to the oscillation we observe for the
short pulses.

As soon as the pump pulse is switched off, we can regard
the time evolution as an initial-value problem as it is dis-
cussed in Ref. 11. There it is shown that one possible solu-
tion for the time dependence of the modulus of the order
parameter is an oscillation with frequency �=2�� /� decay-
ing with 1 /	��t /�, where �� is the value ���t�� asymptoti-
cally reaches. Our results are in very good agreement with
this prediction.

In Fig. 2, we have plotted the expectation value ��k
†�k�

for a fixed time immediately after the pump pulse. �	k
†	k�

looks exactly the same. The longest pulse with �=10 ps cre-
ates a population with two pronounced maxima. The posi-
tions of these maxima correspond approximately to half the
pump pulse energy, 1

2��0, because every excitation consists
of two Bogoliubovian quasiparticles. The maxima are broad-
ened both by the energy uncertainty of the pump pulse and
by the fact that ��� changes while the pump pulse is active. In
the inset of Fig. 2, we have sketched how a change in ���
affects the quasiparticle energies and, thereby, shifts the po-
sitions of the excitation maxima. The short pulses’ energy
spectrum is too broad to create such sharp maxima, instead
we get a broad population centered at the Fermi wave num-
ber kF. There are also two secondary maxima �e.g., at k
�2.172 84�1010 m−1� which are best visible for the longest
pump pulse. These are created by two-photon processes, as
can be seen from the fact that they are rather small and that
their k values belong to the full energy of the pump pulse.

Performing the same calculation in one dimension on one
of the one-dimensional subspaces with ky =1.120�1010 m−1,
which is roughly 1

2kF, yields quasiparticle distributions
which are very similar to those presented above. However,
there are some differences in the time evolution of the order
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FIG. 1. �Color online� Time dependence of the order parameter
���. All pump pulses are centered at t=0 and have the same energy.
Note that we have plotted 2 ��� as this is the value that corresponds
to the gap energy. The inset shows the results of the one-
dimensional calculation.
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FIG. 2. �Color online� Occupations ��k
+�k� with �1=��t� imme-

diately after the pump pulses. The inset shows how a change in ���
affects the k positions of excitations with a fixed energy.
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parameter, as can be seen in the inset of Fig. 1. In particular,
the shift in the energy gap 2 ��� is slightly different. None-
theless, the qualitative behavior is the same. The probe spec-
tra, which will be discussed in the next section, again are
virtually independent of whether the number of dimensions
is 1 or 2, although, of course, they reflect the changes in the
values of ���.

Figure 3 shows the intensity dependence of the shift in
���. The data for this figure have been calculated in only one
dimension; as discussed previously, this should be a good
approximation for higher dimensional systems. For the
longer pulses, the shift starts linearly but then flattens. The
flattening occurs because the pump pulses create rather sharp
maxima in the quasiparticle distribution, so due to Pauli
blocking it gets increasingly difficult to create new quasipar-
ticles with higher intensities. A linear shift is also observed in
semiconductors and atoms, e.g., in the dynamical Stark
effect.18–21 For the shortest pump pulse, the shift is quadratic
with a small linear term. This is because shorter pulses need
higher intensities to yield a noticeable shift and, with these
intensities, the quadratic term of the shift dominates.

B. Probe spectra

In Fig. 4, the probe spectra are shown. The pump pulse
precedes the probe pulse, and the pulses do not overlap. The
probe pulse has a FWHM of 0.25 ps and is calculated in
linear approximation. A Hann window is applied to j�1��t�
prior to Fourier transforming it,30 and the spectrum itself is
calculated via ����= j�1���� /E���= j�1���� / i�A����.

The first thing we notice about our probe spectra is that
both real and imaginary parts have a sharp edge at the same
frequency, and the real part is zero below this frequency.
This is the energy gap and we expect it to end at 2 ���, which
is correct as long as ��� does not oscillate. If it does oscillate,
the edge is located at the average value of 2 ���; the spectrum
does not oscillate itself, i.e., it is independent of the exact
timing of the probe pulse, even though the probe pulse width
is shorter than one period of the oscillation. So this oscilla-
tion cannot be perceived by means of a simple probe spec-
trum.

The real part of the spectra for the longer pulses addition-
ally exhibits a small dip �cf. inset of Fig. 4�. Its correspond-
ing energy is two times the quasiparticle energy of the popu-

lation maxima. This means that the sharp population maxima
which the pump pulse has created now inhibit the absorption
through Pauli blocking, leading to this hole-burning effect.

Figure 5 shows the spectra for a negative time delay t
=−25 ps, which means that the probe pulse precedes the
pump pulse. We observe a spectral oscillation whose period
�=2� / �−t� is inversely proportional to the delay t. Such
spectral oscillations are well known in semiconductors where
the same relation between � and t applies.31–33 In contrast
to typical semiconductor results, both the energy gap before
and after the pump pulse, indicated by dashed lines, can be
seen in the spectra as sharp features. Physically, under these
excitation conditions, the pump pulse modifies the dynamics
of the current induced by the preceding probe pulse. The
main oscillation frequency of the current, which is the gap
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frequency, changes rather abruptly from the equilibrium
value to the reduced value determined by the pump pulse.

IV. CONCLUSION

We have calculated the coherent dynamics of a BCS su-
perconductor using the density matrix formalism. Short
pump pulses put the system into a coherent superposition
state which can no longer be described by its quasiparticle
distribution alone. In this nonadiabatic regime, the modulus
of the order parameter performs a damped oscillation. In
addition, the intensity dependence of the shift in ��� is very
different from the one in the adiabatic regime.

The reaction to the pump pulse may be measured with the
aid of pump-probe spectroscopy. One, thereby, gains infor-
mation about maxima in the quasiparticle distribution and
about the modulus of the order parameter, but its oscillation
remains invisible. If the probe pulse precedes the pump
pulse, spectral oscillations occur and both the gap before and

after the pump pulse are visible in the spectra as sharp fea-
tures.
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APPENDIX: EQUATIONS OF MOTION

We show the equation of motion for only one of the four
expectation values in Eq. �13�; the remaining ones are simi-
lar. We have used the fact that Aq is of a special form see
Eq. �8�� and that all uk are real. Rk and Ck are the same as in
Eq. �7a�. As discussed previously, we have limited ourselves
to the subset of momentum space called W, where the attrac-
tive interaction occurs. The term independent of Aq�t� is,
therefore, valid for k ,k+q�W only.

i�
d

dt
��k

†	k+q
† � = − �Rk + Rk+q���k

†	k+q
† � + Ck+q

* ��k
†�k+q� + Ck

*��	k+q
† 	k� − q,0� +

e�

2m
�

q�=±q0

2k · Aq��t�

�− �ukuk+q� + vk
*vk+q����k+q�

† 	k+q
† � + �uk+q−q�uk+q + vk+q−q�vk+q

* ���k
†	k+q−q�

† �

+ �uk+q−q�vk+q
* − uk+qvk+q−q�

* ���k
†�k+q−q�� + �ukvk+q�

* − uk+q�vk
*���	k+q

† 	k+q�� − q,q���

+
e2

2m
�

q�=0,±2q0


 �
qi=±q0

Aq�−qi
�t� · Aqi

�t��− �ukuk+q� − vk
*vk+q����k+q�

† 	k+q
† �

− �uk+quk+q−q� − vk+q
* vk+q−q����k

†	k+q−q�
† � + �uk+qvk+q−q�

* + uk+q−q�vk+q
* ���k

†�k+q−q��

+ �ukvk+q�
* + uk+q�vk

*���	k+q
† 	k+q�� − q,q��� . �A1�
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