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We consider two critical semi-infinite subsystems with different critical exponents and couple them through
their surfaces. The critical behavior at the interface, influenced by the critical fluctuations of the two sub-
systems, can be quite rich. In order to examine the various possibilities, we study a system composed of two
coupled Ashkin-Teller models with different four-spin couplings � on the two sides of the junction. By varying
�, some bulk and surface critical exponents of the two subsystems are continuously modified, which in turn
changes the interface critical behavior. In particular, we study the marginal situation, for which magnetic
critical exponents at the interface vary continuously with the strength of the interaction parameter. The behav-
ior expected from scaling arguments is checked by density matrix renormalization group calculations.
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I. INTRODUCTION

Realistic systems have a finite extent and, when they dis-
play a second-order phase transition, the critical behavior in
the boundary region is generally different from that in the
bulk. The characteristic size of this region is given by the
correlation length, which becomes divergent as the critical
temperature Tc is approached. In the vicinity of the critical
point, the singularities of local quantities, such as the surface
magnetization, are characterized by critical exponents, which
are generally different from their bulk counterparts. This type
of local critical phenomena has been thoroughly studied in
the case of a free surface through exact, field-theoretical, and
numerical methods.1–3

When a system is in contact through its boundary with
another system, the environment can influence the local criti-
cal behavior at the interface. If, however, the critical tem-
perature of the environment, Tc�, is different from Tc, the
nature of the transitions at the interface is expected to be the
same as for a surface.4 If the environment has the higher
critical temperature Tc��Tc, it stays ordered at Tc and the
interface transition has the same properties as the extraordi-
nary surface transition.1–3 In the opposite case, for Tc��Tc,
the environment is disordered at Tc and the interface transi-
tion is actually an ordinary surface transition.1–3

Here, we consider the more complex problem when the
two subsystems in contact have the same critical temperature
but not the same set of critical exponents. Thus, the compe-
tition between the two different bulk and surface critical be-
haviors may result in a completely new type of interface
critical phenomena. This problem has already been addressed
in Ref. 5 in which the analytical mean-field solution, in terms
of �k field theories, has been obtained and generalized by
using phenomenological scaling considerations. Monte Carlo
simulations have also been performed in two dimensions for
interfaces between subsystems belonging to the universality
classes of the Ising model, the three-state and four-state Potts
models.

In all these examples, the stable fixed points are related to
surface critical behavior and the expected renormalization

group �RG� phase diagram is the one given in the upper part
of Fig. 2. For weak interface couplings, the junction renor-
malizes to a cut, and we have the same local critical behavior
as for a free surface, whereas for strong couplings, the inter-
face becomes ordered at the bulk transition temperature. For
some intermediate value of the couplings, there is a special
interface transition fixed point, involving new critical expo-
nents, which, however, can be expressed in terms of the bulk
and surface exponents of the two subsystems.5

In the present work, our purpose is to examine the differ-
ent types of possible interface critical behavior which can be
realized. Thus, we consider situations where a weak interface
coupling can be irrelevant, relevant, or even truly marginal.
We are particularly interested in the latter case. A convenient
system for which all these different situations can be realized
is the two-dimensional �2D� Ashkin-Teller �AT� model6 or its
one-dimensional �1D� quantum version.7,8

By introducing two Ising variables per site, the AT Hamil-
tonian can be rewritten as two Ising Hamiltonians coupled
through a four-spin interaction,9 which is a truly marginal
operator. As a consequence, some bulk and surface critical
exponents are continuously varying functions of the strength
of the four-spin coupling �. These critical exponents are
known exactly through conformal invariance10 and
Coulomb-gas mapping.11

The composite system which we consider consists of two
AT models with the same critical temperature but different
four-spin couplings, and thus different sets of critical expo-
nents. We couple these subsystems through their surface
spins and study the critical properties at the interface while
varying the strength of the interface coupling. We first clas-
sify the possible interface critical behaviors through scaling
considerations, which are then confronted with the results of
extensive numerical calculations using the density matrix
renormalization group �DMRG�.

The structure of the paper is as follows. The AT model
and its basic critical properties are described in Sec. II. We
define the composite system and discuss its possible inter-
face RG phase diagrams in Sec. III. Results of numerical
calculations are presented in Sec. IV and discussed in Sec. V.
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II. ASHKIN-TELLER MODEL AND ITS CRITICAL
PROPERTIES

The AT model is defined in terms of two sets of Ising spin
variables �i= ±1 and �i= ±1, attached to each lattice site i.
The usual Ising interaction K��i� j +�i� j� between nearest-
neighbor sites i and j is supplemented by a four-spin inter-
action K4�i� j�i� j, which is parametrized as K4=K�. This lat-
ter term represents the product of the energy densities in the
two Ising systems. We consider the system on a square lattice
and work with the row-to-row transfer matrix T. In the
Hamiltonian limit, the transfer matrix can be written as T
�exp�−�HAT�, where � is the lattice spacing in the “time”
direction and HAT is the 1D quantum Hamiltonian given by

HAT = − �
i=1

L−1

��i
z�i+1

z + �i
z�i+1

z � − h�
i=1

L

��i
x + �i

x�

− ���
i=1

L−1

�i
z�i+1

z �i
z�i+1

z + h�
i=1

L

�i
x�i

x� . �1�

Here, �i
x,z and �i

x,z are two sets of Pauli matrices and h is the
strength of the transverse field, which plays the role of the
temperature in the classical system. One can introduce a set
of dual Pauli operators �̃i+1/2

x,z and �̃i+1/2
x,z such that

�̃i+1/2
x = �i

z�i+1
z , �i

x = �̃i−1/2
z �̃i+1/2

z ,

�̃i+1/2
x = �i

z�i+1
z , �i

x = �̃i−1/2
z �̃i+1/2

z . �2�

When the Hamiltonian in Eq. �1� is rewritten in terms of the
dual variables, the couplings Ji=1 and the transverse fields
hi=h exchange their roles. Consequently, the homogeneous
system is self-dual and the self-duality line is located at hc
=1. For −1 /�2	�	1, this is just the critical line separating
the ferromagnetic and the paramagnetic phases of the sys-
tem. In the region −1��	−1 /�2, for hc

−����h�hc
+���,

there is a so-called critical fan in which the system stays
critical.7 At the critical point, the excitation energy 
E and
the wave vector k are linearly related, 
E=vsk, and the
sound velocity is given by12

vs =
� sin�arccos ��

arccos �
. �3�

In the critical system, the basic operators are the magne-
tization Om�i�=�i

z ��i
z�, the energy density Oe�i�=�i

z�i+1
z

��i
z�i+1

z � or, through duality, �i
x ��i

x�, and the polarization
Op�i�=�i

z�i
z. The connected critical correlation functions dis-

play a power-law decay, so that �O��i�O��i+r�	− �O��i�	
�O��i+r�	�r−2x�, where x� is the anomalous dimension of
O�. Similarly, surface-to-surface correlations involve the
corresponding surface dimensions x�

s .
The critical properties of the AT model are exactly known

through conformal invariance and Coulomb-gas mapping.
The anomalous dimensions of bulk operators are given by7

xm =
1

8
, xe =

�

2 arccos�− ��
, xp =

1

4
xe. �4�

The correlation length critical exponent is related to the di-
mension of the energy density by �=1 / �2−xe� when
−1 /�2	�	1, whereas it is formally infinite in the critical
fan. True marginal behavior implies that the scaling dimen-
sion of the operator O4�i� associated with the four-spin in-
teraction �i

z�i+1
z �i

z�i+1
z keeps the constant value x4=2, the

same as for the two decoupled Ising chains.
The corresponding anomalous dimensions for surface op-

erators are13

xm
s =

arccos�− ��
�

, xe
s = 2, xp

s = 1. �5�

One may notice that the anomalous dimensions, which are �
dependent in the bulk due to the presence of the marginal
four-spin interactions, remain constant at the surface and
vice versa.

III. COMPOSITE SYSTEM AND RENORMALIZATION
GROUP PHASE DIAGRAMS

A. Ladder and chain junctions

A composite AT system is obtained by coupling two dif-
ferent semi-infinite subsystems through their surface spins.
These subsystems have the same nearest-neighbor coupling,
thus the same critical temperature. They have different val-
ues of the four-spin couplings ��−� ���+�� for z�0 �z�0� with
��−�	��+�.

The junction can be of two different kinds, ladder or chain
junction14 �see Fig. 6.1 of Ref. 15�. In the ladder junction,
there are nearest-neighbor as well as four-spin couplings be-
tween sites at i=−1 �boundary of the z�0 subsystem� and
i=1 �boundary of the z�0 subsystem�.
16� In the Hamil-
tonian limit, this corresponds to a term

V−1,1 = − J��−1
z �1

z + �−1
z �1

z + �int�−1
z �1

z�−1
z �1

z� , �6�

and the complete Hamiltonian is written as

H = HAT
�−� + HAT

�+� + V−1,1. �7�

In the case of the chain junction, we introduce an extra line
of spins at z=0, which are connected horizontally to the two
subsystems through the respective bulk couplings and there
is a two-spin interaction associated with the junction in the
vertical direction. In the Hamiltonian limit, the different
terms in HAT

�±� are extended up to i=0 and the junction in-
volves a transverse-field term

Ṽ0 = − h̃��0
x + �0

x + �int�0
x�0

x� . �8�

The ladder and chain defects are transformed into each other
through duality. In the following, we study the ladder prob-
lem as defined in Eq. �7�.

B. Basic quantities

1. Matrix elements

We are interested in the local critical behavior of the sys-
tem; in particular, we want to determine the anomalous di-
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mensions associated with the interface, xm
int for the magneti-

zation density Om�0� and xe
int for the energy density Oe�0�.

These can be deduced from the finite-size scaling of the sin-
gular part of the corresponding matrix elements:

mint�L� = �0��z�±1��0	 � L−xm
int

,

eint
x �L� = �0��x�±1��0	 − eint

x � L−xe
int

,

eint
z �L� = �0��z�− 1��z�1��0	 − eint

z � L−xe
int

. �9�

For the magnetization density, symmetry-breaking boundary
conditions are needed. �0	 is the ground state of the Hamil-
tonian in Eq. �7� and eint

x,z is the limiting value of the interface
energy density in the infinite system. We note that the two
first matrix elements can be calculated on each side of the
interface and there are two possible definitions for the energy
density, eint

x and eint
z , corresponding to vertical and horizontal

bonds in the classical model.

2. Gaps

These exponents can also be obtained by using conformal
invariance.10 The classical system composed of two semi-
infinite planes coupled by one junction is mapped through
the logarithmic transformation into two infinite strips, each
with a width L /2, coupled together by two parallel junctions
at their boundaries, and thus building a cylinder. In the ex-
treme anisotropic limit, a Hamiltonian Hcyl, similar to H in
Eq. �7�, is associated with the transfer matrix along the cyl-
inder but with two junctions and periodic boundary condi-
tions. For a ladder defect, the two junctions are of the form
given in Eq. �6�, the first between sites i=−1 and i=1 and the
second between sites i=−L /2 and i=L /2. For a chain junc-
tion, the two junctions are of the form given in Eq. �8� and
placed at i=0 and i=L /2.

In the cylinder geometry, the first gap of Hcyl scales as
1 /L for a critical system, and the prefactor is proportional to
the anomalous dimension of the magnetization at the
junction,16

E1 − E0 =
2�vs

L
xm

int. �10�

Other local exponents are similarly related to higher gaps.
Before calculating the anomalous dimensions numeri-

cally, we first consider the possible phase diagrams by study-
ing the stability of the different fixed points.

C. Two identical subsystems

We start with the symmetrical model where ��−�=��+�=�.
In this case, there are three fixed points, located at J=0, J
=1, and J=�, and corresponding, respectively, to two dis-
joint semi-infinite systems �ordinary interface transition�, to
the homogeneous system �bulk transition�, and to a system
with an ordered interface �extraordinary interface
transition�.17–19

1. Ordinary interface fixed point

At the ordinary interface fixed point, the perturbation
takes the form JOm�−1�Om�1�+J�intOp�−1�Op�1�. The first

operator, involving the product of two surface magnetization
operators, has the dimension

xint = xm
�−� + xm

�+� = 2xm
s , �11�

and, thus, the scaling exponent of J is

yint = dint − xint = 1 − 2xm
s , �12�

where dint=d−1 is the dimension of the interface. This type
of perturbation is irrelevant for yint�0, i.e., for xm

s �1 /2,
which happens for ��0, whereas it is relevant for ��0. The
marginality condition is satisfied for �=0, which is the Ising
limit. The second operator, containing the product of two
surface polarization operators, has the dimension x̃int=2xp

s

=2; therefore, this perturbation is always irrelevant.

2. Bulk fixed point

The perturbation to the bulk fixed point introduced by the

junction now takes the form 
Oe�−1�+ 
̃O4�−1�, where 


=J−1 and 
̃=J�int−�. The dimension of the first operator is
xint=xe; thus, the scaling dimension of 
 is

yint = dint − xe = d − 1 − xe = �−1 − 1. �13�

This perturbation is relevant �irrelevant� for ��1 ���1�,
i.e., for ��0 ���0�. The marginal situation corresponds
once more to the Ising limit �=0. The second operator O4

has the scaling dimension x4=2. It follows that 
̃ has the
scaling dimension ỹint=−1. Thus, the four-spin interface per-
turbation is always irrelevant as for the ordinary interface
fixed point.

3. Extraordinary interface fixed point

The stability of this fixed point is related to that of the
ordinary interface fixed point. Let us consider the chain junc-
tion in Eq. �8�. The ordered interface can be realized by

setting the transverse field at the fixed point value h̃=0. Un-
der the duality transformation in Eq. �2�, the �weak� chain
junction is transformed into a �weak� ladder junction; conse-
quently, to decide about the stability of the corresponding
fixed point, one can repeat the argument of Sec. III C 1.

4. Renormalization group phase diagram

Based on the stability analysis of the fixed points, the
expected interface RG phase diagram is depicted in Fig. 1.

When ��0 and for any interface coupling 0�J��, the
behavior at the interface is expected to be governed by the
bulk fixed point. Then, the first gap in the spectrum of the
conformal Hamiltonian Hcyl has a 1 /L dependence with a
prefactor which, according to the gap-exponent relation in
Eq. �10�, is proportional to xm.

On the contrary, for ��0, the bulk fixed point is unstable.
For weak couplings, J�1, the interface renormalizes to a cut
and the critical behavior is the same as at a free surface. The
first gap in the spectrum of Hcyl for small J can be estimated
perturbatively, as in Sec. III C 1. It behaves as the product of

the two surface magnetizations, vanishing as �L−2xm
s
, which

is faster than 1 /L since xm
s �1 /2 according to Eq. �5�. This
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indicates that the system is asymptotically breaking into two
pieces. For strong couplings J�1, the interface remains or-
dered at the critical temperature and, through duality, the gap

has also the size dependence �L−2xm
s
, which is faster than

1 /L. It corresponds to a vanishing amplitude in Eq. �10� and,
thus, to a vanishing interface magnetic exponent, a value
which is linked with the local order at the critical point.

In the limit �=0, i.e., when the AT model becomes a sys-
tem of two noninteracting Ising models, the interface cou-
pling J is a marginal perturbation and the local magnetization
exponent is J dependent,14

xm
int�J� =

2

�2 arctan2�1/J�, xe
int = 1, � = 0. �14�

Similarly, for a chain junction,14 the local magnetization ex-

ponent is h̃ dependent,

xm
int�h̃� =

2

�2 arctan2�h̃�, xe
int = 1, � = 0. �15�

The marginal operator is the local energy density, which
keeps its anomalous dimension xe

int=1, independently of the

value of J or h̃. We note that nonuniversal interface critical
behavior at a defect plane can be found in the three-
dimensional n-vector model in the limit n→�, which has
been explicitly calculated.20

D. Two different subsystems

If the two subsystems have different four-spin couplings
��−����+�, one can no longer define a bulk system fixed
point. However, the ordinary and extraordinary interface
fixed points still exist. The stability analysis of the ordinary
interface fixed point can be performed along the lines of Sec.
III C 1, leading to an interface exponent yi=1−xm

�−�−xm
�+�. The

ladder perturbation is irrelevant, i.e., the ordinary interface
fixed point is stable �unstable� for ��−�+��+��0 ��0�.

Through duality, as described in Sec. III C 3, the same type
of stability is expected to hold for the extraordinary interface
fixed point, too. Consequently, the directions of the RG flows
are analogous to the case of identical subsystems in Fig. 1;
just the role of the bulk fixed point is taken over by a new
special interface fixed point, located at Js=O�1�, which con-
trols a special transition. The expected RG phase diagram is
given in Fig. 2.

The stability or instability of the special interface fixed
point requires that the scaling dimension of the local energy-
density operator satisfies

xe
int � 1 for ��−� + ��+� � 0,

xe
int � 1 for ��−� + ��+� � 0 �16�

at this fixed point.
In the borderline case, ��−�+��+�=0, the perturbation is

marginal at the ordinary and extraordinary fixed points. It is
interesting to determine whether the interface remains mar-
ginal for any value of J, as it happens in the symmetric case.
In the truly marginal case, �i� the local magnetization expo-
nent is a continuous function of the coupling: xm

int=xm
int�J�


as in Eqs. �14� and �15�� and �ii� the scaling dimension of
the local energy-density operator has to remain constant:
xe

int=1.

IV. NUMERICAL STUDY

The calculation of the scaling dimensions associated with
the interface, xm

int and xe
int, is based on a finite-size scaling

analysis of the matrix elements of the corresponding opera-
tors, as indicated in Eq. �9�. The ground state of the system,
with a length L for the two subsystems up to 86 �38� for the
magnetization �energy� exponent, has been determined using
the DMRG method.21 In order to obtain a good accuracy, we

FIG. 1. Schematic RG phase diagram at a ladder defect with
coupling J in the critical AT model. The RG flow is different for
different signs of the bulk four-spin coupling �. When ��0, the
bulk fixed point �B� is unstable; the flow is toward the ordinary
interface fixed point �OI� when J�1 and the extraordinary interface
fixed point �EI� when J�1. When ��0, the flow is reversed and
the bulk fixed point is always stable for 0�J��.

FIG. 2. Schematic RG phase diagram at the interface between
two different critical semi-infinite AT models with four-spin cou-
plings ��−����+�. The interface coupling J is of the ladder type. The
direction of the RG flow depends on the sign of ��−�+��+�. When
��−�+��+��0, the special interface fixed point �SI� is unstable; the
flow is toward the ordinary interface fixed point �OI� when J�Js

and the extraordinary interface fixed point �EI� when J�Js. When
��−�+��+��0, the flow is reversed and the special interface fixed
point is always stable for 0�J��.
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have generally kept around m=150 states of the density
matrix.

The magnetization density has been calculated using
symmetry-breaking boundary conditions, with the two types
of spins held fixed at both ends, �±L

z =�±L
z = +1. The magne-

tization density is determined on both sides of the interface
when the system is asymmetric.

For the energy density, we eliminate the regular contribu-
tion to the ground-state expectation value in Eq. �9� by tak-
ing the difference of the values obtained for the systems with
free and fixed boundary conditions. Since the sign of the
singular part generally changes when the boundary condi-
tions are changed, a good precision can be obtained in this
way.22 As indicated in Eq. �9�, we calculate the energy den-
sity on the junction itself by taking the ground-state expec-
tation value �0��z�−1��z�1��0	 and on both sides of the inter-
face, with �0��x�±1��0	.

From the values of the singular part of the matrix element,

say, mint�L��L−xm
int

, at two different sizes, L and bL, we de-
duce effective exponents through two-point fits:

ln mint�bL� − ln mint�L�
ln b

= xm
int�L� . �17�

In order to obtain the same numerical accuracy for the dif-
ferent points, we keep the ratio b between neighboring sizes
approximately constant. The effective exponents evolve to-
ward their exact values when the mean size associated with
the two-point fit, �L	=L�b+1� /2, tends to infinity.

A. Two identical subsystems

We first check the validity of the phase diagrams given in
Fig. 1 for the interface between identical critical subsystems,
the ladder defect in an otherwise homogeneous system. We
have studied three values of the bulk four-spin coupling, �
=0.5, −0.5, and 0, and calculated the interface magnetization
and energy exponents for different values of the interface
coupling J. The results are shown in Figs. 3–5.

When �=0.5 �Fig. 3�, the perturbation is relevant and the
bulk fixed point unstable. For small values of the interface
coupling, the flow is toward a free surface behavior. For J
=0.2, the effective exponents tend to their surface values,
xm

int=xm
s =2 /3 and either xe

int=xe
s =2 when the energy operator

is the surface energy operator of one subsystem �eint
x � or

xe
int=2xm

s =4 /3 when the energy operator involves the surface
magnetization operators of the two subsystems �eint

z �. The
effective exponents converge slowly to xm

int=0 and xe
int=2,

characteristic of an ordered interface, for the highest values
of J. The interface exponents take the bulk values, xm

int=1 /8
and xe

int=3 /2, for an intermediate value of J, between 1.25
and 1.5, where the flow is toward the �unstable in the J
direction� bulk fixed point.

For �=−0.5, the bulk fixed point is stable and the effective
exponents in Fig. 4 approach the bulk values xm

int=xm=1 /8
and xe

int=xe=3 /2, independently of the value of the interface
coupling.

The Ising limit �=0 in Fig. 5 is a truly marginal situation.
As expected, the interface magnetization exponent is con-

tinuously varying with J. The extrapolated values are in
agreement with the exact results given in Eq. �14�:
xm

int�J=0.2�=0.382, xm
int�J=0.5�=0.248, and xm

int�J=1.5�
=0.07, respectively. The interface energy exponent takes the
bulk value xe

int=1, which is necessary for a true marginal
behavior at the line defect.

B. Two different subsystems

For an interface between two different subsystems, we
start with the case where ��−�+��+��0, which corresponds to
the RG flow in the upper part of Fig. 2.

The results obtained for the magnetization �energy� den-
sity exponents when ��−�=−0.25 and ��+�=0.5 are presented
in the upper �lower� part of Fig. 6. In accordance with the
RG phase diagram, for small J �J=0.2 and 0.5�, the effective
interface exponents slowly approach the surface magnetiza-
tion exponent of the right subsystem xm

s =2 /3, whereas in the
other limit �J=1.5�, they seem to converge to zero. Accord-
ing to the numerical results, the special interface transition
takes place at Js1, where the magnetization exponent is
close to xm=1 /8.

The energy-density exponents shown in the lower part of
Fig. 6 are greater for small and large values of J than for J
=1.0�Js. This behavior is expected since xe

s =2 at the ordi-

0.0 0.1 0.2 0.3 0.4
<L>

−1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x m

in
t (L

)

J=0.2
J=0.5
J=1.0
J=1.25
J=1.5
J=2.0

(a) ε=0.5

0.0 0.1 0.2 0.3 0.4
<L>

−1

J=0.2
J=0.5
J=1.0
J=1.25
J=1.5
J=2.0

0.0 0.1 0.2 0.3 0.4
<L>

−1

0.4

0.6

0.8

1.0

1.2

1.4

x ein
t (L

)

(b) (c)

FIG. 3. Interface critical behavior between two identical Ashkin-
Teller models with bulk four-spin coupling �=0.5 �relevant case�.
The upper part gives the magnetization exponents and the lower
part the energy-density exponents deduced either from eint

x on one
side of the interface �left� or from eint

z on the junction itself �right�.
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nary and extraordinary transitions, whereas the instability of
the special interface fixed point requires xe

int�1.
When ��−�+��+��0, we are in the situation sketched in the

lower part of Fig. 2 which was tested for ��−�=−0.5 and
��+�=0.25. The numerical results are presented in Fig. 7.

Here, too, the crossover effects are quite strong for the
effective magnetic exponents shown in the upper part of the
figure. For a small coupling J=0.2, the effective exponents
remain close to the surface magnetization exponent of the
��−�=−0.5 model, xm

s =1 /3, with a tendency to decrease at the
largest sizes. The value of the coupling Js at the special in-
terface fixed point is slightly higher than 1, where the effec-
tive magnetization exponents have the smallest finite-size
corrections and the extrapolated value is a little below xm
=1 /8.

The stability of the fixed point of the special interface
transition is related to the value of the energy-density expo-
nent xe

int, which is shown in the lower part of Fig. 7. Except
for j=0.2, the effective exponents extrapolates to values
larger than 1, in agreement with the stability analysis in Eq.
�16�. For J=1.0, one obtains xe

int=1.10�2�, which corresponds
to a crossover exponent yi=−0.10�2�. This small �negative�
value of the crossover exponent explains the slow conver-
gence of the effective magnetization exponents in the upper
part of Fig. 7.

For the marginal situation where ��−�+��+�=0, we consid-
ered two cases, ��+�=0.25 and 0.5. The results are shown in
Figs. 8 and 9, respectively.

The magnetic exponents seem to vary continuously with
J, without evidence of crossover effects at large sizes. The

possibility that this system is truly marginal is supported by
the behavior of the effective energy exponents which, what-
ever the value of J, extrapolate to a value compatible with
xe

int=1.

V. DISCUSSION

One interesting feature of the interface critical behavior in
the AT model is that the local critical exponents are continu-
ously varying with the strength of the junction when the sum
of the four-spin couplings vanishes, even in the asymmetric
case. Here, we discuss the possible origin of this truly mar-
ginal behavior.

We consider a somewhat different setting, where the sys-
tem is semi-infinite and consists of two subsystems with the
shape of corners, −��z�0,0�y��, and 0�z�� ,0�y
��, connected by a chain junction along the sides at z=0.
We are interested in the behavior of the generalized corner
exponent xm

c , measured at y=z=0. Under a logarithmic con-
formal mapping, the critical semi-infinite system is trans-
formed into a strip with open boundaries at i= ±L /2 and a
chain junction at i=0. In the Hamiltonian limit, the strip

Hamiltonian Hstr involves a transverse field h̃ at i=0,
whereas the two ends of the chain are free. In the following,

we calculate the first gap 
E�h̃� of Hstr, perturbatively for a
small transverse field, and deduce the local scaling dimen-
sion xm

c through the gap-exponent relation of Eq. �10�, where
2� has to be replaced by �, the actual angle in the mapping
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of the semi-infinite system. To calculate the gap, we first
perform the duality transformation in Eq. �2�. The trans-
formed chain has fixed boundary spins at i= ±L /2 and a

�weak� defect coupling of strength h̃ at i=0. The first gap is
given by the difference of the ground-state energies with

antiparallel and parallel boundary conditions: 
E�h̃�=E0
↑↓

−E0
↑↑. Actually, antiparallel boundary conditions are applied

to one type of spin variables, say, �, while parallel boundary
conditions are always applied to the � spin variables. To
leading order, only the � spin variables contribute to the
difference of the ground-state energies and we obtain


E�h̃� = 2ms
�−��L/2�ms

�+��L/2�h̃ = 2a�−�a�+��L/2�−xm
�−�−xm

�+�
h̃ ,

�18�

where ms
�±��L /2�=a�±��L /2�−xm

�±�
is the surface magnetization

in a critical chain with length L /2, when the spin of the same
type on the other end is fixed in the up state. The second-
order term vanishes since even contributions to E0

↑↑ and to

E0
↑↓ are exactly the same. Only odd powers of h̃ are present.

The leading behavior of the gap in Eq. �18� depends on
the value of xi=xm

�−�+xm
�+�. For xi�1, the first gap vanishes

faster than 1 /L; thus, xm
c =0 and the junction is ordered. This

happens for ��−�+��+��0 and corresponds to the upper part
of Fig. 2. On the contrary, for xi�1, the gap has a decay
slower than 1 /L; thus, according to Eq. �10�, the interface
exponent xm

int is formally divergent to leading order of the
perturbational calculation. This indicates that the extraordi-

nary interface fixed point with h̃=0 is unstable, a situation
which corresponds to the lower part of Fig. 2. In the mar-

ginal case xi=1, up to first order in h̃, the local exponent has
the variation

xm
c = 4h̃

a�−�a�+�

�vs
+ O�h̃3� , �19�

where the coefficients a�±� are O�1�.
In the Ising limit ��±�=0, a�±�=1 and, with the parametri-

zation chosen for the quantum Hamiltonian, vs=2. Thus, we

obtain xm
c �h̃�= 2h̃ / � +O�h̃3�, which is the leading contribu-

tion to the exact result:23 xm
c �h̃�=1− 2

� arctan�h̃−1�.
In the asymmetric marginal case, ��−�+��+�=0, we also

have a continuous variation of the leading contribution to xm
c

with h̃. We also expect a truly marginal local critical behav-
ior in this case. This assumption is supported by the fact that
the second-order term of the expansion is vanishing due to
symmetry. In the marginally relevant or irrelevant cases, the
second-order term of the expansion is usually diverging as
log L;24 however, for a marginally irrelevant perturbation, the
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FIG. 6. Interface critical behavior between two Ashkin-Teller
models with four-spin couplings ��−�=−0.25 and ��+�=0.5 �relevant
case�. The upper part gives the magnetization exponents calculated
either on the left �full symbols� or on the right �open symbols� of
the interface. The lower part gives the energy-density exponents
deduced from eint

x on the two sides of the interface �left� or from eint
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on the junction itself �right�.
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singular terms are expected to sum up to a regular contribu-
tion. In our case, we expect a truly marginal behavior and
continuously varying local scaling exponents also for the
ladder junction studied numerically in Sec. IV.

There are other systems from which similar composite
critical systems can be built and for which a truly marginal
interface critical behavior could be obtained. Let us mention
the 2D XY model with different temperatures, say, T�−� and
T�+�, both lower than the Kosterlitz-Thouless temperature.
Another example is the XXZ chain with different anisotropies
on the two sides of the junction. One may notice that the AT
Hamiltonian can be transformed into a staggered XXZ model
through a duality transformation of the � spins followed by a
duality transformation on all the spins.7 Finally, let us men-
tion the Potts model in the Fortuin-Kasteleyn representation,
for which the number of states q becomes a continuous pa-
rameter. Taking two subsystems with q states on one side and

4−q states on the other, since
xm

s �q�=1− �2 /��arccos��q /2�,25 one has xm
s �q�+xm

s �4−q�=1.
It follows that the junction is a marginal perturbation at small
coupling. In this case, however, the central charges of the
conformal field theory at the two sides of the junction are
different; therefore, it needs further investigations to decide
if the perturbation remains truly marginal for any coupling
strength, as observed in the symmetric Ising limit q=2.
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