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The magnetic structure of Fe1−xCoxSi single crystals with x=0.10,0.15,0.20,0.50 has been studied by small
angle polarized neutron diffraction and superconducting quantum interference device measurements. Experi-
ments have shown that in zero field the compounds with x=0.1,0.15 have a well-defined tendency to order in
the one-handed spiral along �100� axes due to the anisotropic exchange, that, however, decreases with increas-
ing Co concentration x. The magnetic structure of Fe1−xCoxSi with x=0.2,0.5 consists of spiral domains with
randomly oriented spiral wave vector k. The applied magnetic field produces a single domain helix oriented
along the field. The process of the reorientation starts at the field HC1. Further increase of the field leads to a
magnetic phase transition from a conical to a ferromagnetic state near HC2. In the critical range near TC the
integral intensity of the Bragg reflection shows a well-pronounced minimum at Hfl attributed to a k flop of the
helix wave vector. On the basis of our experiments we built the H-T phase diagram for each compound. It is
shown that the same set of the parameters governs the magnetic properties of these compounds k, HC1, Hfl, and
HC2. Our experimental findings are well interpreted in the framework of a recently developed theory �Phys.
Rev. B 73, 174402 �2006�� for cubic magnets with Dzyaloshinskii-Moriya �DM� interaction. In particular, the
theory suggests an additional quantum term in the magnetic susceptibility caused by the DM interaction which
is in good agreement with the experiment.
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I. INTRODUCTION

One of the most interesting problems in condensed matter
physics for the past decade is the paradigm of quantum phase
transitions �QPT�. In particular MnSi, the cubic magnet with
Dzyaloshinskii-Moriya �DM� interaction, has attracted much
of the researchers’ attention. This system MnSi is known to
suffer the QPT under the hydrostatic pressure P as the mag-
netic order disappears upon increase of P �TC→0 at P
→Pc�15 kbar�.1,2 In spite of the great interest neither the
role playing by the DM instability in this QPT was clarified
nor any other parameter, which is responsible for the QPT,
has been established. Similar to the pressure effect in MnSi,
the variation of the cobalt concentration x in the compound
Fe1−xCoxSi results in a strong change of TC. The magnetic
structure of these compounds are well explained in the Bak-
Jensen model that takes into account the hierarchy of the
interactions:3 The exchange interaction, the isotropic
Dzyaloshinskii-Moriya �DM� interaction and the weak aniso-
tropic exchange �AE� interaction. Therefore, studying the
magnetic properties of Fe1−xCoxSi, which are related to these
principal interactions, and following their interplay and their
relation to TC would shed a new light on the QPT both in
MnSi and relative systems.

The cubic B20-type mixed compound Fe1−xCoxSi with x
�0.05 orders below TC in a one-handed spin helical struc-
ture with a small propagation vector k�0.025 Å−1 �Refs.
4–7� �see Fig. 1�. At present it is widely recognized that in
analogy to the magnetic structure of MnSi �Ref. 8 and 9� and
FeGe,10 the helicity is induced by an antisymmetric
Dzyaloshinskii-Moriya �DM� exchange interaction caused by

the lack of a center of symmetry in the arrangement of mag-
netic atoms Fe and Co.3,11,12 This DM interaction is isotropic
in cubic crystals and a weak anisotropic exchange �AE� in-
teraction along with cubic anisotropy should fix the direction
of the magnetic spiral below TC.3 However, the AE interac-
tion and cubic anisotropy are extremely weak in this com-
pound and the spiral wave vector k is almost randomly ori-
ented. Its direction can be changed by an applied magnetic
field. On the other hand, recent investigations of the mag-
netic structure of Fe0.5Co0.5Si by Lorentz electron micros-
copy allowed to visualize the helical spin order in real space
and had shown a tendency of the propagation vector k to
orient along �100� axis when the sample is frozen in a small
magnetic field of an arbitrary direction �H�0.1 mT�.13
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FIG. 1. Critical temperature TC as a function of the Co concen-
tration x �� �Refs. 4 and 5�; � �Refs. 6 and 7�; • is this study�.
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The magnetic properties of Fe1−xCoxSi under applied
magnetic field were studied in detail, particularly for
x=0.2.6,7 The H-T phase diagram, being built as a result of
the measurements, showed much similarity to that of MnSi.8

As was shown in Refs. 6 and 7 for x=0.2, the magnetic
helical structure becomes a single-domain conical structure
in a magnetic field HC1�60 mT at low temperature. The
cone angle decreases as the field increases and an induced
ferromagnetic state appears at HC2�170 mT. The period of
the helix does not change with the field. In addition, a k flop
of the helix wave vector was found in the field range Hfl
	30–50 mT slightly below TC in full analogy to that in
MnSi.14–16 This k flop reveals itself as a 90° reorientation of
the spiral wave vector k from the direction parallel to the
field to the direction perpendicular to it in both case of
Fe0.8Co0.2Si �Ref. 6� and MnSi.16 This phenomenon had been
named as the appearance of an A phase and was wrongly
interpreted as having a paramagnetic nature �see Ref. 16 for
details�.

Although these compounds have been extensively stud-
ied, up to now their properties remain puzzling due to the
lack of a microscopic quantitative description of the obtained
experimental results. In particular, from one hand, a cross-
over behavior of the magnetic susceptibility near H�HC1
has been observed but not interpreted yet �see Fig. 2�. On the
other hand, the nature of the A phase observed at TC was not
clarified until recently, when the theory of the cubic magnet
without center of symmetry was developed17 and the inter-
action of the spin helix with the magnetic field was thor-
oughly considered. In this theory the ground state energy and
the spin wave spectrum were evaluated showing, that �i�, in
accord with Ref. 3, the system is stabilized in the helical
ordering due to conventional exchange and DM interaction
with the helix wave vector k=SD /A where D is the strength
of DM interaction and A is the spin-wave stiffness at mo-
menta q�k. �ii� The energy landscape of the weak aniso-
tropic interactions, coming from the cubic symmetry, plays a
key role in the orientation of the helix wave vector k. �iii�
The systems with the DM interaction are unstable with re-
spect to the small magnetic field applied perpendicular to k
unless it is stabilized via a small spin wave gap in the spin
wave spectrum.

This paper is aimed to study the magnetic structure of
Fe1−xCoxSi single crystals of different concentrations x
=0.10,0.15,0.20,0.50. Using the data of small angle polar-
ized neutron diffraction and SQUID measurements we built
the H-T phase diagram for these compounds. We show that
the same set of the parameters �k, HC1, Hfl, and HC2� char-
acterizes the magnetic properties of these compounds. We
show also that both phenomena of the crossover of the sus-
ceptibility at low T and the appearance of the A phase at high
T	TC have the same origin. Both of them are consequences
of un unusual form of the magnetic energy of the helical
structure, which is given per unit cell by the expression17

Emag = − g�BS
 H�
2

2HC2
+

H�
2 �2

4HC2��2 − �g�BH��2/2�� + GL�k̂� ,

�1�

where S is the total spin of the unit cell, H� and H�

are the field components along and perpendicular to the

helix wave vector k, � is the spin wave gap, L�k̂�
=2 sin2 ��sin2 	 cos2 	+ cos2 �� is a cubic invariant deter-
mining the k orientation relative to the crystal axes �� and 	
are the corresponding angles� and G is the strength of the
anisotropic interactions determined by the cubic anisotropy
and the anisotropic exchange �see Ref. 17�. The first term
with H� is a classical part of the Zeeman energy. The second
one has a quantum origin and it describes the interaction of
the field, perpendicular to k, with the helix as an individual
entity. The second term in Eq. �1� implies the presence of a
small spin wave gap � and explains the existing puzzles. In
our present study we check the applicability of the theory,17

which allows an indirect determination of the spin wave gap
predicted to exist in compounds with DM interaction.

It is worthwhile to note that the recent study of a single
atomic layer of manganese on tungsten demonstrated the ex-
istence of the spin spiral structure with the long period of
12 nm instead of antiferromagnetic ordering, which is char-
acteristic for Mn. This observation was interpreted through
appearance of the DM interaction on magnetic surfaces be-
cause such surface lacks obviously the inversion symmetry.18

This finding changes the whole concept of the magnetic
structures in nanomagnetism as it introduces an important
DM interaction into the consideration of nanoobject’s prop-
erties. The theoretical approach, which is applied to explain
this phenomenon, is similar to that made by Bak and Jensen3

for the interpretation of the spiral structure in MnSi. There-
fore, new theoretical and experimental efforts to describe and
to understand the fascinating behavior of MnSi-type com-
pounds are of great interest as they become the model sys-
tems for magnetic low-dimensional and nanoscale objects.

The paper is organized in the following way. Section II
describes the preparation of the samples, the experimental
setup, the geometry of the experiment and the qualitative
picture of the polarized SANS measurements. The analysis
of the data obtained are performed and shown in Sec. III.
This analysis leads to the H-T phase diagram, which is dis-
cussed in Sec. IV on the basis of the theory.17 Section VI
contains the summary and the conclusion.
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FIG. 2. Field dependent magnetization curves taken at different
temperatures T=5, 10, 20, 30 K for Fe0.8Co0.2Si.
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II. EXPERIMENT

A. Samples

A series of Fe1−xCoxSi single crystals with x
=0.10,0.15,0.20,0.50 �at. % � were chosen for the study.
They were cut from large single crystals, which were grown
by the tri-arc Czochralski method. The critical temperature
TC has been obtained from the neutron scattering measure-
ments as the temperature, where the magnetic Bragg reflec-
tion disappears. The values of TC for different concentrations
x are plotted in Fig. 1 along with those given in the other
studies.4–7 It is well known that up to a Co concentration of
approximately 5 at. % Fe1−xCoxSi is a paramagnetic semi-
conductor, while above 5 at. % this compound becomes
magnetically ordered and a metallic system.19,20 Thus the
magnetic and transport properties of these compounds are
strongly correlated showing also a positive magnetoresistive
effect in the ordered phase.21 The critical temperature TC
increases rapidly upon doping with Co, has its maximum
value near 60 K at x=0.35 and then decreases smoothly and
diminishes to T=0 at x=0.8. There is a certain disagreement
between the values given by different authors for the equal
concentration x. This disagreement may be explained taking
into account that the samples could be of different purity and
that Co atoms dissolve inhomogeneously in the solid solu-
tion.

All samples were magnetically characterized by SQUID
magnetometry. Figure 2 shows magnetization curves taken at
different temperatures below TC=38 K for the sample with
x=0.2. For the low temperature measurements at T=5 K and
10 K the linear behavior of the magnetization with the slope

1 in the range of small field vanishes above HC1 and trans-
forms into the linear dependence with the slope 
2. This type
of behavior is not observed for the high-temperature curves
at T=20 and 30 K with a constant slope equal to 
2 both for
small and large fields. The curves saturate at the critical field
HC2 indicating the field-induced phase transition from the
conical to the ferromagnetic state. Upon decreasing the field,
no break of the magnetization curve is observed and the
magnetization decreases linearly with the slope 
2 to its zero
field value demonstrating a hysteresis in the field range H
	HC1 �not shown in Fig. 2�. This behavior of the magneti-
zation is typical for all samples and was also observed in the
previous studies.4–7 The explanation of this phenomenon will
be given below on the basis of the theory17 and neutron
diffraction data.

B. Polarized SANS: Technique

The polarized SANS experiments were carried out at the
SANS-2 scattering facility of the FRG-1 research reactor in
Geesthacht �Germany�. A polarized beam of neutrons with an
initial polarization P0=0.95, a neutron wavelength �
=0.58 nm, a bandwidth �� /�=0.1, and a divergence �
=2 mrad was used, leading to a transverse resolution of 0.1°
in a rocking scan. The scattered neutrons were detected by a
position sensitive detector with 256256 pixels. The
detector-sample distance was set such that the q range was
covered from 110−3 to 1 nm−1 with a step of 0.001 nm−1.

The scattering intensity was measured in the temperature
range 8 K�T�60 K with an accuracy better than 0.05 K.

The neutron elastic cross section per unit cell of the mag-
netic helix below TC has the following form:22

d�

d�
=  rS

2
�2 �2��3

V0
��1 + �q̂ĉ�2 − 2�q̂P0��q̂ĉ����q − k�

+ �P0 → − P0���q + k��sin2 � , �2�

where r=0.5410−12 cm, S and V0=a3 are the spin and vol-
ume of the unit cell, respectively, q̂=q / �q� is the unit vector
of the momentum transfer, ĉ is the unit vector of the helix
axis k, P0 is the vector of polarization, �=� /2−� is deter-
mined through the cone angle �, and ��q�k� enforces the
Bragg conditions.

For the single-handed helical structure the neutron cross
section depends on the incident polarization P0. For example,
if P0 is along ĉ and P0=1, the scattering is forbidden for q
=k but is maximal for q=−k. When P0� ĉ, the scattering
does not depend on the polarization. In intermediate cases
the polarization of the neutron scattering is determined as

P =
��P0� − ��− P0�
��P0� + ��− P0�

= �q̂P0� = cos � , �3�

where � is the angle between the incident polarization and
the scattering vector. This equation is valid for all measure-
ments presented below for T�TC.

We have investigated experimentally the intensities with
the polarization along �I�q , P0�� and opposite �I�q ,−P0�� to
the magnetic field. The measured scattering is characterized
by two quantities: �i� The intensity of the scattering: I
= �I�P0�+ I�−P0�� and �ii� the polarization of the scattering:
P= �I�P0�− I�−P0�� / �I�P0�+ I�−P0��.

In absence of the field the magnetic structure of
Fe1−xCoxSi consists of spiral domains, which are either ran-
domly oriented for some concentrations4–7 or have a slight
preference to orient along the cube edges: k � �100�13. In our
experiment, the samples �single crystals� were oriented in
such a way that at least one axis �100� was set in a plane
perpendicular to the incident beam �Fig. 3�. In the case of
scattering from magnetic spirals with a long period, this ge-
ometry allows one to observe diffraction peaks in a range of
small-angle scattering, provided that the Bragg condition is
fulfilled: 2d sin��B /2�=�, or q=2� /d, where d is the period
of the spiral and �B is the scattering angle. The external
magnetic field H from 1 to 200 mT was applied horizontally
and perpendicular to the incident beam and the neutron po-
larization followed the direction of the magnetic field.

C. Polarized SANS: Measurements

Figure 4 shows maps of SANS intensities for four differ-
ent Fe1−xCoxSi samples with �a� x=0.10, �b� x=0.15, �c� x
=0.20, and �d� x=0.50 at T�9 K. A weak magnetic field of
H�1 mT was applied horizontally in the plane of the detec-
tor. It is clearly seen from Fig. 4�a� that in Fe0.90Co0.10Si the
spiral wave vector k is oriented along the axis �1 0 0�, which
is inclined 25° to the field direction. In Fe0.85Co0.15Si �Fig.
4�b�� the spiral wave vector k is oriented along the �1 0 0�
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and �0 1 0� axes, which are inclined at 35° and 55° to the
field direction, respectively. The Bragg peaks are, however,
strongly smeared, having a clear tendency to form a ring of a
radius �k�. In Fe0.80Co0.20Si �Fig. 4�c�� the spiral wave vector
k is almost randomly oriented and the scattering looks like a
ring of the intensity. In Fe0.50Co0.50Si �Fig. 4�d�� the spiral
wave vector k is oriented along the weak field of 1 mT and

the scattering intensity is concentrated into two Bragg spots
with k �H. Thus a clear tendency in the spiral orientation is
observed with increase of Co concentration. The anisotropic
exchange and crystallographic anisotropy play a dominating
role in the orientation of the spiral wave vector k for com-
pounds with small concentrations of Co. For concentrations
of x	0.1 the substitution of Co does not break the preferable
anisotropy axes �100�. The increase of the substituted atoms
up to x	0.2 results in a local disorder and therefore in the
random orientation of k. Further increase of the Co concen-
tration results in full suppression of the anisotropy so that a
weak magnetic field of 1 mT prevails over the anisotropy
energy and orients k along the field for x=0.5. Thus one
concludes that the anisotropy is suppressed with an increase
of the Co concentration.

The typical magnetic field behavior of the spiral structure
of these compounds is shown in Fig. 5. As an example, the
sample with x=0.2 at T=10 K has been chosen. When a
weak magnetic field H�60 mT is applied, the randomly ori-
ented spirals remain frozen in spite of the applied field, and
scattering intensity is formed as a ring on the map �Fig. 5�a��.
When the field H increases above HC1=60 mT the randomly
oriented domain structure transform into a single domain
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FIG. 3. Schematic outline of the experiment: the Fe1−xCoxSi
single crystals were oriented such that at least one of the axes �100�
was perpendicular to the incident beam. The magnetic field H was
applied horizontally and also perpendicular to the incident beam.
The polarization P followed the direction of the magnetic field.
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FIG. 4. �Color online� Maps of the SANS intensities for T
�9K for four different samples Fe1−xCoxSi and �a� x=0.10, �b� x
=0.15, �c� x=0.20, and �d� x=0.50. A weak magnetic field of H
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FIG. 5. �Color online� Maps of the SANS intensities for x
=0.2 at T=10 K for eight values of magnetic field: �a�, �h� H
=0 mT; �b�, �g� H=50 mT; �c�, �f� H=100 mT; �d�, �e� H
=170 mT. The magnetic field increases from �a� to �d� and de-
creases from �e� to �h�.
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sample. The ring of the intensity transforms smoothly into
spots laying on the field axis �Figs. 5�b� and 5�c��. With
further increase of the field above HC2=175 mT the reflec-
tions along the field vanishes that is the helix transforms into
an induced ferromagnet.

Upon decrease of the field H to zero the sample remains a
single domain showing a large hysteresis in the scattering
intensity �Figs. 5�e�–5�h��. In particular, no ring appears but
the Bragg spots remain and their intensity increases upon
decrease of the magnetic field. The details of the reorienta-
tion process are presented below in the data analysis of the
temperature and magnetic field scans.

III. DATA ANALYSIS

To illustrate a typical behavior of the neutron scattering
patterns we plot the intensity along the ring at �q�=k �shown
in Fig. 5� as a function of the angle � for different values of
the magnetic field and at T=10 K �Fig. 6�a��. Here � is an
angle between the magnetic field axis and the scattering vec-
tor q. The scattering has a maximum in the directions of the

field at H�HC1, and the intensity is well fitted by the Gauss-
ian:

I��� = IBG +� 2

�

Iint

�M
exp− 2

�� − �c�2

�M
2 � , �4�

where IBG is a background intensity. The integral intensity
Iint, the center of Gaussian �c, and the full width at half
maximum �FWHM�, or mosaic of the helix structure �M,
were obtained from the fit. It is also important to note that
the scattering is fully polarized at �=0° �P→ + P0� and at
�=180° �P→−P0�.

The integral intensity Iint is plotted in Fig. 7 �open sym-
bols� as a function of the field. At zero field the intensity is
very low, since the scattering is almost homogeneously dis-
tributed over the sphere with radius q=k. No change in the
scattering intensity is observed at H�HC1=60 mT, so the
field increase is not able to change the frozen helix domain
structure with the random distribution of the k orientation.
The intensity goes up slowly upon increase of the field in the
range from 60 to 140 mT, showing the process of the recon-
struction from the multidomain to the single domain struc-
ture. Then the intensity of the scattering decreases to zero at
the second critical field HC2=175 mT, where the sample
transforms into the ferromagnetic state. The change of the
mosaic �M and the position of the Bragg reflection �c upon
increase of the magnetic field is shown in Fig. 8. Both �M
and �c are ill-defined quantities at H�HC1. Further on, the
mosaic �M decays strongly from the value of 40° at H
=HC1 to the resolution limit of the order of 10° at H
=140 mT. The center of the Gaussian �c remains constant in
the whole range from H=HC1 up to H=HC2. The backward
decrease of the magnetic field leads to the significant hyster-
esis in the integral intensity Iint �Fig. 7�. The intensity in-
creases in the field range from HC2 to Hm �the field of the
maximum� and then decreases slightly upon reduction of the
field to zero. Neither the position of the Gauss peak nor its
width �FWHM� change with the decrease of the magnetic
field. Thus these measurements remain resolution limited. It
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should also be noted that the value of the helix wave number
k does not change with the magnetic field and that the polar-
ization is constant in the whole range H�HC2.

The resolution limit �FWHM of 10°� in measurements of
the orientation spread �M of the wave vector k is not the
“true” instrumental limit of the setup but is a treatment-
dependent level of the resolution. The scale, which is used in
this treatment, runs from 0 to 360° with steps of about 5°
determined by the size of the direct-beam spot and the radius
of the scattering ring. Indeed, the real resolution limit of the
setup is 0.1°. Therefore, one can improve significantly the
accuracy of the measurements if one performs a rocking scan
experiment. In such an experiment one should take into ac-
count that the magnetic structure of the Fe1−xCoxSi system
under applied field has a complicated and irreversible behav-
ior. Therefore, it is important that the magnetic history of the
sample is always uniquely defined. We performed the mea-
surements in the following way: �i� Zero field cooling �ZFC�
from the paramagnetic state to the temperature of interest T;
�ii� rising up the field from H=0 to the field of interest; and
�iii� the field direction is fixed with respect to the sample in
the rocking scan experiment.

The rocking curves of the Bragg peak oriented along the
field were taken in the range �±3° with the step of 0.5° and
an accuracy of 0.1°� at different values of the field at T
=10 K. It is clear from Figs. 6 and 8 that the mosaic of the
helix structure is much larger than the range run in the rock-
ing scan experiment for the field increasing from
0 to 140 mT. Therefore the rocking scan measurement in
this field range is senseless and shows a “plateau” of inten-

sity within the range of measured angles ±3°. A well-defined
maximum in the range of rocking curve experiment appears
in the upward regime of measurements at H�140 mT and in
the downward regime in the whole field range. The curves
for the upward regime are plotted in Fig. 6�b� and well fitted
by the Lorentz function:

I��� = IBG +
2Iint

�

�M

4�� − �c�2 + �M
2 , �5�

where IBG is a background intensity, � is a rocking angle, �c
is a center of peak, and �M is a FWHM. The integral inten-
sity Iint obtained from the fit is plotted in Fig. 7 �closed
symbols�. The intensity obtained in the rocking scan coin-
cides practically with that taken from the Gaussian function.
Thus, the rocking scan experiment shows the Lorentzian dis-
tribution of the neutron scattering intensity around the field
axis in the single domain state. The width of the Lorentzian
peak does not depend on the magnetic field but the Lorent-
zian shape implies smeared or smooth boundaries between
different coherent volumes.

Thus we follow the transformation from randomly ori-
ented helix domains toward a single domain structure. In
zero field �after ZF cooling� a ring of the intensity in the
neutron scattering experiment occurs representing a system
of randomly oriented helix domains. It is shown that the
process of the magnetization is characterized by several fea-
tures at HC1 �the threshold field for the domain reorienta-
tion�, HC2 �the critical field of the transition to the ferromag-
netic state�, and Hm �the field of maximal intensity�. The field
dependence of the neutron scattering intensity was measured
at different temperatures below TC. The behavior similar to
that described for the field dependence at T=10 K was ob-
served for all magnetic field scans except that at T=35 K,
i.e., close to TC=38 K. Figure 9 shows the field dependence
of the integral intensity of the Bragg peak �k �H� at T=30
and 35 K. In the scan at T=35 K the integral intensity Iint has
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a well-pronounced minimum at Hfl�40 mT. In the same
field range near Hfl two weak spots appear in the direction
perpendicular to the field �see the inset in Fig. 9�. The length
of the helix wave vector for these two spots �k�H� is the
same as for the major reflections with �k �H�. Since the in-
tensities are much weaker than that of the normal reflection
we suppose, in accordance with Ref. 6, that these spots are
the cross sections of a ring around the field axis. It is impor-
tant to note that for T=30 K no minimum is observed when
the field increases. Nevertheless, the intensity shows a maxi-
mum at Hm=40 mT upon a decrease of the field. This behav-
ior at T=30 K clearly demonstrates that the field H
�40 mT is characteristic not only for the critical tempera-
ture range but also for the low temperatures. This phenom-
enon, often called A phase, was also observed in the relative
compound MnSi.16 In our opinion, this demonstrates the flop
of the helix wave vector �k flop� in a narrow region close to
Hfl, i.e., the orientation of the helix wave vector along the
field becomes less favorable than its orientation perpendicu-
lar to the field axis. Such behavior was recently explained in
the framework of the theory of cubic magnets with DM
interaction17 and will be discussed later in detail.

Similar measurements of the Bragg intensity as function
of the magnetic field were performed for the other com-
pounds under study. Figure 10�a� gives the field dependence
of the integral intensity of the Bragg peak �k �H� for
Fe0.5Co0.5Si at T=37, 38, and 39 K. The minimum in the
field scan of the integral intensity is registered at Hfl
�8 mT. This minimum is less pronounced upon a decrease
of the temperature and vanishes completely at T=35 K. The
similar phenomenon is shown in Fig. 10�b� for Fe0.85Co0.15Si
at T=16 and 17 K. For this compound the minimum is ob-
served at Hfl�30 mT. Thus it is indicated that the k flop
near TC under an applied field is a common feature for all Co
concentrations of the Fe1−xCoxSi system.

IV. H-T PHASE DIAGRAMS

As shown above, the magnetic field changes the spin
structure significantly. From the diffraction experiment one
can extract the following characteristic fields HC1, HC2, Hfl,
and Hm. From these data we built the magnetic phase dia-
gram for different compounds Fe1−xCoxSi with x=0.5, x
=0.2, and x=0.15 �Figs. 11�a�–11�c�, respectively�. As is
well seen from Fig. 11 the similarity of the diagrams for the
different compounds are straightforward, i.e., the same set of
the parameters characterizes their magnetic properties. It
should be noticed that the field HC1 was not registered for the
compound with x=0.5 since it is smaller than 1 mT �Fig.
11�a��.

The most detailed phase diagram was obtained for the
compound with x=0.2 �Fig. 11�b��. Above TC=38 K the sys-
tem is in the paramagnetic phase. After zero field cooling the
spiral spin structure with the random orientation of the k
vector occurs below TC and at H�HC1. Upon increase of the
magnetic field the wave vectors k of different domains tend
to rotate toward the field axis in the region between HC1 and
HC2. Above HC2 the sample becomes ferromagnetic. There is

a small region in the H-T space below TC at H	Hfl, where
the k-vector flops from k �H to k�H. This feature observed
close to TC can only be traced in the low T range at the field
Hm, which is the borderline between the single domain spiral
state for H�Hm and a slightly disordered state for H�Hm
upon decrease of the field from the ferromagnetic state. It is
of notable interest that the crossover behavior of the mag-
netic susceptibility near H�HC1 �Fig. 2� is observed at low
temperature only when HC1�Hm�Hfl. We will interpret
these facts in the next section.

An additional parameter obtained from the diffraction ex-
periments is the helix wave vector k. Figure 12 shows the
temperature dependence of k for different compounds with
x=0.15, 0.20, and 0.50. k decreases with increasing tempera-
ture for the compounds with x=0.15 and 0.20 whereas it is
constant for x=0.50. The value of k is well described by the
linear temperature dependence

k = k�0��1 − c�T/TC�� , �6�

with k�0�=0.0185±0.0001 Å−1 and c=0.024±0.002 for x
=0.20; with k�0�=0.0192±0.0001 Å−1 and c=0.123±0.005
for x=0.15; and with k�0�=0.0058±0.0006 Å−1 and c=
−0.01±0.01 for x=0.50.

It is worthwhile to note that k shows the opposite tem-
perature dependence for MnSi.23 In our view the slope of
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k�T� is related to the sign and the magnitude of the aniso-
tropic exchange F �see Eq. �10� below�. Thus, this aniso-
tropic exchange interaction is a notable value for small x and
reduces to zero at large x. This is also confirmed by the
observation displayed in Fig. 4.

V. INTERPRETATION AND DISCUSSION

A. Principal interactions

As was mentioned in the Introduction these experimental
findings are well interpreted within the theory recently de-
veloped by one of the authors to describe the properties of
cubic helical magnets with DMI in a magnetic field.17 Ac-
cording to this theory �see also Ref. 16� the magnetic field H
transforms the spiral into a conical structure with the cone
angle �=�−�, where the angle � changes with the field and
is determined by

sin � = �H�/HC2, if H� � HC2,

− 1, if H� � HC2,
� �7�

where H� is the field component along the helix axis k. For
H� �HC2 a ferromagnetic spin configuration occurs. In Ref.
17 it was shown that

g�BHC2 � Ak2, �8�

where A is the spin-wave stiffness at q�k. At T=0 HC2
�31.3 mT and k�0.0058 Å−1 for the compound with x
=0.5, HC2�175 mT and k�0.0185 Å−1 for x=0.2, and
HC2�103 mT, and k�0.0192 Å−1 for x=0.15. Using Eq.
�8� one can find that the stiffness A�110 meV Å2 for x
=0.5, A�62 meV Å2 for x=0.2, and A�34 meV Å2 for x
=0.15.

The value of the helix wave vector is defined as

k = S
D

A
1 −

SF

2A
L�k̂�� � S

D

A
, �9�

where the cubic invariant L�k̂� is defined below Eq. �1�. Tak-
ing the values for A and k, one derives SD�0.64 meV Å for
x=0.5, SD�1.15 meV Å for x=0.2 and SD�0.65 meV Å
for x=0.15.

Furthermore, one can suggest that the temperature varia-
tion of k is connected with the change of the anisotropic
constants, which are maximal at T=0 and minimal at T
=TC. In this case one obtains from Eqs. �6� and �9�
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c = SFL�k̂�/�2A� . �10�

The k value was measured at very low field where almost a
random domain distribution was observed. In this case one
has to average L over a random k orientation and obtains

L̄=3� /16. As a result, c=3�SF / �32A� and SF�0 meV Å2

for x=0.5, SF�4.7 meV Å2 for x=0.2, and SF
�13.4 meV Å2 for x=0.15. Thus, from the experimental pa-
rameters, we are able to determine different contributions to
the total energy of the helix structure.

B. k-flop phase

We consider now the evolution of the helical structure in
the magnetic field which is expressed by Eq. �1�. The term

GL�k̂�, which is responsible for the spin-lattice interaction,
plays a dominant role for H�HC1, when a local lattice dis-
tortion leads to a random orientation of the vector k. At
larger fields this term becomes less important. According to
Eq. �6� at T close to TC the field HC1 is very small and the L
term in Eq. �1� can be neglected. Hence the direction of the
helix vector k is determined by the competition of the first
two terms in Eq. �1� which allows one to interpret the k flop
near TC �A phase�.

The analysis of the free energy expression �Eq. �1�� is
really straightforward if one rewrites it as

Emag = −
g�BS

2

H2

HC2

cos2 � +

sin2 �

�2 − x2 sin2 ��� ,

where x=g�BH /� and � is the angle between k and the
magnetic field H. Minimizing this expression with respect to
� one can find that at x�1 the angle �=0. At x=1 the
magnetic energy has its minima at both �=0 and �=� /2.
In the interval 1�x��2 the minimum is at �=� /2. In the
range �2�x the second term in Eq. �1� is unphysical17 lead-
ing to an abrupt change of the helix orientation when the
energy is minimized at �=0 again. In the other words, the
orientation of k �H is favorable at g�BH�� and at �2�
�g�BH, while the orientation of k�H is favorable at �
�g�BH��2�. This scenario is exactly observed for
Fe1−xCoxSi in the present study as well as for MnSi in Ref.
16. For example, for x=0.2 the integral intensity of the
Bragg reflection shows a deep minimum near TC at Hgap
=40 mT seen in Fig. 9 and a simultaneous appearance of
weak spots with k�H. So we observe the k flop under ap-
plied field from one energetically favorable direction �paral-
lel to the field� to the other �perpendicular to it�. This flop
gives an indirect experimental evidence for the spin wave
gap to be �	g�BHgap /�2, which is equal to 0.60, 3.4, and
2.7 �eV for x=0.5, 0.2, and 0.15, respectively. As was
shown in Ref. 17 the major contribution to the spin wave gap
in zero field stems from the interaction between spin waves
and is determined by the DM interaction �SW

2 =d�HC2
2 / �4S��,

where the numerical coefficient d	1 cannot be evaluated.
Upon decrease of the temperature the anisotropy expressed
by the last term in Eq. �1� arises and, thus, changes the en-
ergy landscape not allowing the easy k flop at H	Hgap �see,
for example, Ref. 24�.

C. Magnetic susceptibility

The magnetic susceptibility at low temperatures T�T*

�TC shows the crossover behavior at H=HC1, which is not
the case for the relatively high temperatures T*�T�TC �see
Fig. 2�. According to Eq. �1� there are three energy terms
determining the orientation of vector k: One related to H�,
the second connected to H� and the third one originated
from the anisotropy which measure is g�BHC1. For the low
temperatures we consider two limiting cases: �i� In a very
weak magnetic field, when the directions of the helix axes k
are frozen by the local random anisotropy, the k vectors are
randomly oriented. �ii� In a strong field the k vector is along
the field direction and H�=0. In the first case for randomly
orientated helix axes H�

2 =2H2 /3, H�
2=H2 /3, and Emag,1=

−g�BSH2 / �3HC2� where the L term is taken into account as a
source of the random anisotropy. For the strong field, when
the helix vector is along the field, H�=0 and E�mag,2�=
−g�BSH2 / �2HC2�. The magnetic susceptibility is determined
as

� = −
1

H

dEmag

dH
�11�

and one obtains

�1

�2
=

2

3
� 0.67. �12�

This theoretical prediction is in agreement with the experi-
mental data presented in Fig. 2. Indeed, the ratio of the two
slopes 
1 /
2�0.65. Thus the crossover observed in the mag-
netization curve at low temperatures is also explained by the
presence of the second field-dependent term �quantum term
	H�� in the expression of the magnetic energy �Eq. �1��.

It should be noted that for the relatively high temperatures
T*�T�TC the anisotropy weakens and is not able to freeze
the randomly oriented helix structure. As a result the mag-
netic susceptibility corresponds to the high-field limit: �
=g�BS /HC2.

VI. CONCLUDING REMARKS

We have carried out polarized neutron diffraction experi-
ments to study the magnetic structure of Fe1−xCoxSi single
crystals with x=0.10,0.15,0.20,0.50 in a wide range of tem-
peratures and magnetic fields. It is shown that in zero field
Fe1−xCoxSi has a multidomain left-handed helix structure.
For small x the helix axis has a weak tendency to orient
along the �100� direction. The magnetic field induces a single
domain structure with the helix wave vector oriented along
the field axis at H�HC1. The field HC1 determines the en-
ergy of the domain wall in the sample. In the vicinity of TC
the field dependent integral intensity of the Bragg reflection
shows a sharp minimum at H=Hgap. This phenomenon is
well explained by the presence of a spin wave gap �
	g�BHgap /�2 that provides the stability of the spin wave
spectrum with respect to the perpendicular magnetic field.
Further increase of the applied field leads to a magnetic
phase transition from a conical to a ferromagnetic state close
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to HC2. We have evaluated the major interactions of the sys-
tem �A, Da, and the spin wave gap �� from our the experi-
ment using a recently developed theory.17 We showed that
the same set of parameters with different values governs the
magnetic system in this compound. In this paper we concen-
trate on forces defining the orientation of the wave vector in
the low field range. As was shown these magnetic properties
are ruled by the anisotropy and by two types of the magnetic
susceptibility.

The major finding of the study are as follows.
�i� The anisotropy of the system decreases with the in-

crease of the Co concentration x. In our view this is related to
a local disorder induced into the system by the substitution
of the Fe by Co. The increase of the disorder results in a
random distribution of the helix wave vectors k at large x,
whereas k is oriented along the �100� axis at small x.

�ii� For all Co concentrations under study the presence of
a k flop of the helix wave vector was shown in a narrow field
range close to TC �A phase�. This k flop is well explained by
the interplay of two competing terms in the magnetic energy:

One representing the classical Zeeman energy and the other
having a quantum nature �see Eq. �1��.

�iii� The crossover behavior in the magnetization at low
temperature is also well explained by the same expression.
The agreement between the theory and experiment �Fig. 2� is
reached on both the qualitative and quantitative levels.

As a conclusion, we have demonstrated the applicability
of the new theory17 to the Fe1−xCoxSi compound. The exis-
tence of a spin wave gap and a quantum term in the magnetic
susceptibility is shown to explain the existing set of the ex-
perimental data.
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