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Dynamics of coreless vortices and rotation-induced dissipation peak in superfluid films
on rotating porous substrates
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We analyze the dynamics of three-dimensional (3D) coreless vortices in superfluid films covering porous
substrates. The 3D vortex dynamics is derived from the two-dimensional (2D) dynamics of the film. The
motion of a 3D vortex is a sequence of jumps between neighboring substrate cells, which can be described,
nevertheless, in terms of quasicontinuous motion with average vortex velocity. The vortex velocity is derived
from the dissociation rate of vortex-antivortex pairs in a 2D film, which was developed in the past on the basis
of the Kosterlitz-Thouless theory. The theory explains the rotation-induced dissipation peak in torsion-
oscillator experiments on “He films on rotating porous substrates and can be used in the analysis of other
phenomena related to vortex motion in films on porous substrates.

DOI: 10.1103/PhysRevB.76.224507

I. INTRODUCTION

Superfluid *He films adsorbed in porous media are an
actual topic in physics of superfluidity.! Studying this system
gives a unique possibility to investigate the interplay be-
tween two-dimensional (2D) and three-dimensional (3D)
physics, especially the character of the transition to the su-
perfluid state. On one side, torsion-oscillator experiments re-
veal the dissipation peak near the temperature of the super-
fluid onset 7, which is predicted by the dynamical theory of
vortex-antivortex pairs> based on the Kosterlitz-Thouless
theory for 2D films.> On another side, they found that in
films on porous substrates, the superfluid density critical in-
dex ~2/3 (Ref. 1) of the 3D system and the sharp cusp of
the specific heat* at 7, are similar to those near the \ transi-
tion of the bulk *He.

An important insight into the physics of superfluid films
in porous media is provided by torsion-oscillator experi-
ments with rotating substrates. The porous substrate is usu-
ally modeled with a “jungle-gym” structure:>8 a 3D cubic
lattice of intersecting cylinders of diameter a with period [
(Fig. 1). Multiple connectivity of superfluid films in porous
media allows a variety of vortex configurations, and prob-
ably most important from them is a coreless or pore 3D
vortex, which is just a flow around the vortex pores having
nonzero circulation. Due to the presence of a new type of
topological defects, one could expect an essential difference
in the response between the plane film and the porous-
medium film under rotation. This expectation was confirmed
by torsional-oscillator experiments, which revealed a
rotation-induced peak in dissipation (inverse quality factor)
as a function of temperature. The additional peak was shifted
from the stationary (static) peak that was observed without
rotation.>!® Double-peak structure essentially differs from
the case of the plane film, where the only effect of rotation
was to broaden the stationary peak.!'!:!?

A semiempirical interpretation of the rotation-induced dis-
sipation peak was suggested in Ref. 10. It is clear that the
rotation can affect dissipation via rotation contribution to the
velocity field. So it is a nonlinear correction to the response.
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Instead of the derivation of such a correction from the theory,
the authors of Ref. 10 used the data on the nonlinear re-
sponse taken from the independent experiment on large-
amplitude torsion oscillations. This provided a qualitative ex-
planation of the rotation peak, and even of some quantitative
features of it, but could not pretend to be a full theory of the
effect. The present work suggests really a theory of the rota-
tion peak deriving the parameters of the peak from the pa-
rameters of the film and the substrate. The key role in our
scenario is played by the 3D coreless vortices. We derived
the dynamics of these vortices from the dynamics of 2D
films adsorbed in porous media. It was suggested'” that the
motion of the coreless 3D vortices occurs in a creeping man-
ner by jumping from cell to cell. These jumps are related to
the dissociation of the vortex-antivortex pair on one side of a
rod separating different pores, with subsequent annihilation
of the pair on another side of a rod. The result of the jump is
a shift of velocity circulation to a neighboring pore. Though
our analysis was focused on the application to the torsion-
oscillator experiments, it is valid for a description of the 3D
vortex motion in many other cases, at least in those where
the vortex moves to distances much larger than the average
period of the substrate structure. An important example is
steady vortex motion in zero-frequency experiments.

In Sec. II, we describe how the dynamics of 3D coreless
vortices is connected with the dynamics of 2D films covering

FIG. 1. (Color online) Vortex creep in the jungle gym structure:
the coreless vortex (dashed line) crosses a cylinder between two
cells via dissociation of the vortex-antivortex pair. The arrowed
curved lines show circulation around the cells where the vortex line
is located.
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FIG. 2. Vortex creep. The superfluid moves with velocity V, along the axis x, and the vortex creeps along the axis y. (a) The state before
the jump. There is circulation x around the lower cell (1) as shown in the picture. The same circulation exists around any path inclusive cell
(1). The circulation around two cells (1) and (u) is shown. The coreless vortex is located at the cell (1). (b) The vortex on the way between
cells (1) and (u). There is the vortex-antivortex pair (VAP) in the film. Circulations around the paths inclusive only of cell (1) or (u) are not
defined, while for the path around the two cells, circulation is equal to « as before. (c) The state after the jump. The coreless vortex is located
at the cell (u). No circulation around the cell (1) anymore, but there is circulation around the cell (u), or around the two of them.

the substrate. This provides a bridge between the effective-
continuous-medium 3D description and dynamics of 2D
films. Section III reviews the theory of dissociation of
vortex-antivortex pairs on the basis of the Kosterlitz-
Thouless theory. In Sec. IV, the pair-dissociation rate is ana-
lyzed near the critical temperature, where there is an analyti-
cal solution of Kosterlitz’s recursion equations. The theory is
applied to the analysis of the torsion-oscillation experiments
in Sec. V. The rotation-induced dissipation peak directly fol-
lows from the theory, and its position, shape, and even height
are in good agreement with the experiment. Section VI is
devoted to conclusions.

II. CORELESS VORTICES: FROM TWO-DIMENSIONAL
TO THREE-DIMENSIONAL VORTEX DYNAMICS

In a continuous medium, a vortex is a topological defect
with nonzero circulation around the vortex axis. There is an
area around the vortex line with a suppressed order param-
eter, which is called vortex core. However, the topology of a
porous medium allows the circulation of superfluid velocity
around a pore without suppression of the order parameter
anywhere inside the superfluid film. This leads to the concept
of a coreless vortex. The vortex “line” in this case is not a
line at all; this is a chain of the jungle-gym structure cells
with nonzero circulation around them. Schematically, the
coreless vortex is depicted in Fig. 1.

This coreless structure of a vortex rules out the usual type
of vortex motion in a continuous medium simply because the
coreless vortex has no continuous coordinate: its position is
discrete and is determined by a cell with nonzero circulation
around it. The only way for the vortex to move is to jump
from cell to cell. They call such a type of vortex motion
vortex creep. However, any jump is, in fact, a process in time

(whatever short) during which the vortex line inevitably
crosses a rod covered by a superfluid film. So during the
jump, the “coreless” vortex does have cores: at the place
where it enters the rod and at the place where it comes out
from the rod (Fig. 1). These two cores together form a 2D
vortex-antivortex pair, which should grow, dissociate, and
eventually annihilate on the other side of the rod. This pro-
cess leads to a discrete shift of the vortex line to a neighbor-
ing cell. For better illustration, a two-dimensional picture of
this process is shown in Fig. 2. It shows two cells: upper (u)
and lower (1). Before the process [Fig. 2(a)], there is circu-
lation k=h/my, around the lower cell, as shown in the fig-
ure. Provided that there is no other coreless vortices nearby,
the same circulation exists around any path inclusive of cell
(1), as shown for the path around the two cells. The transient
process of the “jump” from cell (1) to cell (u) is shown in
Fig. 2(b). The vortex-antivortex pair is present in the film
between two pores. This makes circulation around any of the
two cells undefined: it depends on whether the path goes
outside or inside the pair. Only circulation around the two
cells together remains equal to . Figure 2(c) shows the state
after the process: the coreless vortex is now located in cell
(u). Though this scenario is shown in the plane picture, it is
directly applicable to the 3D jungle-gym structure with the
2D vortex and antivortex moving around a cylindric rod.

In reality, creation and dissociation of vortex-antivortex
pairs is a stochastic process, which is determined by the av-
erage dissociation rate R(T,v,) (number of dissociation
events per second and per unit area of a film), which depends
on temperature 7 and, most important for us, on average
superfluid velocity v in the film. In our case, the superfluid
velocity field consists of two parts: v,=v.+V, where v,
originates from a circular flow around the vortex line at rest
and V, is a transport superfluid velocity with respect to a
moving substrate. In Fig. 2, the velocity V; is directed along
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the axis x. So it is added to the circular velocity v, above the
cell with circulation « and is subtracted from v, below this
cell. Therefore, the jumps of the vortex line up and down are
unbalanced and result in some average drift (creep) of the
vortex line up the picture in Fig. 1. This jumplike process
can, nevertheless, be described with an average vortex veloc-
ity determined as

VLZAZ[R(UC+ Vs’T)_R(Uc_ VY’T)] = ZAIZ_RVY’ (1)
N
where [ is the period of the jungle-gym structure, and A is the
area of the rod separating neighboring pores. According to
this scenario of vortex motion, the vortex velocity V; is
strictly normal to the velocity V.
Let us compare relation (1) with the general relation con-
necting the vortex velocity of the vortex line with the normal
and superfluid velocities:'3

VL= Vs +az X (Vn - Vs) - al(Vn - V;) (2)

In the problem under consideration, we can assume that the
normal component is clamped to the porous-glass substrate
oscillating with the velocity V,. So their velocities coincide:
V,=V,.In fact, Eq. (1) is written for the system moving with
the substrate, where V,=V,=0. Eventually, Eqs. (1) and (2)
agree if

R

a=2Al—,
v

s

a' =-1. (3)

Note that the condition 1+a'=0 providing that vortices
move normally to the superfluid motion means that the ab-
sence of the “effective” Magnus force,'* which is defined as
the term oc[ZX V], is the balance of forces on the vortex. In
superconductors, this leads to the total absence of the Hall
effect. Absence of the effective Magnus force is typical for
lattice systems,15 in contrast to uniform continuous media
with Galilean invariance. The crossover between these two
cases was recently studied by numerically solving the Gross-
Pitaevskii equation.'®

Let us discuss one important question related to the en-
ergy of 3D coreless vortices. The energy of vortex line per
unit length (tension) can be estimated in the usual manner
with substitution such that superfluid density is effective 3D
density p,; (see Sec. V) and the low cutoff in logarithm is the

size of pore [:
2
L
Pl ln<—),
4 )

where L is external scale, e.g., interline space or radius of
curvature of line, etc. Usually, this quantity is of several sizes
of the period of the pore lattice. Therefore, In(L/!) is of order
unity; one can say that the 3D coreless vortex is a low-
energy structure in comparison with the usual vortex, which
has a large energy due to the low cutoff in logarithm which is
the core radius (. During motion, the vortex line can in-
crease its length, accordingly increasing rotational energy. In
the usual case of the bulk helium, increase of energy appears
due to the work done by friction force between vortices and
normal component. In the case of the coreless vortices, the
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situation is more subtle. After dissociation of the pair, the
vortex and antivortex run around the rod, separating the pore.
This process occurs due to friction between 2D vortices and
the normal component clamped to the porous-glass substrate.
External flow executes the work to support running away of
2D vortices. Due to this work, redistribution on superfluid
current occurs, corresponding to jump of the 3D coreless
vortex in the new cell. In other words, increase of the vortex
energy is realized at the expense of external superfluid flow.

So the creep of coreless vortices, which is realized via
sequences of discrete jumps from cell to cell, can be de-
scribed in the terms usually used for 3D vortices moving in a
continuous medium. Still, the parameters of this 3D
“effective-medium” description must be determined within
the theory of 2D films covering the multiconnected substrate.
The crucial parameter to be determined is the derivative
dR/dv, of the dissociation rate R of vortex-antivortex pairs
in the 2D film.

III. RATE OF PAIR DISSOCIATION

The thermally activated dissociation of vortex-antivortex
pair was analyzed by Ambegaokar et al.? (see also references
to later works in Ref. 17) on the basis of the Kosterlitz-
Thouless theory. They considered superfluid films on plane
substrates, while in our case, films cover cylindrical surfaces.
However, as we shall see below, the relevant scale (size of
the pair at the saddle point) is small compared to the sub-
strate curvature and the curvature may be ignored.

The pair dissociation is accompanied by overcoming the
potential barrier. The barrier corresponds to the saddle point
of the vortex-pair energy as a function of the radius vector r
connecting vortex with antivortex,

pok’ [ dr

2w J,, &r)r

U(r7vs) = = PsoKT - (Vs X 2) (4)

Here, py, is the bare superfluid density, € is Kosterlitz’s static

scale-dependent dielectric constant determined from the in-
tegral equation

1 . TPk 2fr J r psoszr dr
—-l=-—— r—exp|l-—— | —|,
&(r) T 0 LTy Iy ry €T

(S

1y is the core radius of the 2D vortex, yo=e %07, and E, is the
energy of the vortex core. The dielectric constant &(r) takes
into account screening of interaction between a vortex and an
antivortex at distance r by pairs of smaller size. In the limit
r— oo, the dielectric constant determines the ratio of the bare
and renormalized superfluid densities: p,=p,o/ €(°).

The integral equation (5) can be reduced to Kosterlitz’s
recursion equations:

dK(1)

KO g,
di Y

2

) _ (4 —27K)y>. (6)
dl

Here, [=In(r/ry), the dielectric constant is replaced by the

ratio €(1)=K(0)/K(I), where K(0)=p,o«>/4m*k,T is the bare

Kosterlitz-Thouless coupling constant related to the bare su-

perfluid density p,,, and
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!
y(l) =y exp|:21—7rf K(l’)dl’:| (7)

0

is the rescaled activity.

Solving the Fokker-Planck equation for the distribution of
vortex-antivortex pairs, Ambegaokar et al.> obtained the fol-
lowing expression for the dissociation rate [see Eq. (4.6) in
Ref. 2]:

R= "2V (1)expl2 7K (L) (8)

R

Here, D is the vortex diffusion coefficient, r, is the saddle-
point value of the pair size r, and [;=r,/r, is its logarithm.
The saddle point for the effective potential (4) is reached
when r is perpendicular to v, and r, satisfies the condition

K _ kK (0) B
27E(ry)r, " 2aK(l)r, Us- ®

If the velocity v, is small, the values of /; and r, are large,
and this condition yields

«K(0)

re= —27TK(°O)US- (10)

In order to find the mutual friction parameter « from Eq.
(3), we need the derivative of the dissociation rate with re-
spect to the velocity v,. Using Egs. (6) and (9), we obtain

2
Z_R _ &f(o)yz(ls)exppw[((ls)]. (11)
v, r

s

In summary, Egs. (1), (3), and (11), show how the creep
motion of the coreless vortices in a porous medium is de-
scribed in terms of parameters determining the motion of 3D
quantum vortices in continuous media. This description can
be used for various problems related to vortex motion in
porous media.

Thus, the dissociation is a thermally activated process ac-
companied by overcoming the potential barrier of the height
~p,K? ln(zm'j ao)’ where p, is the 2D film superfluid density.
Under usualx conditions, the logarithm is of order 10,
ln(Zm'jan) ~ 10. On the other hand, since any jump shifts only
a small element of the 3D line of length ~/, it should be
accompanied by random local lengthening of the 3D vortex
line, which increases the barrier for the vortex creep. This
increase of the barrier can be estimated via the 3D line ten-
sion as p,;k°l, where p; is the effective 3D superfluid mass
density (see the end of Sec. II). This means that the line-
tension barrier is by a factor a/ [l ln(zm'f ao)] smaller than the
pair-dissociation barrier, and in the foflowing analysis, the
line-tension contribution to the activation barrier will be ig-
nored.

IV. PAIR DISSOCIATION NEAR THE CRITICAL POINT

For understanding the nature of the rotation dissipation
peak, we need to study the temperature dependence of the
dissociation rate at temperatures close to the critical one. At

PHYSICAL REVIEW B 76, 224507 (2007)

these temperatures, Kosterlitz’s recursion equations have an
analytical solution.> One can introduce a small x(/)= 7 K(I)
—K_.(0)], where K_.(I) yields values of K(I) at the critical
point and, at /[ — o, K (0)=2/ 1. Then the recursion relations
can be written as

()
dl

dy*(l
=—(4my)?%, A U =—2xy°. (12)
dl
Their solution is
-1 X0
x(I) =x, coth(xwl + coth —)
Xoo

Xo cosh(x,.0) + x., sinh(x.[)

=Xoo T . , 13
* Xo sinh(x.,) + x., cosh(x.[) (13)
-1 X0
4ary(l) = x,, csch(xocl + coth —>
Xoo
4 0

- Xo Sinh(x,l) + X, cosh(x,.[)
Here, xy=x(0) and x,=x(). The solution satisfies the con-
dition
3= x()? = [4my (D] = x5 = (4mmy,)°. (15)
At the critical point, x,,=0 and Eqgs. (13) and (14) become

X0
1 +Xol’

x(l) = 4ay(l) =

1+ xol '
According to Eq. (15), at the critical point, the parameters x
and y, satisfy the relation

2
Xo. = w{mm - ;] = (4my,)”. (16)
As usually assumed in the 2D vortex dynamics, the bare
superfluid density does not vary near the critical point. Then,
since K(0) o 1/T and y,=e %07, their dependence on the rela-
tive temperature r=(7,—T)/T, is

K(0) = K(0)(1 +1), yo*)’oC<1—%t>- (17)

Then Eq. (15) yields that at >0, x,=2b\t, with b
=16me E/T 1+ 2m(1+Ey/ T,)e E0Tc]. This leads to the
square-root cusp

py(T) = py(T)(1 + b\1) (18)

in the critical behavior of the renormalized superfluid den-
sity, which was revealed by Nelson and Kosterlitz!® with
numerical calculations.

Using all these relations together with the assumption that
v, is so low that at the saddle point /> x,., we obtain the

linear dependence of the dissociation rate on t:
dR DK.(0) ,
—=——5e(1-w), 19

dv,  2kril? =y (19)

where
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2
_szl 41_1
V= st 3 .

V. TORSIONAL OSCILLATIONS OF ROTATING POROUS
SUBSTRATE AND COMPARISON WITH THE
OBSERVED ROTATION DISSIPATION PEAK

Let us now apply the theory to the oscillatory motion of
the substrate superimposed on its steady rotation with the
angular velocity . So the substrate velocity field is [Q

><r]+Vg. Only the oscillatory component VgOCE"""’ is im-
portant for us. Using the Euler equation
AN
S+ [2Q XV, ]=-Vu (20)

ot

and Eq. (2) with @’ =—1, one obtains for an oscillatory com-
ponent of the velocities (the chemical potential wx is not rel-
evant for the azimuthal motion)

20«

=—V,. 21
Y iw+2Qa ¢ @1

This relation determines the drag of the superfluid compo-
nent by the oscillating substrate. Analyzing now the balance
of forces for the torsional resonator, as was done many times
in the past, one obtains the following contribution to the
inverse quality factor of the torsion oscillator for the slow
rotation Qa << w:

_Vp32Q0a

A_l
Q M o

: (22)
where M is the total mass of the torsional oscillator, V is the
total 3D volume (including pores), and pg; is the effective 3D
superfluid mass density in the porous-glass substrate of the
volume V, which is connected with the 2D superfluid density
p, of the film by the relation
P

pa="," (23)
Here, A,,, is the total area of the film. For the jungle-gym
structure with cell size [ and the rod diameter a,

A _ T

v R (24)

On the other hand, in the theory of 2D superfluid films start-
ing from Ref. 2, they describe the drag of the superfluid
component introducing the “dynamical dielectric constant”
€(w) (one should not mix it up with Kosterlitz’s static dielec-
tric constant € introduced in Sec. III):

vli-—lv (25)
o ew) | ¢
Then
V 1 A 1
AQ " = - P3 yy — o Deetle gy, & (26)
M € M €

with the imaginary part of the inverse dielectric constant
equal to
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20« 4A1Q IR
== (27)
® o Jdug
Substituting Egs. (18) and (19) into Egs. (26) and (27), we
see that the square-root cusp in the superfluid density is cru-
cial for its temperature dependence in the critical area and for
the existence of the rotation dissipation peak:

Im

m | =

4AIQ0A,, R -
=——— — = AN (T)(1 + bVt —v1). (28
Mm&vs O (T)( Nt—y1). (28)

AQ™!
The factor yxI. is expected to be large, but the square-root
cusp is more essential at small 7, and the inverse quality
factor has a maximum at t=b?/4+? rather close to the critical
point.

The linear approximation used for derivation of Egs. (13)
and (14) is more or less truthful only for |7—T,| not exceed-
ing 0.005 K. Though the dissipation maximum at 7T
~(.6234 K is in this interval (see below), the low tempera-
ture side of the dissipation peak is not, and the peak width
cannot be determined using the analytical formulas (13) and
(14). Thus, though the analytical expression (28) qualita-
tively explains the observed dissipation peak itself, it is not
sufficient for its quantitative description. A more accurate
quantitative analysis required numerical calculations.

Let us now gather from Refs. 9 and 10 all quantitative
data needed for comparison with the theory. The porous-
glass substrate can be modeled with the jungle-gym structure
with the diameter of rods a=1 um and the structure period
[=2.5 pm. Then the circulation velocity around the pore is
estimated as v,=k/4/=~1 cm/s. According to Ref. 10, the
transition temperature is 7,.~0.628 K. The areal density of
superfluid component at the critical temperature (jump of
density) can be evaluated from the Kosterlitz-Thouless rela-
tion

8wk, T,
py= B 221791 X 107 g/em?.
K

We also need the bare areal superfluid density py,. It can be
calculated from the dependence of the transition temperature
on the thickness: According to Ref. 9, the coverage of the
substrate is about 33X 107'° mol/cm?. Then py,~1.32
%1078 g/cm?, and the bare Kosterlitz -Thouless coupling
constant K(0) is

2
PR 33,

K(0)= 47k T
Quantity b entering relations (13) and (14) can be obtained
from the width ~0.02 K of the experimental curve describ-
ing the static dissipation peak of paper.!® It yields » about
3.6975. Furthermore, the diffusion coefficient is D=2.8
X 1077 cm?/s, and the core radius of vortices on the film can
be estimated as a;~25X 1078 cm.

We can now find the pair size r, at the saddle point from
Eq. (10): r,=~2.98X 107 cm. This corresponds to [
=In(r,/ry)=4.78. On one hand, these values are large enough
in order to justify our assumption of large /, compared to x,.
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On the other hand, we see that ry<a, which justifies our
consideration of vortex-antivortex unbinding using the
theory for plane films.

We also need the value of A,,,p,(T)/M in Eq. (26). This is
the ratio of the temperature dependent superfluid mass to the
mass of the empty cell. According to Ref. 9, it is approxi-
mately equal to 107. For the determination of the tempera-
ture dependent superfluid mass py(7T), we have built the ex-
trapolating function using the experimental results obtained
from measuring the shift of the oscillation period (see Fig. 2
from Ref. 10).

In order to calculate K(/,T) and y(I,T) numerically, we
use procedure proposed in Ref. 12 (see Appendix A there). In
the temperature interval from 7. to the temperature T
=~().6234 K corresponding to the dissipation maximum, the
analytical expressions based on the linear approximation are
more or less truthful. However, in the low temperature re-
gion, 7<<0.6234 K, we performed the numerical calculation
using the MATHEMATICA program. Following Ref. 12, for any
temperature |T—T,| and corresponding x,, we choose a value
Iy so that x,ly=/2. Under this choice, both y(/,,T) and
deviation of K(l,,T) from 2/ are rather small and the ana-
lytical expressions (13) and (14) are still good enough for the
evaluation of K(I,T) and y(l,T). Further, we take K(l,,T)
and y(ly,T) as initial conditions for numerical integration
(with respect to variable /) of the recursive Kosterlitz-
Thouless relations (6). In this way we are able to restore
K(1,,T) and y(I,,T) at saddle point [, and, further, to find
dR/ v and eventually AQ™! in the whole temperature inter-
val T<T..

In Fig. 3, we plot the theoretical AQ~'(7) (dashed line)
together with the experimental data of Fukuda et al.'® The
observed rotation-induced dissipation peak (the left peak)
was scaled by the angular velocity (), reducing it to the value
measured at ()=6.28 rad/s. The plots for different values of
Q collapse on the same curve (see Fig. 2 in Ref. 10), which
proves the linear dependence of rotation-induced dissipation
on (). For a better comparison of the peak shape, we fit the
theoretical height of the peak to the experimental one. How-
ever, in fact, the values of AQ™!(7) at the maxima do not
differ essentially: At the angular velocity 1=6.28 rad/s, they
are 3.54X 1078 in theory and 2.4 X 1078 in experiment (i.e.,
about 70% from the theoretical value). Keeping in mind that
nice agreement in the peak shape and position was achieved
without any additional fitting, the agreement is really satis-
factory.

We conclude the quantitative analysis of the torsional-
oscillation experiment with the estimation of the creep ve-
locity V;, of the pore vortex using Eq. (1). For V =1 cm/s,
which is typical in the torsional-oscillation experiments, we
get V;=0.7 cm/s. For the frequency v=477 Hz in the ex-
periment, this corresponds to vortex displacements about
1.5X 1073 cm, which is about six structure periods. This
looks rather satisfactory for our scenario, reducing sequences
of jumps between neighboring cells to quasicontinuous vor-
tex motion.

VI. CONCLUSION

We suggested the theory of motion of 3D coreless vortices
through a 2D film covering a porous substrate. The dynamics
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AQ'1Q /(A%MAXQy

FIG. 3. Comparison of the experimental and theoretical inverse
quality factors of torsional oscillations. The right peak is the static
peak, which is present without rotation. The group of peaks on the
left is the rotation-induced ones obtained experimentally for various
Q) and scaled (divided) by Q. The fact that all these curves collapse
well on the same curve proves linearity on (). The dashed line
shows the theoretical inverse quality factor. The vertical scale of it
was fitted so that the height of the theoretical peak coincided with
the experimental rotation peak, but the width and the position of the
theoretical peak were calculated without any fitting. The theoretical
curve ends with the critical point. The experimental superfluid den-
sity scaled by its zero temperature value is also displayed (the left
vertical axis).

of 3D vortices is derived from the dynamics of vortex-
antivortex pairs in the 2D film. The 3D vortices move by
jumping from cell to cell of the substrate structure, but it can
be described in terms of the average vortex velocity like
vortex motion in continuous media. Frequency of jumps, and
vortex velocity correspondingly, is determined by the disso-
ciation rate of vortex-antivortex pairs, which is known from
the dynamics of 2D superfluid films based on the Kosterlitz-
Thouless theory. We calculated the dissipation intensity and
its temperature dependence analytically and numerically. The
theory is compared with the experiments on torsional oscil-
lations of “He superfluid film adsorbed on a rotating porous-
glass substrate. We explain the second (rotation-induced) dis-
sipation peak on the temperature dependence, which was
revealed in these experiments. Quantitative comparison be-
tween theory and experiment looks satisfactory, especially
for the shape and the position of the peak.

Though we focused on the application of our theory to
torsional-oscillation experiments in “He films on porous-
glass substrates, we believe that the theory has a much wider
area of possible applications. The concept of quasicontinuous
vortex motion in porous media with parameters determined
from the dynamics of 2D superfluid films should be appli-
cable not only to straight vortices induced by steady rotation.
For example, one may apply the theory also to vortex rings
and to the vortex tangle if they can be created in porous
media. The theory can also be used for the analysis of steady
vortex motion in various situations, e.g., in the process of
heat transfer.
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