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Any antiferromagnet with zero net magnetic moment exhibits limited response to an external homogeneous
magnetic field. This changes dramatically in the presence of defect sites, even those that carry no spin. We
examine the excess susceptibilities, longitudinal and transverse, due to one or more defects at arbitrary sepa-
rations in a finite Ising chain with nearest-neighbor couplings. Adapting matrix methods to finite chains we
derive exact formulas valid at all T�0.
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I. INTRODUCTION

Antiferromagnets generally have a Stot=0 ground state1

and are insensitive to weak external fields at finite tempera-
tures. This is not the case for defective antiferromagnets in-
cluding those with rough surfaces or spin vacancies in the
bulk. In principle, a detailed study of the anomalous magne-
tization of defective antiferromagnets should be capable of
yielding important information on the nature and positions of
the defects.

Experimental evidence from Knight shift data and nu-
merical calculations using Monte Carlo methods for sam-
pling large numbers of spins have shown that any missing
spin in an antiferromagnet generates a “ghost” spin distrib-
uted among a large number of neighbors.2–4 Regardless of
whether the original spins are quantum or classical, the ghost
acts like a classical dipole centered at the defect site, satis-
fying a Curie law �=C /T at low temperatures. If the defects
lie on distinct sublattices, the ghosts tend to cancel one an-
other, while if they lie on the same sublattice, the net mag-
netization is enhanced. Thus they carry both a magnitude and
a phase.

Clearly the most interesting applications are to isotropic
antiferromagnets in three dimensions, in which long-range
ordering occurs below some Néel temperature TN. The mag-
netization of one or more defects in such lattices should il-
luminate the short- and long-range orderings of the host
spins and should be quite interesting in the neighborhood of
the critical point. But the theory of such systems is notori-
ously difficult even in the absence of any defects. The only
statement one can make with certainty is that the total
ground-state spin in a Heisenberg antiferromagnet on a bi-
partite lattice must be s�NA−NB�, given s the magnitude of an
individual spin and Nj their number on the j sublattice
�j=A or B�.1 It would be nice to be able to generalize this to
finite T and obtain the response to homogeneous fields,
�0�T�, as a function of the number and placement of missing
spins.

Before undertaking this task we have worked out exact
results in one dimension for an idealized antiferromagnetic
polymer. One-dimensional �1D� isotropic models have been
studied before,5–8 exhibiting some interesting and somewhat
surprising features. In particular, nonmagnetic defects �such
as magnetic ion vacancies� exhibited a Curie-like suscepti-
bility at low temperatures, with a Curie constant that in fact

was not constant but logarithmically dependent on T. Our
exact calculations do not show this effect. However, the Ising
model for which we obtain an exact solution does not have
continuous symmetry.

In our model, the magnetic degrees of freedom are those
of an Ising chain. Our study involves, first, a simple adapta-
tion of the transfer matrix method to obtain the thermody-
namic properties of a finite chain in a magnetic field. Second,
we make use of the Jordan-Wigner transformation9 to obtain
the transverse susceptibility. For a given distribution of de-
fects there are differences and similarities between the lon-
gitudinal and transverse susceptibilities. The principal results
of this paper concern single defects and pairs of defects
whether on the same or on opposite sublattices. Generaliza-
tion to more than two defects involves a simple extension of
the methods that are outlined below.

II. ISING CHAIN IN LONGITUDINAL FIELDS

A. Susceptibility of a chain with free ends in a longitudinal
field

Let us consider an Ising chain of N spins with an external
magnetic field parallel to the axis of quantization. The sys-
tem’s Hamiltonian is given by

Ĥ = − J�
n=1

N−1

�n�n+1 − H�
n=1

N

�n,

with �n= ±1. We are mainly interested in the antiferromag-
netic case, J�0, where even the smallest numbers of defects
can have a large effect on the over-all susceptibility. This is
not the case in ferromagnetism �J�0�. The partition function
is most conveniently written in terms of the transfer matrix

V̂ = �eK+h e−K

e−K eK−h � ,

where K= J
T , h= H

T , and T��−1 is the temperature. The last
spin “connects” to the first one by the following matrix ob-

tained as the limiting case of V̂ at K=0:

D̂ = �eh 1

1 e−h � .

The partition function is then given by
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ZN = Tr�V̂N−1D̂	 .

If, instead of a chain with free ends, cyclic boundary condi-

tions are imposed, one just replaces D̂ by V̂ to obtain the
usual expression. In either case, the trace is most conve-

niently evaluated if we first diagonalize the matrix V̂:

X̂−1V̂X̂ = ��+ 0

0 �−
�, X̂ = �c1+ c1−

c2+ c2−
� .

Here

�± = eK cosh h ± 
e2K sinh2 h + e−2K,

c1± =
1


1 + e2K��± − eK+h�2
,

c2± =
eK��± − eK+h�


1 + e2K��± − eK+h�2
.

When h→0, �±→eK±e−K, c1±→ 1

2

, and c2±→ ± 1

2

. Note
that, for T→0 and h→0, ��+� and ��−� are of the same order
of magnitude.

The matrix D̂ in the basis, where V̂ is diagonal, takes the
form

X̂−1D̂X̂ = �a+ b

b a−
� ,

with

a± = ehc1±
2 + 2c1±c2± + e−hc2±

2 ,

b = ehc1+c1− + c1−c2+ + c1+c2− + e−hc2+c2−.

When h→0, a±→1±1 and b→0.
The partition function is given by

ZN = a+�+
N−1 + a−�−

N−1,

whereas for cyclic boundary conditions one would have
ZN

c =�+
N+�−

N. The magnetic susceptibility is defined as

�N = −
1

T2� �2FN

�h2 �
h=0

, �1�

where FN=−T ln ZN is the free energy. In order to evaluate
�N we will need to know the following derivatives:

� ��±

�h
�

h=0
= 0,

� �2�±

�h2 �
h=0

= �e−K ± eK�e2K,

� �a±

�h
�

h=0
= 0,

� �2a±

�h2 �
h=0

= ± e2K�2 − e2K ± e−2K� .

Then we will have

�N
� = 
 1

T

�+
N−1�2a+

�h2 + �N − 1�a+�+
N−2�2�+

�h2 + �−
N−1�2a−

�h2

a+�+
N−1 


h=0

and, finally,

�N
� =

e2K

T
�N − sinh 2K + 2 sinh2 K�tanh K	N−1� . �2�

This result is to be compared with the susceptibility for cy-
clic boundary conditions:

�N
�c =

e2K

T
N

1 − �tanh K�N

1 + �tanh K�N .

In particular, we have �N=0
� =�N=0

�c =0, �N=1
� =�N=1

�c =1 /T, and
�N=2

� �K�=�N=2
�c �K /2�. The latter equality shows that, for the

chain with N=2, the cyclic boundary condition is equivalent
to taking into account the coupling between spins twice.
When K→0 and the chain behaves as N independent spins,
both �N

� and �N
�c tend to N /T.

B. Ising chain with one defect in a longitudinal field

The change in susceptibility caused by the introduction of
a defect at site i �1� i�N� is given by

	�i,N
� = �i−1

� + �N−i
� − �N

� =
e2K

T
�− 1 − sinh 2K

+ 2 sinh2 K��tanh K	i−2 + �tanh K	N−i−1

− �tanh K	N−1�� . �3�

Let us specialize to antiferromagnetic coupling J=−�J�. At
T=0 the analysis is straightforward. We distinguish special
cases. When both i and N are odd, T	�i,N

� =−1. In this case
the defect separates two spin segments with even numbers of
spins, while the defectless chain has an uncompensated spin
�susceptibility of a single spin is �N=1

� =1 /T�. In all other
cases, T	�i,N

� =1. When N is odd and i is even, then each of
the two spin segments contains uncompensated spin and so
does the defectless chain. When N is even, then, independent
of the parity of i, only one of the segments has an uncom-
pensated spin, while the defectless chain does not have one.
Therefore, in this model, the single-defect-induced change in
susceptibility of an antiferromagnetic chain equals the sus-
ceptibility of a single spin—provided N is even.

The same results hold for an odd-length “defect cluster”
�an odd-numbered sequence of contiguous missing spins� in
an even-length chain. However, if the length of such a cluster
is even, there is no defect-induced change in susceptibility,
provided the defects separate two spin segments also of even
lengths. But with equal likelihood, if the two spin segments
each contain odd numbers of spins, the net change in T��

will be 2.
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Now we turn to finite temperature T�0. Then, if
N
 i
1, Eq. �3� reduces to

	�i,N
� =

e2K

T
�− 1 − sinh 2K� .

Now, the product T	�i,N
� , which measures the Curie con-

stant �itself proportional to the square of the effective dipole
constant of the defect, as a function of T�, turns out to be the
most informative quantity to plot. In Fig. 1 the solid line
indicates this product T	�i,N

� as a function of K for the inter-
esting regime of antiferromagnetic coupling, K�0. At high
temperature, when the coupling is weak compared to the
temperature �K→0� all spins behave independently of one
another and 	�i,N

� →−1 /T simply because the defectless
chain contains one more spin compared to the chain with a
defect. It must be noted that the low-temperature limit can
differ in detail from the case T=0 analyzed above, because
T=0 is the critical point at which the one-dimensional sys-
tem undergoes a phase transition.

C. Ising chain with two defects in a longitudinal field

Consider two defects at sites i and i+m, respectively. The
change in the chain’s succeptibility due to the defects is

	��i,i+m�,N
� = �i−1

� + �m−1
� + �N−i−m

� − �N
� =

e2K

T
�− 2 − 2 sinh 2K

+ 2 sinh2 K��tanh K	i−2 + �tanh K	m−2

+ �tanh K	N−i−m−1 − �tanh K	N−1�� .

When T�0, m� i, and N
 i
1, this expression reduces to

	��i,i+m�,N
� =

e2K

T
�− 2 − 2 sinh 2K + 2 sinh2 K�tanh K	m−2� .

�4�

In Fig. 2 is shown T	��i,i+m�,N
� as a function of K for

negative K �antiferromagnetic coupling�. When K→0 �high
temperatures�, this magnitude tends to −2. This limit is ob-
vious, as all spins behave independently of one another.
When �K�
1, T	��i,i+m�,N

� →1+ �−1�m /2. One can see that
the larger is m, the wider is the temperature range, where the
change in susceptibility does not depend on the parity of m
such that the changes in susceptibility for m and for m±1
coincide. In this range the dependence of T	��i,i+m�,N

� on K

approaches 2T	�i,N
� �K� �cf. Fig. 1� shown in Fig. 2 by the

dotted line. The interpretation is straightforward: when the
distance separating the two defects exceeds the correlation
distance in the spin chain, they become independent. Thus,
one can consider Fig. 2 as an illustration of the fact that the
correlation distance in the system is increasing as the system
is approaching the critical point at T=0.10,11

III. ISING CHAIN IN TRANSVERSE FIELDS

A. Susceptibility of a chain with free ends in a transverse field

Next we consider a one-dimensional Ising chain of N at-
oms with free ends, subject to an external magnetic field
perpendicular to the axis of quantization. Following Ref. 12,
we start with the Hamiltonian

Ĥ = − J�
n=1

N−1

Sn
xSn+1

x + B�
n=1

N

Sn
z .

Using the Jordan-Wigner transformation9,12

-10 -8 -6 -4 -2 0

-1.0

-0.5

0.0

0.5

⊥

||

T
∆χ

||
,T

∆χ
⊥

K

FIG. 1. Changes in longitudinal �	�i,N
� , solid line� and trans-

verse �	�i,N
� , dashed line� susceptibilities �multiplied by tempera-

ture, T� induced by introduction of a defect at site i into Ising chain
consisting of N spins �N
 i
1� as functions of K=J /T.
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FIG. 2. �Color online� Changes in longitudinal susceptibilities
�multiplied by temperature T� induced by introduction of two de-
fects at sites i and i+m, respectively, into Ising chain consisting of
N spins �N
 i
1� as functions of K=J /T for odd �solid lines� and
even �dashed lines� m. Dotted line shows 2T	�i,N

� �K�.
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Sj
− = cj exp�i��

r�j

nr�, Sj
+ = �Sj

−�†,

Sj
z = 2nj − 1, nj = cj

†cj ,

the Hamiltonian is rewritten in terms of spinless fermion
operators cn

† and cn:12

Ĥ = − J�
n=1

N−1

�cn
†cn+1

† + cn
†cn+1 + cn+1

† cn + cn+1cn�

+ B�
n=1

N

�2cn
†cn − 1� .

This Hamiltonian is a special case of the quadratic form

Ĥ = �
n,m=1

N �cn
†Anmcm +

1

2
�cn

†Bnmcm
† + H.c.�� − BN ,

with

Â =�
2B − J 0 0 . . . 0 0

− J 2B − J 0 . . . 0 0

0 − J 2B − J . . . 0 0

. . .

. . .

. . .

− J 2B

� ,

B̂ =�
0 − J 0 0 . . . 0 0

J 0 − J 0 . . . 0 0

0 J 0 − J . . . 0 0

. . .

. . .

. . .

J 0

� .

Diagonalization of this quadratic form proceeds through di-

agonalization of the matrix D̂= �Â− B̂��Â+ B̂�:12,13

D̂ =�
4B2 − 4BJ 0 0 . . . 0 0

− 4BJ 4�B2 + J2� − 4BJ 0 . . . 0 0

0 − 4BJ 4�B2 + J2� − 4BJ . . . 0 0

. . .

. . .

. . .

− 4BJ 4�B2 + J2�

� . �5�

Consider first the case N=2. The eigenvalues of the ma-
trix �5� give squares of the normal-mode energies

E±
2 = 2�J2 + 2B2� ± 2�J�
J2 + 4B2.

In terms of the new operators describing fermionic excita-
tions in the system, the Hamiltonian takes the form

Ĥ = E+�b+
†b+ −

1

2
� + E−�b−

†b− −
1

2
� .

The partition function is given by

Z2 = 2 cosh �
E+ + E−

2
+ 2 cosh �

E+ − E−

2
.

According to Eq. �1�, magnetic susceptibility is defined
through the second derivative of the free energy with respect
to magnetic field:

d2F2

dB2 = − T

d2Z2

dB2 Z2 − �dZ2

dB
�2

Z2
2 .

We then have

�dE±

dB
�

B=0
= 0,

�d2E±

dB2 �
B=0

=
4

�J�
,

dZ2

dB
= ��dE+

dB
+

dE−

dB
�sinh �

E+ + E−

2

+ ��dE+

dB
−

dE−

dB
�sinh �

E+ − E−

2
,
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�d2Z2

dB2 �
B=0

=
8 sinh �J

TJ
.

Thus, the susceptibility is given by

�N=2
� =

2 tanh �J

J
. �6�

When �J→0, the two spins become independent from one
another and �N=2

� →2 /T.
Now consider the case N�2. Then, as shown in the Ap-

pendix, the eigenvectors of the matrix �5� are


q =�
sin Nq

sin�N − 1�q
.

.

sin q
� .

Its eigenvalues give squares of the normal-mode energies

Eq
2 = 4�B2 + J2� − 8BJ cos q .

The allowed values of the quantum number q are to be found
by solving the following equation:

sin Nq =
B

J
sin�N + 1�q .

As B→0, the allowed values of q become q=�l /N, where
l=1, . . .,N−1. In terms of the new operators describing fer-
mionic excitations in the system, the Hamiltonian takes the
form

Ĥ = �
q

Eq�bq
†bq −

1

2
� .

The free energy is given by

FN = − T�
q

ln�2 cosh
�Eq

2
� .

In order to calculate the magnetic susceptibility, we need to
know its derivatives with respect to magnetic field. We thus
obtain

dFN

dB
= − �

q

1

2
tanh

�Eq

2
� �Eq

�B
+

�Eq

�q

dq

dB
� ,

d2FN

dB2 = − �
q

�

4 cosh2 �Eq

2

� �Eq

�B
+

�Eq

�q

dq

dB
�2

− �
q

1

2
tanh

�Eq

2
� �2Eq

�B2 + 2
�2Eq

�B�q

dq

dB
+

�2Eq

�q2 � dq

dB
�2

+
�Eq

�q

d2q

dB2� ,

� �Eq

�B
�

B=0
= −

2J cos q

�J�
,

� �2Eq

�B2 �
B=0

=
2 sin2 q

�J�
,

� �Eq

�q
�

B=0
= 0,

� �2Eq

�q2 �
B=0

= 0,

� �2Eq

�B�q
�

B=0
=

2J sin q

�J�
,

and14

� dq

dB
�

B=0
=

sin q

NJ
.

The susceptibility is given by

�N
� =

1

T cosh2 �J
�

q

cos2 q +
N + 2

N

tanh �J

J �
q

sin2 q .

�7�

For B→0 the summations in Eq. �7� can be evaluated
exactly:

�
q

cos2 q = �
l=1

N−1

cos2 �l

N
=

N − 2

2
,

�
q

sin2 q = �
l=1

N−1

sin2 �l

N
=

N

2
.

Therefore, the susceptibility is given by

�N
� =

N − 2

2

�

cosh2 �J
+

N + 2

2

tanh �J

J
. �8�

Note that Eq. �6� turns out to be a special case of Eq. �8�.
This latter can be compared with the transverse succeptibility
of a chain with cyclic boundary condition12

�N
�c =

N

2

�

cosh2 �J
+

N

2

tanh �J

J
. �9�

Equations �8� and �9� are both O�N� in the limit N
1. Fur-
thermore, when �J→0 and the chain behaves as N indepen-
dent spins, both �N

� and �N
�c tend to N /T. The difference in

Eqs. �8� and �9� reflects the contributions of the two ends of
the finite chain.

B. Ising chain with one defect in a transverse field

The change in susceptibility caused by an introduction of
a defect at site i �2� i�N−1� is given by
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	�i,N
� = �i−1

� + �N−i
� − �N

� = −
3

2

�

cosh2 �J
+

1

2

tanh �J

J
.

�10�

In Fig. 1 by dashed line is shown T	�i,N
� as a function

of K��J for K�0 �antiferromagnetic coupling� and
2� i�N−1. When the coupling is weak compared to the
temperature �K→0� all spins behave independently of one
another and 	�i,N

� →−1 /T, just as in the case of longitudinal
susceptibility. When T→0, the susceptibility of each defect-
less segment is finite and T	�i,N

� →0.

C. Ising chain with two defects in a transverse field

Consider two defects at sites i and i+m, respectively. The
change in the chain’s susceptibility is

	��i,i+m�,N
� = �i−1

� + �m−1
� + �N−i−m

� − �N
�.

When m�2, this expression reduces to

	��i,i+m�,N
� = − 3

�

cosh2 �J
+

tanh �J

J
. �11�

In the range m�2 this result is independent of m. It is in-
structive to compare this observation with the case of longi-
tudinal susceptibility. While in the case of the longitudinal
succeptibility the two defects behave as independent only for
relatively weak coupling, in the transverse case the defects
are independent for every m�2 in the entire range of K.

As Eq. �8� is not valid for N�2, the cases m=1 and
m=2 need special consideration. For m=1, we get

	��i,i+1�,N
� = − 2

�

cosh2 �J
,

while, for m=2,

	��i,i+2�,N
� = −

5

2

�

cosh2 �J
+ � −

1

2

tanh �J

J
.

In Fig. 3 we exhibit T	��i,i+m�,N
� as a function of K��J

for negative K �antiferromagnetic coupling�. When m=2,
there is a single spin in the middle of the chain disconnected
to all the other spins. The behavior of this single, decoupled,
spin determines the limit of T	��i,i+m�,N

� for �K�
1. All other
limits are analyzed in the same way as was done in the case
of a single defect.

IV. DEFECTS: ADDITIONAL CONSIDERATIONS

Thus far, we have been interested in changes in magnetic
susceptibilities induced by defects placed at fixed positions
in the chain. Now suppose that the defects are mobile. Then
the question arises: what is the most favorable configuration
of n defects which yields the minimum of the free energy? In
an external magnetic field this will be determined by a com-
petition between the tendency to minimize the number of the
broken bonds and that to minimize magnetic energy in an
external field. If the defects are charged, one has also to take
into account the electrostatic energy of their interaction.

If the defects carry no charge, then it does not take a
calculation to see that, in zero external field and at arbitrary
T, all defects would migrate to one end or the other of the
chain to minimize the number of broken bonds. Thus the
chain again becomes compact but shorter by n. However, if
each defect carries a charge q, such phase separation in-
creases the electrostatic energy greatly.

Now let us show that the magnetic energy, although much
smaller, favors configurations in which the defects are all
next-nearest neighbors. One can think of the magnetic en-
ergy �in an external field V=−1 /2	�H2� as a temperature-
dependent potential energy. Figure 2 for longitudinal fields
shows that even spacings m minimize V compared to odd
m’s. Moreover, m=2 yields the lowest V at any fixed T. From
this we infer that the minimum magnetic energy of n defects
occurs when they are situated at j , j+2, . . . , j+2�n−1�, for
any j far from the ends �N
 j
1�. This result is quite intui-
tive, as it also yields n−1 isolated spins embedded between
the defects and all lying on the same sublattice, a configura-
tion with the maximal possible Curie constant for n defects.
The transverse case is very much the same: although Fig. 3
for transverse fields shows no generalized magnetic force
between any pair of defects separated by more than two sites,
nearest-neighbor positioning of defect sites �m=1� is disfa-
vored. The lowest magnetic energy is therefore, once again,
achieved when the separations are precisely 2. Thus the n
defects would minimize the transverse magnetic energy by
positioning themselves at j , j+2, . . . , j+2�n−1�, with n−1
free spins embedded within. But do recall that this particular
configuration of n defects has the greatest number of broken
bonds, and hence in vanishing magnetic field H=0, it has the
highest possible free energy.

V. DISCUSSION

Recently the literature on the Knight shift in defective
antiferromagnets was nicely summarized by Anfuso and
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FIG. 3. �Color online� Changes in transverse susceptibilities
�multiplied by temperature T=�−1� induced by introduction of two
defects at sites i and i+m, respectively, into Ising chain consisting
of N spins �2� i� i+m�N−1� as functions of K=�J for m=1
�solid line�, m=2 �dashed line�, and m�2 �dotted line�. The dotted
line also corresponds to the dependence 2T	�i,N

� �K� �cf. Fig. 1�.
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Eggert3 in their Letter concerning vacancies in the 2D �and
1D� Heisenberg models. These authors examined the devia-
tions in sublattice magnetization surrounding the impurities
by means of quantum Monte Carlo calculations.

The present paper is limited to 1D. The calculations were
nontrivial, as first it was necessary to adapt the formulas in
the transfer matrix formulation to free-ends boundary condi-
tions and to do the same in the fermionic normal-mode
analysis for the transverse susceptibility. Our formulas are in
closed form on an anisotropic model, as opposed to numeri-
cal results on an isotropic model. Despite these differences,
our calculations do confirm Refs. 2 and 3 on the whole and
do shed some additional light on this interesting physical
situation. In our model, with its discrete symmetry, the non-
magnetic defects also produce ghost spins. These satisfy Cu-
rie’s law, with Curie’s constants being truly constant at low
temperatures.

Unfortunately neither the transfer matrix formalism nor
the Jordan-Wigner transformation can be extended to point
defects in 2D and 3D. In ongoing work we are utilizing an
entirely different approach based on the isotropic spherical
model of Berlin and Kac,16 after noting that their method has
proved useful in the study of the closely related spin
glasses12 and that it also correctly predicts the lack of long-
range order in 1D and 2D, while yielding a mean-field-like
phase transition in 3D antiferromagnets that are devoid of
frozen-in defects.
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APPENDIX: EIGENVALUE PROBLEM

�i� Define the symmetric cyclic matrix as follows:

Cnm = cn−m, m,n = 1, . . . ,N ,

c−k = ck, k = 1 − N, . . . ,N − 1,

ck = cN−k, k = 1, . . . ,N − 1,

ck = ck+N, k = 1 − N, . . . ,− 1.

Then the eigenvalue problem

�
m=1

N

Cnm
m = �
n

reduces to

�
k=n−N

n−1

ck
n+k = �
n,

which has solutions of the type 
n=aeiqn with the eigenval-
ues

�q = �
k=n−N

n−1

cke
iqk. �A1�

�ii� For a symmetric cyclic matrix with c0=4�B2+J2�,
c1=−4BJ, and c2= ¯ =cN−2=0,15 Eq. �A1� with
n=2, . . . ,N−1 yields

�q = 4�B2 + J2� − 8BJ cos q .

Equation �A1� with n=1, N gives the allowed values of q:

ql =
2�l

N
.

�iii� Let Cnm be the symmetric cyclic matrix defined
above. Define Dnm as

Dnm = Cnm, n = 2, . . . ,N − 1, m = 1, . . . ,N ,

D11 = 4B2,

D12 = DNN−1 = − 4BJ ,

D1m = 0, m = 3, . . . ,N ,

DNm = 0, m = 1, . . . ,N − 2,

DNN = 4�B2 + J2� .

The eigenvalue equations

�
m=1

N

Dnm
m = �
n,

with n=2, . . . ,N−1, are equivalent to those for Cnm and have
solutions of the type 
n=aeiqn+be−iqn with the eigenvalue
�q=4�B2+J2�−8BJ cos q. The same equation with n=N
yields a /b=−e−2iq�N+1�, or 
n= ã sin q�N+1−n�, whereas
from the equation with n=1 we get the condition for allowed
values of q:

sin qN =
B

J
sin q�N + 1� .

The eigenvectors are enumerated by positive quantum num-
bers q. When B→0, the allowed values of q become
q=�l /N, where l=1, . . . ,N−1. In this case the first row as

well as the first column of the matrix D̂ becomes trivial
�cf. Eq. �5�	 and we obtain N−1 nontrivial eigenvalues and 1
zero eigenvalue.
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