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We describe spin transfer in a ferromagnet/normal metal/ferromagnet spin-valve point contact. Spin is
transferred from the spin-polarized current to the magnetization of the free layer by the mechanism of inco-
herent magnon emission. Our approach is based on the rate equation for the magnon occupation, using Fermi’s
golden rule for magnon emission and absorption and the nonequilibrium electron distribution for a voltage-
biased spin valve. The magnon emission reduces the magnetization of the free layer. Depending on the sign of
the applied voltage for parallel or antiparallel magnetizations, a magnon avalanche, characterized by a diverg-
ing effective magnon temperature, sets in at a critical voltage. This critical behavior can result in magnetization
reversal and consequently to suppression of magnon emission. However, magnon-magnon scattering can lead
to saturation of the magnon concentration at a high but finite value. The further behavior depends on the
parameters of the system. In particular, gradual evolution of the magnon concentration followed by magneti-
zation reversal is possible. Another scenario is the steplike increase of the magnon concentration followed by
a slow decrease. In this scenario a spike in the differential resistance is expected due electron-magnon scat-
tering. Then, a random telegraph noise in the magnetoresistance can exist, even at zero temperature. A com-
parison of the obtained results to existing theoretical approaches and experimental data is given. We demon-
strate that our approach for magnetization configurations close to collinear corresponds to the voltage-
controlled regime. Namely, the magnetization evolution is related to nonequilibrium spin-dependent electron
distribution controlled by the total voltage applied to the device. In this regime the evolution has an exponential
character. In contrast, the existing spin-torque approach corresponds to a current-controlled regime, and the
evolution rate is restricted by value of the total spin current through the “analyzing” ferromagnetic layer. It is
shown that our scenario dominates at mutual magnetization orientation close to the parallel or antiparallel.
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I. INTRODUCTION

Presently, there is a strong interest in the magnetization
dynamics of small spin-valve devices induced by a spin-
polarized current traversing the magnetic layers. This dy-
namics has important application potential. For example, it
may be used for current-controlled switching of magnetic
random access memory elements and for microwave oscilla-
tors, the latter devices being based on steady-state magneti-
zation precession.

In this field the key topics are the mechanism by which
spin is transferred from the polarized current to the magne-
tization of the relevant layer and the description of the re-
sulting magnetization dynamics in dependence of bias cur-
rent, bias voltage, and magnetic field. The initial predictions
for these phenomena were made by Slonczewski1 and
Berger.2 The theory of the former, also termed spin-torque
theory, attracts more interest. According to Ref. 1 spin trans-
fer should lead to steady, coherent precession of the magne-
tization of the layers and, in the presence of a uniaxial an-
isotropy, to switching of the magnetization and thus to an
abrupt change of the resistance of the structure. These effects
should occur for high current densities �106–107 A /cm2�
and small lateral dimensions ��100–1000 nm�.

The initial experiments on this magnetization switching
are reported in Refs. 3–5. The results in Refs. 3 and 5 are

interpreted in the framework of Slonczewski’s theory. In ad-
dition to switching, these studies also show gradual behavior
in the traces of the �differential� resistance versus current,
which cannot be explained by theory.1 The traces in Ref. 5
are hysteretic at low applied magnetic field �in accordance to
theory1�, but at higher field they show nonhysteretic spikes,
which are attributed to precession states. Such states can also
manifest themselves by the emission of microwave radiation,
as demonstrated in Refs. 6–8. Similar experimental results
on switching and spikes are described in Ref. 9, which in
addition reports random telegraph noise in time traces of the
resistance. The latter is interpreted as resulting from transi-
tions between two metastable magnetic states separated by a
barrier. It is suggested that the transition kinetics is deter-
mined by the temperature defined by magnetic excitations
�magnons� induced by the spin current. Considerations sup-
porting this idea were given in Refs. 10 and 11. Random
telegraph noise is also reported in Refs. 12 and 13, where it
is ascribed to regular thermal activation �i.e., involving the
equilibrium temperature of the system� over the barrier. Cor-
responding theoretical models are presented in Refs. 14 and
15. Note that thermal activation involving the equilibrium
temperature cannot apply to the noise in Ref. 9, since this
was also observed at 4.2 K �Refs. 12 and 13 apply to room
temperature�, where thermal activation is virtually absent. In
connection to this short history of the field, it is noted that
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the very idea that the evolution of the magnetic state of a
spin valve or multilayer system of nanoscale lateral dimen-
sion may arise from generation of nonequilibrium magnons
was first formulated in Ref. 4, mostly in a qualitative picture.

So far, analysis of magnetic switching in small spin valves
is almost exclusively based on the spin-torque theory.1 Al-
though the description of spin transfer from the electrons to
the magnetization was subsequently refined in Refs. 17–24,
the principal concepts describing the evolution of the mag-
netic state of the layer are still those of Ref. 1. In Refs. 22–24
the idea that damping of magnetization precession should be
of electronic nature is an important ingredient. In Ref. 22 an
expression for the Gilbert damping parameter is calculated.
The mechanism relies on transfer of spin from the precessing
magnetization of the magnetic layer to the electrons incident
on the normal metal layer and subsequent diffusion of this
spin into the normal layer. Actually, the process of spin decay
is considered as related to interface effects, implying that the
damping parameter decreases as the layer thickness in-
creases.

Although it accounts for many important experimental
features, approach1 fails to explain the aforementioned
gradual evolution of the magnetization, activated behavior at
low temperatures, and precession states with small preces-
sion angles.7 Such precession states present a problem for
theory,1 since the Landau-Lifshitz equation, which is at the
basis of Ref. 1 implies large precession angles.5,25,26

The approach in Ref. 1 is semiclassical: The electron spin
is treated quantum mechanically, but spin transfer is derived
from the classical law of angular momentum conservation.
This approach is inapplicable if initially the system is in a
pure parallel or pure antiparallel configuration, since then the
spin-torque vanishes. In these cases the initial stage of evo-
lution is naturally controlled by quantum fluctuations, i.e., by
magnons. Further, in Ref. 1 it is ignored that in the spin-
transfer regime the electron system is strongly out of equi-
librium. Actually, the spin-transfer regime is reminiscent of
point-contact spectroscopy �PCS� of the electron-magnon in-
teraction in ferromagnetic metals, which was theoretically
developed by Kulik and Shekhter27 for homogeneous ferro-
magnetic point contacts. The idea is that in a biased point
contact a nonequilibrium electron distribution is created.
This distribution enables energy relaxation of the electrons
by incoherent emission of magnons, the elementary excita-
tions of magnetization. Magnon emission can be probed28 in
the electrical characteristic of the contact. In the same spirit,
a nonequilibrium electron distribution created in a biased
spin valve should lead to incoherent emission of magnons in
the magnetic layer�s�. This results in a change of the magne-
tization, which can be detected in the giant magnetoresis-
tance. To some extent Berger2 discusses a nonequilibrium
distribution, but his intuitive approach lacks a solid quantum
mechanical basis.

In this article we present a consistent quantum mechanical
description of spin transfer in a spin-valve point contact,
based on Fermi’s golden rule and taking into account the
nonequilibrium electron distribution. Similar to PCS of the
electron-magnon interaction,27,28 we consider emission and
absorption of magnons. However, contrary to PCS, which is
concerned with the effect of electron-magnon processes on

electrical transport, we here focus on the effect of these pro-
cesses on the magnetization, which can be strongly reduced
by a nonequilibrium population of emitted magnons. We
show that different scenarios of the magnetization evolution
are possible, including switching, gradual evolution of the
magnetization, hysteretic and reversible behavior, precession
states with small precession angles, as well as two-level fluc-
tuations at zero temperature. Further, electronic Gilbert
damping, derived in Ref. 22 in a cumbersome way, in our
model appears straightforwardly. Moreover, we show that in
crystalline ferromagnetic layers with elastic scattering the
damping is of bulk rather than surface nature. The scenario
of magnon emission and absorption presented below does
not contradict the recent observation of nanomagnet dynam-
ics in the time domain,16 which shows nearly coherent mag-
netization precession.

Comparing our approach to the spin-torque approach, we
will demonstrate an important difference between them.
Namely, in our approach the electron distribution is strongly
out of equilibrium and is completely controlled by the ap-
plied voltage, irrespective of the current through the struc-
ture. We call the corresponding regime the voltage-controlled
regime. We show that it holds for small precession angles,
i.e., close to antiparallel or parallel mutual orientation of the
magnetization of the layers. In contrast, the spin-torque
model ignores the nonequilibrium distribution, while the
magnetization evolution is ascribed to spin pumping by the
incident spin current. It turns out that the corresponding re-
gime is a current-controlled regime. We discuss in detail the
relation between the two regimes and the possible crossover
between them in the course of the magnetization evolution.
In particular, our scenario �definitely describing small pre-
cession angles� can cross over to the semiclassical evolution
according to theory,1 which can only describe large preces-
sion angles.

II. EMISSION OF MAGNONS

A. Device geometry and electron-distribution function

The point contact we consider has two planar electrodes
making electrical contact via a nanohole of diameter d in a
thin insulator �see Fig. 1�. In the left electrode there is a spin
valve of structure F�tp� N�tsp� /F�ta�, the layers acting as
spin-polarizer �p�, spacer �sp� and spin-analyzer �a�, respec-
tively �F=ferromagnet; N=normal metal�. Typically, the
thicknesses are such that tp� ta� tsp, while tp is smaller than
the inelastic diffusion length and spin diffusion length. The
polarizer’s magnetization Mp points in the positive z direc-
tion, while the analyzer’s magnetization Ma is antiparallel or
parallel to Mp. Both polarizer and analyzer are single domain
layers. The N spacer is much thinner than the spin-flip dif-
fusion length �and any other scatter length� in the N spacer,
so that spin is preserved between polarizer and analyzer. The
N layer between analyzer and insulator is thin �thickness
�tsp�. Apart from the insulator all further material is N as
well. The different scattering of the minority- and majority-
spin channels in the F layers is reflected in the resistivities
�F

min and �F
maj, which obey �N��F

maj��F
min ��N is the N resis-

tivity�. The elastic mean free path of the electrons, both in N
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and F, is smaller than the size of the nanohole, so that trans-
port is diffusive.

The device is positively biased at voltage V �V�0�, ap-
plying −V /2 to the left electrode and +V /2 to the right elec-
trode. This gives a spin-polarized electron current from po-
larizer to analyzer. In zeroth order, i.e., without inelastic
processes, the resulting spin-dependent electron-distribution
function in the plane of the orifice �and to a good approxi-
mation in the analyzer, since it is so close to the orifice� is

fk,� =
1

2
��1 − ��1

2
+ ��� f0��k,� +

eV

2
�

+ �1 + ��1

2
+ ��� f0��k,� −

eV

2
�	 . �1�

Here �=�Rp /RM =4��FM
min−�FM

maj�tp / ��d2RM� is the spin-
polarization induced by the polarizer. This estimate is based
on the assumption that the total device resistance is domi-
nated by RM, while the polarizer resistance is relatively
small. It is written in terms of polarizer resistances seen by
minority-spin and majority-spin electrons, normalized to
RM =�N /d, which is the Maxwell resistance of the corre-
sponding diffusive, homogeneous N point contact. The pa-
rameter � denotes the electron spin in the polarizer, where
majority spins have �= +1 /2 and minority spins have �=
−1 /2. When Mp and Ma are antiparallel, �= +1 /2 in Eq. �1�
gives the minority distribution in the analyzer, while �=
−1 /2 gives the majority distribution in that layer. For the
parallel configuration, minorities and majorities conserve
their character when travelling from the polarizer into the
analyzer, so that for this configuration � does not change
sign when a spin moves from one layer to the other. Further,

f0 is the Fermi-Dirac distribution, �k,� is the total energy of
an electron in state k and with spin �, i.e., inclusive the
electrostatic energy, and e is the elementary charge �e�0�.

The distribution fk,� is similar to that of a homogeneous
diffusive N point contact.29 It is the average of two Fermi
step functions displaced with respect to each other by energy
eV, the difference of the chemical potentials of the elec-
trodes. In this case, however, the weight of the functions is
spin-dependent, so that two values of fk,� exist for energies
where 0� fk,��1: fk,+1/2= �1+�� /2 and fk,−1/2=1 /2. See
Fig. 2. Note that in deriving Eq. �1�, the effect of the analyzer
on the distribution is assumed negligible. Further, we con-
centrate on the spin-dependent contribution of the polarizer
to the electron distribution of Eq. �1�, neglecting the average
over the electron spins.

B. Consistent quantum-mechanical approach to incoherent
emission of nonequilibrium magnons

In the spirit of PCS of the electron-magnon interaction,
the electron distribution prepared in a spin-valve point con-
tact enables magnon emission by electrons in the analyzer,
up to a maximum magnon energy eV. In first order, relax-
ation of created magnons is dominated by absorption by
electrons. As usual for ferromagnets, we assume that trans-
port is primarily due to sp electrons, so that these electrons
control the magnon distribution, irrespective the strength of
electron-magnon coupling. In this stage, we neglect escape
of created magnons from the region exposed to the current
and corrections to the distribution given by Eq. �1� due to
magnon absorption by electrons. Thus, applying Fermi’s
golden rule to magnon emission and absorption, and integrat-
ing out the dependence of fk,� on the directions of initial and
final states �leaving only the energy and spin dependence of
f�, we find the rate equation for the occupation number of
magnons N	 with energy 
	q in the analyzer:

+V/2-V/2

d

Ma

polarizer analyser membrane

F(t )p aF(t )spN(t )

Mp// ẑ
x
^

FIG. 1. Point contact with a spin valve located in the left elec-
trode, adjacent to the insulator with a nanohole. The magnetization
Mp of the polarizer is fixed and points in the positive z direction,
while the magnetization Ma of the analyzer points either in the
positive or the negative z direction. From the polarizer a spin-
polarized current is incident on the analyzer. The axis of the point
contact is the x axis. Further details are discussed in the text.

ε

1.0

0.5

0.00 µ-eV/2 µ+eV/2

(1) (2)

(4)

(3)

f ε
,σ

=(1+α)/2fε, σ

FIG. 2. Spin-dependent electron distribution f�,� in the analyzer.
Between �−eV /2 and �+eV /2 the two levels express the spin
dependence, which is absent below �−eV /2 �solid and dashed
functions in that range take the value unity�. For parallel �antipar-
allel� alignment of Mp and Ma the solid and dashed distributions
correspond to majority and minority spins �minority and majority
spins� in the analyzer, respectively. Arrows indicate magnon emis-
sion �process 1� and magnon absorption �processes 2, 3, 4� for
antiparallel alignment. Similar processes, mutatis mutandis, occur
for the parallel alignment.
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dN	

dt
=

1

2�



�
� d� D��� � d��D�����g̃�2

f�,��1 − f��,−���1 + N	���� − �� − 
	q�

− �1 − f�,��f��,−�N	��� − �� + 
	q�� . �2�

Here D��� is the electron density of states normalized with
respect to the unit cell and g̃ is an effective matrix element
for electron-magnon coupling, i.e., renormalized with respect
to wave-vector nonconserving scattering. Details of this
renormalization can be found in Appendix A. The sign con-
vention of � in Eq. �2� is the same as in Eq. �1�. The first
term of the integrand applies to emission, the factor �1
+N	� denoting the sum of spontaneous and stimulated pro-
cesses. Since magnons are spin unity quanta and electron
spin is conserved in magnon emission, we deal with a spin-
flip process. Therefore, for antiparallel alignment of Mp and
Ma, the net spin of the analyzer electrons increases by unity
for each magnon emitted by converting an analyzer minority
spin into an analyzer majority spin. Accordingly, the first
energy integration in Eq. �2� involves minority-spin elec-
trons, while the second integration involves majority-spin
electrons. For parallel alignment of the magnetizations simi-
lar reasoning applies to identify how each spin type takes
part in the transitions. By nature, this magnon emission is
incoherent, so that incoherent magnetization precessions re-
sult. This is in contrast to the current-induced coherent mag-
netization precession predicted by the spin-torque model.1

The second term of the integrand applies to magnon absorp-
tion, in which a majority-spin electron is converted to a
minority-spin electron.

For evaluation of Eq. �2� for T=0, where magnon creation
is limited to the energy range 
	q�eV, it is helpful to rec-
ognize the possible emission and absorption processes in the
analyzer. For the antiparallel alignment these are indicated in
Fig. 2. Taking into account the energy range and the distri-
bution function of the electron states involved in these pro-
cesses, both for Mp and Ma parallel and antiparallel, Eq. �2�
goes over into

dN	

dt
= −

1

�m−e
�N	�1 +

eV


	q
Sz� −

eV − 
	q

4
	q
�1 − 2Sz�� .

�3�

Here Sz=��Ma ·Mp /2MaMp� is a projection of Ma on Mp,
weighed by the current polarization. Whereas the spin polar-
ization is defined with respect to Mp, Sz takes into account
the sensitivity of magnon-electron processes to the polariza-
tion with respect to the direction of Ma. In Eq. �3� �m−e

−1

�
−1 � g̃�2D��F��2
	q is the inverse of the characteristic
time for magnon-electron processes.

Equations �2� and �3� describe transfer of spin from the
spin-polarized current to the magnon system. Due to this
transfer the population of nonequilibrium magnons increases
until a steady state is reached where magnon emission and
absorption balance each other, i.e., where dN	 /dt=0. For
magnons of energy 
	q the steady state is characterized by
an effective magnon temperature Tm,	

eff , obtained by equating

the number of such magnons to the average population as
given by the Planck distribution �kB is Boltzmann’s con-
stant�:

Tm,	
eff =

1

kB

eV − 
	q

4

1 − 2Sz

1 + �eV/
	q�Sz
. �4�

In the limit of weak polarization and for magnon energies

	q�eV one obtains Tm,	

eff �eV /4kB. The effective tempera-
ture is larger for Sz�0 �antiparallel configuration� than for
Sz�0 �parallel configuration�. This is natural, because the
phase volume for magnon creation processes is larger when
Sz�0. Moreover, in the antiparallel configuration �Sz�0�,
Tm,	

eff diverges at a critical voltage given by

Vc = −

	q

eSz
. �5�

This is interpreted as an unlimited increase of the magnon
population, resembling a magnon avalanche. This highly ex-
cited state of the analyzer goes along with a strongly sup-
pressed magnetization and may lead to critical behavior
similar to the phase transition to the normal state at the Curie
temperature, which results from strong thermal excitation of
magnons. As seen in Eq. �3�, dN	 /dt is positive at voltages
exceeding Vc, so that N	 has a positive increment in this
range. Note that in the discussion given above the positive
sign of V corresponds to the polarity of the bias voltage as in
Fig. 1. For the opposite sign of V the antiparallel configura-
tion is stable, while the instability takes place for the parallel
configuration.

To further discuss this critical behavior, we introduce the
magnon concentration nm �nm�1� normalized with respect
to the volume a3 of the elementary cell:

nm =
a3

�
� N	�m�	�d	 .

Here �m�	� is the magnon density of states and � is the
normalizing volume. The maximum nm=1 corresponds to
complete suppression of magnetization. Note that a decrease
of the magnetization �M� of a ferromagnet with an increase
of nm for small nm is a well-established behavior, which in
particular applies to the decrease of �M� with increasing tem-
perature. This behavior is interpreted as an uncertainty in the
orientation of M by an angle � ��2 /2�nm� with respect to its
orientation in saturation �where nm=0�. To our knowledge
the situation of very high magnon occupation numbers �nm

�1� so far did not receive proper theoretical treatment. We
may only speculate that the above-mentioned magnon ava-
lanche, tending to suppress the average magnetization when
nm�1, finally leads to a “switching,” that is to formation of
a stable magnetic state of the analyzer with a direction of Ma
opposite to its initial direction. Indeed, the sign of Sz reverses
from negative to positive as a result of this switching, lead-
ing to stabilization. However, before the system comes to
switching, one expects that nm can stabilize at some nm�1
due to mechanisms not included in Eq. �2�. Candidate
mechanisms are the electron-magnon and the magnon-
magnon interaction, ingredients of magnon kinetics at large
magnon occupation numbers �but still in the regime of con-

V. I. KOZUB AND J. CARO PHYSICAL REVIEW B 76, 224425 �2007�

224425-4



ventional magnon theory, where nm�1�. The role of
electron-magnon processes is discussed below, while the
magnon-magnon interaction is the subject of Sec. III.

In case of high enough magnon occupation numbers,
electron-magnon processes can modify the electron distribu-
tion function with respect to Eq. �1�. Then, the stimulated
magnon-emission rate becomes so high that it may lead to
decay of the spin-dependent electron distribution in the ana-
lyzer. Magnon emission related to the nonequilibrium spin
distribution is principally restricted by the magnitude of the
spin-current density js,inj injected into the analyzer. Thus,
with increasing js,inj a crossover can be effected from the
voltage-controlled regime, where Eq. �1� holds, to a current-
controlled regime, where the approximation leading to Eq.
�1� breaks down due to strong magnon emission. To estimate
the critical concentration nm,c at the crossover we use the rate
equation

�dnm

dt
� = �dnm

dt
�

emission
+ �dnm

dt
�

decay
, �6�

which is obtained by integrating Eq. �3� over the magnon
phase volume. The emission term, which results from the
terms � eV in Eq. �3�, describes magnon emission by non-
equilibrium electrons. The decay term, which even in equi-
librium is nonzero, describes magnon absorption by elec-
trons. When Eq. �1� holds, the decay term is given by

�dnm

dt
�

decay
= −

1

�m−e
nm, �7�

while the emission term is equal to

�dnm

dt
�

emission
=

eV�Sz�

	�m−e

nm. �8�

According to the considerations given above the emission
term is restricted at the level

js,inj
a3

ta
. �9�

Thus one concludes that for V only slightly above the thresh-
old value Vc �where the critical value of the js,inj is written as
js,inj
c � the crossover from the bias-controlled regime to the

current-controlled regime takes place at

nm,c = �m−ejs,inj
c a3

ta
. �10�

In the voltage-controlled regime �m−e=kFta /	 �see Appendix
A�, while js,inj��SzeVvFD��F�, where D��F��a−3�F

−1 and
�= js,inj / js,inj

ball �1. Thus one obtains nm,c��c. Here js,inj
ball is the

injected spin-current density which would exist under the
same bias voltage in a ballistic structure. Note that until now
we have taken into account only electron-magnon processes.

Having in mind Eq. �6� and the restriction of the emission
term, one would expect that the magnon-electron processes
stabilize the magnon occupation for the current-controlled
regime at the level �V�Vc�

nm = nm,c
V

Vc
. �11�

This, however, would imply that magnon decay processes
still follow the estimates of Eq. �7� relevant for the voltage-
controlled regime, implying that Eq. �1� holds. At the same
time, as shown in Appendix B, large magnon occupation
numbers also lead to saturation of the magnon decay effi-
ciency. This saturation arises from the bottleneck represented
by the finite electron diffusion current from the analyzer.
Further, the estimates given in Appendix B imply that

�dnm

dt
�

decay
�

1

�m−e
nm,c =

1

�m−e
�c. �12�

Thus it appears that in the current-controlled regime both
spin pumping and spin decay in the analyzer are restricted by
the electron diffusivity and that the magnetization evolution
cannot be stabilized unless the threshold value of the bias
voltage is reached.

Now let us discuss the spectrum of the excited magnons.
In principle, the only limitation is given by the condition

	� �eVSz�. Having in mind that for the point-contact geom-
etry voltages as high as at least several tens of mV are ac-
cessible, one concludes that magnon energies of at least
10 mV are possible. From the quadratic spectrum of the
magnons one concludes that the corresponding magnon
wavelength is of the order of 1 nm. Although magnons with
smaller frequencies have faster exponential evolution see
Eq. �8��, the magnon-magnon processes considered in the
following section can shift the distribution to higher frequen-
cies.

To conclude this section, in the voltage-controlled regime
the magnetization evolution of the analyzer does not affect
the local nonequilibrium spin accumulation and it is this
voltage-dependent spin accumulation which controls the
evolution. For ballistic structures this holds up to nm�1 or to
precession angles � close to unity. In the current-controlled
regime the accumulation depends on the magnetic evolution
in the analyzer and it is the spin current which supports the
evolution.

III. STABILIZATION BY MAGNON-MAGNON
PROCESSES

A. Introduction to three- and four-magnon processes

Magnon-magnon processes are a precursor of the general
nonlinearity of magnon physics at high magnon occupation
levels. One distinguishes between three-magnon processes,
which originate from the dipole-dipole interaction and are
spin nonconserving, and four-magnon processes, which arise
from the exchange interaction and conserve both total spin
and the number of magnons.30

In a four-magnon process �1,2→3,4� two incoming
magnons are annihilated while scattering at each other, to
form two new, outgoing magnons. The occurrence rate of
this process for a given incoming mode 1 is30
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1

�4
� �4N	2

�1 + N	3
��1 + N	4

� , �13�

where �4 is a dimensionless parameter, which for a 3D spec-
trum and for participating wave vectors of similar magnitude
q equals �qa�8. Since four-magnon processes conserve both
the number of magnons and the energy, they cannot effi-
ciently modify the magnon distribution if it is initially con-
centrated at the lowest possible energies. Thus four-magnon
processes cannot stabilize nm and therefore are ineffective in
preventing the magnon avalanche in the analyzer.

A three-magnon process �1,2→3� is the coalescence of
magnon modes 1 and 2 into a magnon mode 3. This process
can redistribute the magnon occupation to higher energies.
The occurrence rate of this process for a given incoming
mode 1 is30

1

�3
�

2�




��BM�2

kB�C
�3N	2

�N	3
+ 1� . �14�

Here �C is the Curie temperature, M is the magnetization,
while �3�1,2� is a dimensionless parameter resulting from
the summation over available modes �2, 3� and depending on
the magnon spectrum and on momentum conservation. For a
3D magnon spectrum and large magnon wave vectors one
has �3�q2a, where q2 is the wave vector of mode 2. For
small q, if 	�q→0� is isotropic in q space, momentum con-
servation restricts coalescence processes to 	3 values with
	3�3	�q→0�.

In the thin analyzer, however, momentum conservation in
a three-magnon process does not necessarily hold, due to
arguments similar to those presented in Appendix A. Apply-
ing the approach of Appendix A to three-magnon processes
in the limit of weak magnon-magnon scattering, one obtains
the estimate

�3 � �q3lm,3�−1�m�	3� , �15�

where lm,3 is the magnon mean free path for the mode 3.
Thus momentum nonconserving three-magnon processes can
be effective in modifying the critical behavior if the spatial
scale of the scatterer distribution is comparable with the
magnon wavelength. Consequently, for this situation a
relaxation-time term based on �3 should be added to Eq. �2�,
to describe either a decrease or increase of N	. To do so, it is
helpful to write the occupation number N	 in terms of the
normalized parameter nm,	 as

N	 � nm,	V	
−1, �16�

where V	 is the relative phase volume for the corresponding
modes for a 3D magnon spectrum V	��qa�3�. So, in spite
of the weakness of the dipole-dipole interaction, three-
magnon processes can be relevant at small wave vectors,
since the smallness can be compensated by a large factor
V	

−1, even at nm,	�1.

B. Three-magnon processes at low rate: N3�1

We first suppose that the number of emitted magnons N3
is small, so that stimulated coalescence can be neglected.

Equation �3� is then rewritten as �	1=	2=	; for simplicity
dropping the index q of 	 and the index 	 of nm,	�

dN	

dt
= −

1


	�m−e
�SzeV + 
	�N	 −

2�




��BM�2

kB�C
nm

�3

V	

N	.

�17�

As a result magnon emission is stabilized at magnon concen-
tration

ñm =
kB�C

2���BM�2	�m−e

V	

�3
��Sz�eV − 
	� . �18�

Clearly, three-magnon processes provide for a gradual evo-
lution of ñm with increasing V above Vc=
	 / �Sz �e, followed
by reversal of the magnetization at some V=Vc1 correspond-
ing to ñm�V��1. To estimate the range for this behavior, one
notes that for typical ferromagnets kB�C /2��BM �103. Fur-
ther, from the estimate in Appendix A it follows that 	�m−e
�10–100. Thus, also assuming V	 /�3�10−2, one obtains

ñm � �10−3 − 10−2�
��Sz�eV − 
	�

�BM
,

where �BM �0.01 meV. Thus the values nm�1 are still ex-
pected even for �V−Vc � �1 mV. However, for small values
of �3 it may occur that Vc1 is very close to Vc, so that an
appreciable region of gradual evolution does not exist. �See
discussion below.�

C. Three-magnon processes at high rate: confluence to mode
�3, leading to stimulated emission of this mode

Now we consider large occupation numbers N3, which
leads to stimulated emission of the corresponding magnons.
For the mode 	3 one has �	1=	2=	�

dN	3

dt
= −

1


	3�m−e
��SzeV + 
	3�N	3

−
eV − 
	3

4
	3
�1 − 2Sz��

+
2�




��BM�2

kB�C


�3

V	
2 nm

2 �N	3
+ 1� . �19�

We assume that, since 	3 is at least twice as large as 	1,
SzeV+
	3�0. So, in a stationary situation one has

N	3
�

nm
2 + �

nc
2 − nm

2 , �20�

where

nc
2 =

kB�C

2���BM�2	3�m−e

V	
2

�3
�SzeV + 
	3� , �21�

while

� =
kB�C

2���BM�2	3�m−e

V	
2

�3

�eV − 
	3��1 − 2Sz�
4

. �22�

In this limit of large N3 the stationary solution for N	 �de-
noted by the normalized concentration n5m� then follows from
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ñm = n5m +
n5m

3 + �n5m

nc
2 − n5m

2 , �23�

where ñm is given by Eq. �18�. As seen, the solution of this
equation depends on the ratio

nc

ñm

� N	3

−1 � �2���BM�2	�m−e�3

kB�C
�1/2 �SzeV + 
	3�1/2

�Sz�eV − 
	
,

�24�

which defines two limiting scenarios. In the first scenario,
determined by ñm�nc, the stationary solution is

n5m � ñm, �25�

so that the condition for gradual evolution is the same as for
ñm. In the second scenario ñm�nc one has

n5m � nc. �26�

So, three critical voltages Vc, Vc1 and Vc2 can be distin-
guished. With V increasing above Vc �but ñm�nc� one first
has n5m� ñm, while above some Vc2 the condition ñm�nc can
be reached �provided Vc2�Vc1�, so that n5m�nc. It should be
noted that for n5m�nc the value of n5m decreases with increas-
ing of V, since the magnon emission corresponds to SzeV
�0.

Thus a nonmonotonous evolution of the magnetization is
expected: At critical bias SzeVc=−
	 the value of nm
=nc�V=Vc� is reached, while a further increase of V leads to
a decrease of the magnons concentration. In this regime one
has

N	3
�

ñm

nc
,

so that N	3
increases with increasing V.

According to the considerations given above, this ap-
proximation holds only up to the biases V=2Vc, where the
mode 	3 starts to be critical. A further increase of the mag-
non concentration is expected to support multimagnon pro-
cesses of both spin-conserving �exchange� and spin non-
conserving �dipole-dipole� types involving more than three
and four magnons, respectively. These processes put to the
stage other modes with frequencies higher than 	3 which at
biases V=2Vc are still not critical and which support spin
decay due to magnon-electron processes. The quantitative
analysis of the corresponding energy diffusion, which should
be made carefully and with an account of the dynamics of all
modes involved, will not be discussed here further.

It is instructive to estimate the critical bias Vc2. Using
�Sz � �1, eVc�
	 and SzeVc2+
	3�
	 one obtains

Vc2 − Vc

Vc
� ��BM

kB�C
�1/2��BM


	
�1/2

�	�m−e�3�1/2. �27�

The magnon frequency 	 increases with increasing mag-
netic field, which is due to the field dependence of the mag-
non dispersion: 	=	0�H�+Cq2. As a result, the wave vector
of mode 3 also increases with increasing 	0 since 	1�	0,
	3=	0+Cq3

2�2	0. According to Eq. �15� �3�q3
−1�m�	3�

provided lm is controlled by the lattice disorder of the crys-

talline layer and does not depend on q3. For a bulk 3D spec-
trum one has ��	3��	3

1/2, while for a 2D spectrum �m

=const. As a result Eq. �27� implies that the bias region of
gradual evolution according to the second scenario strongly
decreases with increasing field. For 3D magnons �generated
at large enough biases� the width of this region decreases as
�H−1. This leads to a steplike increase of nm just above the
critical bias Vc. This step can be seen as a spike in the dif-
ferential magnetoresistance. The behavior of the system ac-
cording to these considerations is schematically depicted in
the phase diagram of in Fig. 3.

We note that a more detailed picture including magnon-
magnon processes is rather complex and sensitive to all
kinds of details such as the magnon spectrum. Our minimal
model only aims to qualitatively reveal the main features. In
spite of this restriction, it is concluded that magnon-magnon
processes lead to saturation of magnon emission at nm�1,
the region where no switching occurs. As a result, gradual
evolution of the magnetization with increasing bias is pos-
sible. The scenario depends on the relation between nc and
ñm as well as on the value nc. A more quantitative analysis
should be based on estimates of parameters such as �3 and
V	, which is beyond the present scope.

FIG. 3. �a� Dependence of nm�V� for a given magnetic field H in
the situation Vc2�Vc1. �b� Phase diagram of the magnetization evo-
lution given by curves Vc�H�, Vc1�H�, and Vc2�H� under the as-
sumption Vc1�0��Vc2�0�. According to the considerations given in
the text, Vc1�H, Vc�H while �Vc2−Vc��H−1. Region I is the phase
of antiparallel magnetizations of the layers. Region II is the phase
of parallel magnetizations. Region III corresponds to a crossover
from the quantum �magnon� scenario to the torque scenario. Shaded
region corresponds to the spikelike regime. Doubly shaded region
corresponds to the hysteretic regime.
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IV. COMPARISON TO PREVIOUS
THEORETICAL APPROACHES

Here, the present theory is compared with the approaches
of Slonczewski,1 Berger,2 and Tserkovnyak et al.,22–24 re-
stricting ourselves to the most salient points. In Ref. 1 spin
transfer from the incident electrons to the layer is propor-
tional to the amplitude of magnetization precession. Spin
transfer is zero for Mp parallel or antiparallel to Ma, while in
our approach spontaneous magnon emission also exists in
these special cases, allowing spin relaxation. In Ref. 1 the
spin transfer from the incident electrons is equal to js,inj sin �,
provided ta� lp��1 /kF��F /Eex. Here Eex is the exchange en-
ergy, lp is the spin precession length, and js,inj is the spin-
current density injected into the analyzer. Since Eex is not too
small with respect to the Fermi energy, this condition holds
for practical values of ta. Thus the mechanism of Ref. 1 is
restricted to the near-surface layer of thickness lp.

The evolution of the precession angle is described by Eq.
�17� of Ref. 1, the key equation of this paper, which in our
notation reads

d�

dt
= − ��0	 −

js,inja
3

ta
�sin � . �28�

Here �0 is the Gilbert damping parameter. To compare with
our results, we first take into account that for small � the
number nm of coherently excited magnons is related to � as
nm��2 /2. Then, we identify the product �0	 with the mag-
non relaxation rate 1 /�m. Thus, Eq. �28� is rewritten as

dnm

dt
= � js,inja

3

ta
−

1

�m
�nm. �29�

Note that for magnetization configurations close to collinear
this equation is also similar to the ones considered in paper,24

aimed to generalize the ideas of Slonczewski and Berger
with an account of an electronic mechanism of Gilbert
damping.23 A comparison of Eq. �29� to our results leads to
the following considerations and conclusions.

�1� Equation �29� indicates that the spin-torque approach
deals with a spin-current controlled situation. Thus this ap-
proach is incapable to handle relative magnetization orienta-
tions of polarizer and analyzer close to collinear, for which
the voltage-controlled regime developed in this article does
predict a proper magnetization evolution. Further, it should
be noted that in contrast to our picture, where in the current-
controlled regime the rate of magnetization change is
saturated—see Eqs. �8� and �9�—here one still deals with an
exponential behavior.

�2� By relating the magnon relaxation rate 1 /�m to the
finite electron diffusivity discussed at the end of Sec. II and
in Ref. 23, one can make the identification 1 /�m�� /�m−e. It
then follows that the threshold for switching Vc of the spin-
torque approach is identical to the one we have obtained
�provided only electron-magnon processes are taken into ac-
count�. Indeed, if one inserts into Eq. �29� �m

−1

= �js,inj / js,inj
ball �	 / �kFta� �according to our estimate of �m−e� and

js,inj
ball �SzeVD��F�vF, one immediately obtains the critical

voltage Vc=
	 /eSz, in agreement with our Eq. �5�. This
means that the evolution of the analyzer magnetization, if

started according to our scenario from a collinear orientation,
can in principle crossover to the spin-torque scenario at large
nm or, correspondingly, at large precession angles �.

�3� Nevertheless, the rate of magnetization evolution in
our magnon model is faster than predicted by the spin-torque
model until nm�1 compare Eqs. �6�, �7�, �9�, and �29��.
That is, at least in the range ��1 our model holds and
allows faster magnetization evolution than the spin-torque
model. Only at ��1 �when magnons are not well defined�
the classical spin torque model appears to be relevant.

This discrepancy between the physical pictures discussed
above must of course relate to a difference of the two ap-
proaches. Our approach is completely quantum-mechanical
and consistent, while the approach in Ref. 1 combines a
quantum-mechanical treatment of the electron-spin evolution
with a semiclassical transfer of the x component of the spin
to the layer, using the classical Landau-Lifshitz equation. As
a result, in Ref. 1 some problems are not unequivocally
treated, in particular the mechanism leading to a change of
the z component of the spin in units 1

2
. It is this change, as
we demonstrate above, that governs spin evolution in a con-
sistent quantum-mechanical picture and that leads to incoher-
ent behavior. Further, in Ref. 1 it is unclear how the spin of
a single electron is transferred to the layer as a whole, since
in semiclassical spin transfer an electron is only coupled to
its closest surrounding.

These questions were partially noted by Berger,2 who ex-
ploits a mechanism of boundary-induced spin-wave emission
with similarities to that of Ref. 1. Berger treats transfer of the
z component of the electron spin by just postulating a simple
relaxation time approximation to satisfy the required quan-
tized change of the electron spin. Eqs. �9�–�12� in Ref. 2.�
He concludes that the spin-wave system is unstable beyond
some critical current, opposed to our finding that instability
of the magnon system sets in beyond a critical voltage. How-
ever, just like in Ref. 1, Berger neglects the nonequilibrium
electron distribution as well as spin accumulation produced
by the polarizer, which even exist in the absence of the ana-
lyzer. In other words neither Berger nor Slonczewski pro-
duce a voltage-controlled regime. Instead, Berger relates the
chemical potential difference of the majority and minority
subbands to a difference in pumping of electron momenta at
the boundary due to different drift currents Eq. �22� of Ref.
2�. In our opinion this is equivalent to the assumption that
the spin �or energy� diffusion length equals the elastic mean
free path, which strongly underestimates the real potential
difference for diffusive devices where it is controlled by the
applied bias.

In Ref. 24 Tserkovnyak et al. generalize the approaches of
Refs. 1 and 2 on the basis of their earlier estimate23 of the
electronic contribution to Gilbert damping. Note that, in con-
trast to our result that electronic damping occurs in the bulk
of the ferromagnet �analyzer�, the authors of Ref. 23 relate it
to escape of the electrons to the normal region. Again, it
reflects that Refs. 23 and 24 are concerned with the current-
controlled regime, which is the essence of the spin-torque
approach.

As shown in Appendix A, coupling between electrons and
magnons in the ballistic case is controlled by the finite thick-
ness effect, yielding a coupling efficiency �ta

−1. This result
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coincides with the prediction in Ref. 23, although formally
the physics is different. Indeed, in our case the same result
would even be obtained for an isolated ferromagnet with an
equilibrium electron distribution. While this applies to slight
deviations of the magnon distribution from its equilibrium
value, it breaks down for intensive spin pumping from mag-
netic degrees of freedom to the electrons. As shown in Ap-
pendix B, the equilibrium electron distribution can hold only
if polarized electrons escape the ferromagnet or if spin flips
occur in it. This agrees with Ref. 22. However, from Appen-
dix A, we know that the electron-magnon coupling in diffu-
sive ferromagnetic layers acquires a bulk character which
lifts the dependence of the electron-magnon matrix element
on the layer thickness. We believe this can explain the dis-
agreement between different experimental results mentioned
in Ref. 22. It is important to note that electron escape from
the ferromagnet can still maintain the electron distribution in
equilibrium provided the resistance introduced by the ferro-
magnetic layer is less than the resistance of the normal part
at distances of the order of spin diffusion length.

Here we would like to also mention the approach consid-
ered in Ref. 31 �see also Ref. 32�, where the nonequilibrium
spin population in spin valves is analyzed. The analysis is
made for the spin-current controlled regime, while the non-
equilibrium spin distribution is only considered for the nor-
mal layers, aiming for an account of spin-flip processes. The
presence of the ferromagnetic layers is accounted for by us-
ing proper boundary conditions, similar to those in Refs. 23
and 24, while the dynamics of the ferromagnets is described
by the classical Landau-Lifshitz equations. Further, the pa-
pers in Refs. 33 and 34 report theoretical studies of current-
induced excitation of magnetization precession. However,
again, these studies are based on the Landau-Lifshitz equa-
tions and are in the framework of the spin-torque picture.

To conclude this section, we note that for high excitation
levels violating the condition nm�1 there is the crucial
question whether the magnetization evolution follows our
incoherent scenario or the coherent classical scenario consid-
ered in Ref. 1 �with a Gilbert damping parameter corrected
for the nonequilibrium electron distribution�. In any case the
initial evolution will follow our scenario if the system starts
from Mp and Ma being parallel or antiparallel. The reason is
that our scenario is based on magnon excitations, which can
be considered as quantum fluctuations. These even exist for
�=0,�. The further behavior is not completely clear since,
as noted above, the situation of very high magnon occupa-
tion numbers requires further analysis. In particular, one can
expect a kind of production of coherency originating from
effective magnon-magnon processes �presumably four-
magnon processes, which we have not taken into account
within our simplified picture�, thus establishing coherent
evolution. Note that a similar problem was discussed for
acousto-electric generators of sound waves, where a coherent
signal arose from initial electron-drift driven emission of in-
coherent phonons.35

V. COMPARISON TO EXPERIMENTAL SITUATION

Thus a magnon avalanche triggered by incoherent stimu-
lated emission of magnons determines the magnetization

evolution at bias voltages smaller than the critical voltage for
magnetization switching predicted in Ref. 1. Further evolu-
tion at these moderate biases is characterized by a very high
magnon temperature, while nevertheless the initial magneti-
zation direction is maintained. This is unlike the switching
predicted in Ref. 1. In our scenario an initial steplike behav-
ior of the magnetization at Vc= �
	q /eSz� can be followed by
a gradual increase of the magnon population and, corre-
spondingly, by a gradual decrease of the magnetization.

The gradual evolution of the resistance and thus of the
magnetization is regularly observed.3–6,39 In many cases this
behavior has a threshold character and is observed only for
one of the magnetic configurations of the system. In Refs. 3
and 5 the gradual evolution is ascribed to an increase of the
electron scattering at equilibrium phonons and magnons with
increasing current. We agree on the argument of increasing
electron-magnon scattering, but do not believe that the in-
crease results from simple heating, as implied by the cited
authors. Instead, we believe that this behavior arises from
electron scattering at nonequilibrium magnons, which are ex-
cited to high occupation numbers, which are subsequently
stabilized according to the scenarios discussed above.

References 3 and 5 also report on current-induced mag-
netization switching. The switching is hysteretic as a func-
tion of current and external magnetic field and is interpreted
in terms of the spin-torque theory.1 At high magnetic fields
and for one current direction spikes are observed instead of
switching, which is attributed to emission of spin waves.
Since the theory1 exploits a constant Gilbert damping param-
eter and therefore cannot describe a stable spin-precessing
mode, the authors of Ref. 5 need to invoke a precession-
angle dependent damping parameter. This can explain the
spikes but not the gradual evolution clearly present in the
traces. The transition from hysteretic to the spikelike behav-
ior with increasing magnetic field is also reported in Ref. 9
for small permalloy spin valves. In this work qualitative ar-
guments involving magnetic excitations �magnons� and a re-
sulting effective temperature exceeding the bath temperature
are used to explain the observed behavior. In the vicinity of
the spike they also observe random telegraph noise involving
two resistance levels. This noise is pronounced only in a very
narrow bias region and shows no hysteresis. This cannot be
explained by magnetization reversal since the anisotropy
field required for this should give rise to hysteresis.

To understand the mechanism of such spikes and two-
level fluctuations in the framework of our model, let us take
into account that the resistance of the ferromagnetic layer
increases due to a contribution of electron-magnon pro-
cesses. Denoting the zero bias resistance of the device as R0,
we write

R = R0 + Anm, �30�

where for simplicity we assumed that the additional resis-
tance is simply proportional to the number of excited mag-
nons. In regime 1 considered in Sec. III we have

nm = B�V − VC���V − Vc� ,

where the coefficient B is given by Eq. �18� and the � func-
tion describes the threshold character of the behavior. Taking
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into account that the additional resistance is much less than
R0, we obtain for the differential conductance

�I

�V
=

1

R0
−

AB

R0
2 �2V − Vc���V − Vc� . �31�

This differential conductance becomes negative for V�Vc
provided the product AB is large enough. It stays negative up
to V=Vc1, where the layer switches and the differential con-
ductance is positive �scenario 1 of Sec. III� or up to V=Vc2
where the magnon population is stabilized and the differen-
tial conductance is positive as well �scenario 2 of Sec. III�.
The behavior in either scenario corresponds to an N-shaped
I-V curve. In nanostructures such an I-V curve can lead to
random telegraph noise,37 as a result of fluctuations of the
system parameters. We deal with a system strongly out of
equilibrium, for which the corresponding fluctuations can ex-
ist even at zero bath temperature. In particular, if the electron
distribution is given by Eq. �1�, the bias eV plays the role of
an effective temperature. A quantitative analysis of the fluc-
tuations related to the nonequilibrium magnons needs a con-
sistent analysis of four-magnon processes. This goes beyond
the present article. Here we emphasize that random telegraph
noise does not necessarily arise from activation over some
“magnetic” barrier, as assumed in Refs. 9 and 10. However,
we agree with the assumptions in Refs. 4 and 9 that the noise
can arise from fluctuations in the nonequilibrium magnon
system and can exist at low bath temperature.

In reviewing these experimental papers, we are pointed to
the coexistence of the gradual behavior followed by switch-
ing behavior, gradual behavior followed by spikelike behav-
ior and random telegraph noise at low temperature. This co-
existence and the theoretical paper37 strongly suggest that
our model of nonequilibrium magnon emission, since it can
account for the phenomena mentioned, is a major ingredient
in their explanation.

Now let us discuss to what extent we deal with coherent
or incoherent processes. A recent paper16 reports a time-
domain study of the nonequilibrium nanomagnet dynamics,
in particular an oscillatory voltage generated by the magne-
tization precession. Based on this observation the authors of
Ref. 16 state that the measurements are not consistent with
models in which the dominant spin-transfer mechanism is
incoherent magnon excitation equivalent to effective heating.
The first thing to note is that incoherent magnon excitation is
not necessarily equivalent to effective heating. Further, the
measured coherency cannot be absolute, since it will be sub-
ject to an effective frequency width �	� t−1 �where t is the
observation time�. This means that any signal to some extent
is incoherent. When a periodic signal is observed, it only
means that �	�	. As for our model, there are several fac-
tors that tend to establish a degree of coherency, even when
starting from the purely incoherent processes described by
Eq. �2�, the rate equation for the magnon occupation number.
The first factor, which exists in a purely linear picture and
was already mentioned in Ref. 2, is that the exponential in-
crease of the magnon occupation in time leads to narrowing
of the frequency distribution around the frequency related to
maximal increment. Another factor results from the nonlin-

earity of the dynamics with respect to the magnon occupa-
tion numbers. As we mentioned in Sec. IV, one expects that
four-magnon processes can lead to Bose condensation of
magnons at the lowest energy levels available, leading to a
decrease of �	. Then, we would like to emphasize once
more that in our picture we deal with relatively small mag-
non numbers �nm�1�, so that indeed a description in terms
of magnons is justified. As it was mentioned above, at larger
occupation numbers the nonlinearity of the magnon dynam-
ics can result in a purely classical picture of precession.

Finally, let us turn to the problem of coexistence of the
quantum �magnon� evolution of the magnetization and the
semiclassical evolution from another point of view. For sim-
plicity, we restrict ourselves to the case of high external mag-
netic fields H�Ha, where Ha is an anisotropy field. Thus at
the equilibrium we have Ma �H. Now let us assume that the
bias is applied to the structure such as eVSz�0. As a result,
the nonequilibrium magnons are created and with a bias in-
crease up to V=Vc1 the magnetization is switched to the con-
figuration Ma↑ ↓H. Such a configuration clearly is a non-
equilibrium one and is supported only due to a presence of a
current through the structure. This behavior can be accounted
for within a framework of a classical spin-torque model. As
for the magnon considerations, we have eVSz�0 since Sz
changes it sign with a reversal of Ma. It means that formally
the presence of the bias increase the magnon damping coef-
ficient if the magnons are defined with respect to a new mag-
netization direction. The problem is that this new direction is
not an equilibrium one. Thus, in a view that magnon excita-
tions are defined with respect to equilibrium magnetization,
the concept of magnons can hardly be applied to this anti-
parallel configuration. To describe the evolution of magneti-
zation in this case one can use the Landau-Lifshitz-Gilbert
approach �see, e.g., Ref. 5�. In particular, it was shown that
the following decrease of the bias magnitude leads to a
switching to parallel configuration Ma �H. So one sees a
clear difference between M �H→M↑ ↓H switching and
M↑ ↓H→M �H switching. While for the first process the
magnon physics is relevant, it cannot be applied to the sec-
ond process. As a result, there is an asymmetry of the hys-
teresis loop describing the switching. In particular, the
branch involving nonequilibrium magnons is expected to
contain gradual evolution while the other one does not. This
is in excellent agreement with the experiments in Ref. 5.

We suggest the following experimental tests of our theory.
In this we focus on the parallel magnetization configuration
or configurations close to that, since for those the differences
between our model and those based on the spin-torque ap-
proach are experimentally most accessible. Typically, the
magnetizations of the spin-valve layers are aligned in a mag-
netic field applied parallel to the layers. To prevent strong
modification of the magnon spectrum the field should just be
high enough to arrange the alignment.

Formally, in the spin-torque model magnetization switch-
ing from a purely parallel configuration is impossible, so that
already observation of switching would support the approach
presented in this article. A complication seems to be that any
fluctuation or pinning center may destroy the collinearity, so
that the experiment would lose the capability to discriminate
between the models. However, in the spin-torque models the
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switching time depends on the angle � characterizing the
deviation from the collinear configuration as ��ln ��. In con-
trast, this is not the case in our theory, which does not predict
any significant dependence of the evolution on the initial
angle between the magnetizations provided this angle is
small and the value of Sz corresponds to an almost collinear
configuration. Thus, studies of the dependence of the switch-
ing time on � �taking advantage of the angular tunability of
the free layer� enable discrimination between our scenario
and the spin-torque model.

Further, we propose a detailed analysis of the magnetiza-
tion evolution in the initial stage of switching ���1 or
nm�1�. First, we note that according to the spin-torque
model the evolution starts abruptly provided the current ex-
ceeds the critical value. In contrast, in our model, according
to Eq. �4�, a dramatic increase of nm is expected even at
subcritical voltages V�Vc provided the difference �V−Vc� is
small enough. To check this, we suggest to study the behav-
ior of the magnetization with adiabatically slow increase of
V.

Then, according to Eq. �29�, in the spin-torque model the
behavior of ��t� or �M�t� is purely exponential with t until
��1 or �M �M. In contrast, in our model after a period of
exponential evolution voltage controlled regime, Eq. �8��
the evolution is linear with t Eq. �8� corrected by Eq. �9��
and can include effects of magnon-magnon interactions dis-
cussed in Sec. III.

VI. CONCLUSIONS

To conclude, we have given a consequent quantum-
mechanical treatment of spin-polarized transport in a spin-
valve point contact with an account of the induced nonequi-
librium electron distribution. It is shown that at large biases
an avalanchelike creation of low-frequency magnons within
the ferromagnetic layer is possible which agrees with earlier
predictions based on semiphenomenological models. How-
ever, in contrast to earlier studies,1,2 it is found that the sta-
bilization within the magnon system can be achieved at finite
�although large� magnon occupation numbers and the
gradual evolution of such a state with increasing bias is pos-
sible. We also explain a coexistence of the hysteretic and
nonhysteretic behavior and a presence of telegraph noise
even at low temperatures. Further, we predict an asymmetry
of the hysteresis loop describing switching. These results are
in agreement with existing experimental data. The compari-
son with existing theoretical models is given.
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APPENDIX A: EFFECT OF FINITE THICKNESS
AND DISORDER ON THE MAGNON-

ELECTRON MATRIX ELEMENT

Following Mills et al.,38 we write the matrix element for
the transition of an electron in initial state k to final state k�
due to creation of a magnon in state q as

�g�k→k� = J
s · M

sM

a3/2

�3/2 � dr expi�k − k� − q� · r� , �A1�

where s �s=�
� and M are the electron spin and the magne-
tization, respectively, J is the exchange constant, a is the
lattice constant, while � is the normalizing volume. Typi-
cally, the integration over the infinite sample volume in Eq.
�A1� gives the standard momentum conservation law k=k�
+q. However, for the x direction of the thin analyzer layer
�see Fig. 1� the integration is over the finite range ta. This
leads to momentum nonconservation for this direction. The
resulting matrix element renormalized with respect to mo-
mentum nonconservation due the finite thickness is denoted
as g̃.

We assume that standard momentum conservation holds
in plane of the layer, so that in Eq. �A1� we can concentrate
on the integration over x. The corresponding factor arising in
the expression for �g̃�2 readily can be written as

a

ta
3�kx − kx� − qx�2 . �A2�

For given initial and final electron energies �=�k,−� and �k�,�
�

the Fermi surfaces are typically separated by a relatively
large gap �k−k� � =�kF�kFEex /�F. For magnons of long
wavelength we expect q��kF, which allows the neglect of
q in the estimates. We first integrate over � ,�� �denoting the
angles of the wave vectors with respect to the x axis� and
� ,�� �denoting the angles of the wave vectors with respect
to their in-plane component�. Since the difference �−��
�controlled by the distribution functions� is much less than
Eex, we also will neglect this difference in course of the
angular integrations. Thus one has kx=kF,−cos � and kx�
=kF,+cos ��. Momentum conservation in the analyzer plane
of the layer eliminates integrations over � and ��, with the
obvious result sin ��= �kF,− /kF,+�sin � �which actually is the
explicit expression for momentum conservation for the in-
plane component�. Correspondingly, one obtains

cos �� = 1 − �kF,−/kF,+�2 sin2��1/2.

Since kF,+ is larger than kF,−, there clearly is a gap preventing
small values of cos ��. Further, one obtains for the denomi-
nator of Eq. �A2�

ta
3kF

2�� −��2�1 − 2
�kF

kF
� + 2

�kF

kF
�2

� ta
3kF

2��kF

kF
�� −

1

�2��2

, �A3�

where �=cos �. Then, performing the integration over �, Eq.
�A2� goes over into
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�
a

ta
3�kF

2 .

Finally, after these manipulations �g̃�2 can be obtained as

�g̃�2 = J2 kF

��kF�2ta
. �A4�

The resulting rate equation taking into account this renormal-
ization of the matrix element then is

dN	

dt
=

1

2�



�
� d� D��� � d��D�����g̃�2

f�,��1 − f��,−���1 + N	���� − �� + 
	�

− �1 − f�,��f��,−�N	��� − �� − 
	��� , �A5�

which is identical to Eq. �3�. One notes that in view of the
normalizing factors of the electron wave functions used in
the course of matrix element calculation, one should also put

k� ta, 
k�� ta, so that these factors eliminate the normaliz-
ing factor ta

2 arising in the course of the estimate of �g̃�2. This
has been taken into account in Eq. �A5�. The finite electron-
magnon coupling strength for low magnon frequencies �and
relatively small bias voltages� thus results from boundary-
induced momentum nonconservation. Qualitatively, one may
expect a similar effect from other factors breaking momen-
tum conservation. The effect of alloy disorder significantly
increases the efficiency of magnon-electron processes for
low magnon frequencies.38 Although in Ref. 38 disorder in
the on-site exchange constant is considered, we show below
that elastic electron scattering can enhance the coupling in a
similar fashion.

We first consider the role of elastic scattering for a thin
analyzer layer, ta� le. Elastic scattering leads to modification
of the electron wave functions with respect to the simple
plane waves of the unperturbed problem due to emergence of
a spherical scattered wave from each scattering site. In first
order with respect to the scattering processes �which holds
when ta� le� the wave function is modified according to

eik·r → eik·r + 

i

f ie
ik·Ri

eik�r−Ri�

�r − Ri�
. �A6�

Here i numerates the scatterers, Ri is the coordinate of a
scatterer, while f is the scattering amplitude. Replacement of
the plane waves in Eq. �A1� by the modified wave functions
gives a nonzero result, even in the absence of the finite thick-
ness effect. As before, we assume that q�k ,k�, so that the
integrand in the Eq. �A1� for each of the scatterer has the
form

eik·re−i�k�·Ri+k��r−Ri�� = ei�k·r�+kr��ei�krei�k−k��·Ri, �A7�

where r�=r−Ri.
With the assumption �k�k the integration over r gives

A

k�k
expi�k − k�� · Ri� , �A8�

where �A � �1. The total matrix element is obtained by sum-
ming over all scatterers in the layer. However, when squaring

the element, products of contributions of different scatterers
vanish due to the strongly oscillating factor in Eq. �A8� as a
function of the scatterer coordinate. As a result, one finally
obtains

�g̃�2 �
�F

2

kFle
. �A9�

To obtain this estimate, we have used that f2Ni� le
−1 and that

J2��F
2�kF /�k�2. As it is seen, for ta� le the effect of scatter-

ing at elastic centers is smaller than the effect of boundary
scattering. However, one expects that Eq. �A9� holds even
for diffusive transport in the analyzer. Indeed, the contribu-
tion of each scatterer is actually formed at distances
�1 / ��k� from the scatterer. So, the derivation implies bal-
listic transport only at the scale 1 / ��k�, which is assumed to
be less than ta. In this case the electron-induced magnon
relaxation rate with an account of the fact that �k
�kF�J /�F� can be estimated as

�m−e
−1 �

1

kFle
	 . �A10�

Thus we have in a natural way identified the factor �1 /kFle�
as the Gilbert damping parameter.

APPENDIX B

Let us discuss a possible role of magnon-electron interac-
tions. So far we assumed that the electron distribution given
by Eq. �1� exists even at high magnon concentration. How-
ever, one can expect that a high magnon emission rate leads
to decay in the analyzer of the spin-dependent part of the
electron distribution. The latter consequently can no longer
support further strong emission. To understand the evolution
of this distribution with an increase of the magnon concen-
tration we make use of the electron-magnon collision opera-
tor:

Ie−m =� d	� d��D�����	�g̃�2�f�,��1 − f��,−���1 + N	�

��� − �� − 
	� + N	���� − � + 
	�� − f��,−��1 − f�,��

�1 + N	����� − � − 
	� + N	��� − �� + 
	��� �B1�

Here ��	� is the magnon density of states. As it is seen, for
N	�1 with a neglect of the spontaneous processes this op-
erator tends to establish an electron distribution of the sort
fmin���= fmaj��−
	�. In addition, the electron-magnon pro-
cesses even at very large N	 can only take place between the
electronic majority and minority states separated by the en-
ergy 
	 since the minority electron arising as a result of
magnon absorbtion by the majority electron can not further
absorb magnons and vice versa, the minority electron turning
to the majority electron by an emission of magnon can not
further emit magnons. Having these facts in mind one sees
that, in particular, the integral of Eq. �B1� is cancelled by the
electron distribution

fmaj =
1

2
� f0�� +

eV

2
+ 
	� + f0�� −

eV

2
�� ,
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fmaj =
1

2
� f0�� +

eV

2
� + f0�� −

eV

2
− 
	�� . �B2�

So the electron-magnon coupling does not lead to a total
decay of spin polarization, however the total density of po-
larized spins supported by the distribution resulting from the
coupling in question is 
	D. Since the electrons effectively
escape the analyzer layer, one expects that it is this spin
density that describes the spin current leaving the layer. At
the same time the incident spin current is controlled by initial
electron distribution given by Eq. �1� which corresponds to
the density of spins �eV /2D. So one concludes that for V
�Vc the electron-magnon coupling within the analyzer how-
ever strong it is cannot suppress the spin pumping to the
magnon system.

APPENDIX C

In the point-contact geometry of Fig. 1 current passes
only through a small region of the analyzer. While magnons
are excited in the same region, they can escape it by propa-
gating away into the analyzer plane. This differs from the
situation in Refs. 1 and 2, where current flow and magneti-
zation precession occur in the same volume. For point con-
tacts, experimentally studied in Refs. 4, 6, and 39, an addi-
tional relaxation term −N	 /�m

esc is added to Eq. �2�, where

�m
esc is the magnon escape time given by �m

esc=d /vm
=dmm /
qm. Here vm is the magnon velocity and qm is the
magnon wave vector, which has the minimum value �1 /d.
Correspondingly, the maximum value for �m

esc is d2mm /
. The
final effect of magnon escape is that �m−e /�m

esc appears as
extra factor in the denominator of Eq. �4�. This does not
prevent divergence of Tm,	

eff , but fast escape ��m−e /�m
esc�1�

leads to strong increase of the critical voltage according to

eVcSz = − ��m−e/�m
esc�
	 . �C1�

Taking into account that �m−e
−1 �	 /kFta �see Appendix A� one

obtains

�m−e/�m−e
esc �

kFta


	


2

d2mm
, �C2�

where the equality applies to the minimum magnon wave
vector. Thus, in case of effective magnon escape
��m−e /�m−e

esc �1�, the critical voltage is independent of the
magnon frequency. Further, the criticality starts at the lowest
possible in-plane wave vector. Finally, we note that Eq. �C1�
predicts Vc�1 /d2. For a diffusive point contact �i.e., R
�1 /d2� the critical current is thus independent of the orifice
size. This agrees with the prediction in Ref. 36, where the
point-contact geometry is considered as well, but where spin
transfer leads to coherent excitation of spin waves.
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