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Field-induced incommensurate order for the quasi-one-dimensional XXZ model
in a magnetic field
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We investigate phase transitions of the quasi-one-dimensional S=1/2 XXZ model in a magnetic field, using
bosonization combined with a mean-field treatment of the interchain interaction. We then find that the field-
induced incommensurate order is certainly realized in the low-field region, while transverse staggered order
appears in the high-field region. On the basis of the result, we discuss the field-induced phase transition

recently observed for BaCo,V,Og.
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I. INTRODUCTION

Field-induced phase transitions in quantum spin systems
have been providing interesting physics, such as magnon
Bose Einstein condensation.! Recently, an exotic field-
induced phase transition was observed for BaCo,V,0s,”
which can be regarded as a quasi-one-dimensional (1D)
S=1/2 XXZ antiferromagnt having Ising-like anisotropy
A=2; magnetization and electron spin resonance (ESR)
measurements above 1.8 K show that BaCo,V,0g is basi-
cally described by the Bethe-ansatz-based theoretical
analysis.> However, specific heat measurements up to 12 T
below 1.8 K reveal that the weak 3D couplings possibly trig-
ger an exotic incommensurate (IC) order in the low-field
region.* A peculiar point about this phase is that the ordering
is different from the Néel type at zero magnetic field, and the
shape of the phase boundary in the H-T plane is quite differ-
ent from the usual field-induced order in the coupled
Haldane system.® This suggests that the Ising-like anisotropy
in the quasi-1D system plays an essential role in the field-
induced IC order phase, behind which there is substantially
important physics.

The 1D XXZ antiferromagnet is an exactly solved model
playing the essential role to understand the critical quantum
fluctuation and strong correlation effects.®-8 Although the
Ising-like anisotropy favors z-directed Néel (z Néel) order at
zero magnetization, the magnetic field beyond the critical
field H, recovers the critical quantum fluctuation (see Fig. 1)
and then the system is described as a Tomonaga-Luttinger
(TL) liquid,” which is characterized by power-law decay of
the correlation functions:
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where 7 is the TL exponent, M is the uniform magnetization
due to a magnetic field H, and the corresponding Fermi wave
number is ky= 7(1/2—M,). The nonuniversal coefficients A
and B were evaluated in Ref. 9. For the isotropic Heisenberg
model, 7<<1 is always satisfied and thus the transverse fluc-
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tuation of (2) is dominant. For the Ising-like case, however,
n>1 appears in the low-field region, where the longitudinal
IC fluctuation becomes dominant. In the actual quasi-1D
compound, there is necessarily interchain interaction, which
may bring a finite-temperature phase transition accompany-
ing the field-dependent IC order.

In this paper, we investigate the field-induced IC order for
coupled XXZ chains, using bosonization combined with a
mean-field treatment of the interchain interaction.'® In par-
ticular, we make a quantitative analysis of the transition tem-
peratures, taking account of the nonuniversal coefficients in
(1) and (2). We then find that the IC order is certainly real-
ized in the low-field region, in contrast with Ref. 11, where
the possibility of IC order was not taken into account, while
transverse staggered order appears in the high-field region.
Moreover, we show that the present theory successfully ex-
plains the field dependence of the experimentally observed
transition temperature. We also determine the interchain cou-
pling of BaCo,V,04 as 0.09 K.

This paper is organized as follows. In Sec. II, we explain
the model and the mean-field theory for the interchain inter-
action on the basis of bosonization. In Sec. III, the magnetic-
field dependences of the transition temperatures are pre-
sented for the IC order and the transverse staggered order.
Then the IC order of BaCo,V,0g is discussed in detail. In
Sec. IV, we summarize our conclusions and discuss related
topics.
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FIG. 1. (Color online) Exact magnetization curve M, critical
exponent 7, and spin wave velocity v for the XXZ chain of A=2.

©2007 The American Physical Society


http://dx.doi.org/10.1103/PhysRevB.76.224411

KOUICHI OKUNISHI AND TAKAHUMI SUZUKI

II. MODEL AND FORMULATION

The relevant model we consider here is weakly coupled
S=1/2 XXZ chains on a simple cubic lattice; its Hamiltonian
is given by

H= EJ(Snj n+l])A+ 2 J(Snj n])A stnja

mj n(j")
(3)

where (S-S),=5"S"+5"S"+AS%S* is the deformed inner
product. The index » runs along the chain direction, j labels
the interchain direction, and {j,;') denote the nearest-
neighbor pairs of the chains. Then J is the exchange coupling
along the chain direction and the interchain interaction is
controlled by J' (<J). Note that we set the lattice space to be
unity.

Let us discuss the order-disorder transition in H>H.,.
Since a simple cubic lattice is considered, we can set up the
“subchain” mean fields as S, ;=M,+4S,;, where M, is a
classical vector field. We assume IC oscillation of the mag-
netization of the z component around the uniform(average)
magnetization,

M, =[M_xmj. cos(2kzn)]e., (4)

where m;. is the amplitude of the IC fluctuation around the
average magnetization M, and the sign depends on the sub-
chain. Also, for the transverse staggered fluctuation, we as-
sume

Mn =Mzezi (_ )nmsex’ (5)

where my is the amplitude of the staggered magnetization in
the transverse direction. Then a mean-field treatment of the
interchain coupling yields the mean-field Hamiltonian per
chain as

Hyr=Hip + Hiys (6)

where

Hip= 2 J(S, - Sp)s—HX S (7)

is the 1D XXZ chain in an effective magnetic field H and
H|/., is the perturbation originating from the mean fields. For

the IC order, we have H=H-zAJ "M, and

Hi=—h; >, cos(2kn)S; +const, (8)

where h;,,=zAJ'm. Note that the coordination number is
z=4 for 3D. These effective fields should be determined
self-consistently. Also, for the transverse staggered fluctua-

tion, we have H= H-zAJ'M_ and

H,=— hsz (=)"S> + const 9)

with h,=zJ"m.

In order to treat the IC nature in the mean-field Hamil-
tonian, it is useful to employ an effective model in the con-
tinuum limit. This is achieved by the standard bosonization
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scheme.'2 Assuming H—H > h,, or h,, we can write the XXZ
chain in the magnetic field as

HID - % f dx[((?xqs)z + ((9):0)2]5 (10)

where v is the spin wave velocity and the compactification
radius R is defined by the boundary condition ¢(x+L)
=¢(x)+7RN. The equal-time commutator of the bosonic
fields is defined as [ p(x), 0(y)]=i®(x—y), where O(x—y) is
the step_ functlon For the XXZ model, the radius varies,
R=1/\m—1/ \477 as the magnetic field increases from H,
to the saturation (free-fermion) limit. The TL exponent is
given by n=2mR>.

The boson representation of the spin operators is given by
the formulas

SE=M,+ Gupln )+acos<M—2an), (11)
27R R
S; _ (_ )nbeiZﬂ'RH(n)’ (12)

where a and b are nonuniversal coefficients depending on A
and H. Using (11) and (12), the amplitude of the equal-time
correlation function is given by A,=a?/2, By=b?/2 with the
regularization

o —ak
f dkS—(1 = cos kx) =In x, (13)
O k

where « is a cutoff parameter. Although the analytical ex-
pressions for these coefficients in the magnetic field are still
unknown, the numerical values are available in Ref. 9, they
play a crucial role in semiquantitative evaluation of the tran-
sition temperature, as will be seen later. Substituting (11) and
(12) into (8) and (9), we obtain the boson field representation
of the perturbations,

Hi’c—>—ahl-cfdx cos(%), (14)

H, H—bhsfdx cos(2mRE), (15)

where we have omitted the 2k, and 4k oscillating terms.
Let us consider the effects of H,.,, on the Hamiltonian
(10). The gap generated by the staggered field (15) was
analyzed in Ref. 13 to be AE,~ hZ/4 7. Also, for the
operator of cos(¢/R), a similar standard renormahzatlon
group argument leads to AE;.~ R4 Both of the opera-
tors are always relevant between H,. and the saturation
field. In the lower-field region, however, »>1 and thus
2/(4=1/75)<2/(4-m); The IC field is more relevant in the
low-field region, while the transverse staggered field is more
relevant in the high-field region. The border is just n=1,
namely, an effective SU(2) point. For the case of A=2, it
corresponds to H/J=1.5 as in Fig. 1. This analysis of the
gap is consistent with the naive expectation of the critical
exponent 7, which leads to IC order in the low-field region.
For a quantitative analysis, however, the coefficients of the
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gaps become important. It should also be noted that the as-
sumption H—H,.> h,.,h, is not valid in the vicinity of the
lower critical field.

Now we proceed to finite-temperature behaviors. In the
framework of the mean-field theory, A;. or i, should be de-
termined self-consistently. We write the IC magnetization of

(6) at T, H, and h; as f,(T,H,h,), and the staggered
magnetization at T, H, and h, as f,(T,H,h,). The self-
consistent equations are written as m;.=f;(T,H,h;) and
my=f,(T,H,hy), combined, respectively, with h;, =zAJ m;,
and hy=zJ'my. Taking the h;.,h;— 0 limits, we can determine
the transition temperatures

B 1

ZJ A Xlu ZJ/ _Xs7 (16)
where Xic= afic/(?hic|hic=0 and Xs= afs/(?hs|hr=0'
According to the linear response theory, the dynamical sus-
ceptibility can be represented through the correlation func-
tion: x,p5(q,w;T)==iZ, [ die"" " O (1){[S*(n,1),5(0,0)])r,
where (- -+); denotes the average at a temperature 7. For the
TL Hamiltonian (10), this dynamical susceptibility was actu-
ally calculated in Refs. 12 and 14. For the estimation of the
transition temperature, the susceptibility in the soft mode is
essential: for the IC order, w=0 and g=2kz, and for the
staggered order, =0 and ¢= . Taking account of (13), the
explicit form of the leading term becomes

Xic = Xzz(sz’ 0 5 T)

A 27T\ (1 1\?
=— sin Bl —.1-—], (17
v 277 v 4n 7

B, 27T\ 72 2
= Xu(m,0;T) = — s1n< 7”]><l> B(ll,l - 17) ,
v 2 v 4 2

(18)

where B(x,y) is Euler’s beta function. Note that the cutoff
parameter in (17) and (18) formally corresponds to =1, due
to the regularization (13). The magnetic-field dependence is
implicitly included in v, 7, A;, and B, Substituting the
above susceptibilities into (16), we obtain the final result for
the transition temperatures:

c /2 1\2|7er
7<Cu>=L[ZAJ/ m( 1__)] ’
2m v 47’ 29

(19)

sin(7n/2 2|12
o ZJ’BOMB 241 . (20)
¢ 2w v 4 2

In the above expression, 7 and v can be exactly calculated
by solving the Bethe ansatz integral equation as in Fig. 1. In
addition, the nonuniversal amplitudes A; and B, can be
obtained by using the density matrix renormalization group
and the bosonization expression of the correlation function
for the open boundary system.” We can thus calculate 7,
quantitatively without any additional parameter. Here it
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FIG. 2. (Color online) Transition temperatures for A=1.05, 1.5,
2.0, and 3.0 with J'=0.01. The intrachain coupling J is set to unity.
The solid and broken lines, respectively, represent Tiic) and Tﬁs). The
vertical dotted lines for A=2.0 and 3.0 indicate the critical field H..
H, for A=1.05 and 1.5 is not shown here, since it is located in
vicinity of H=0. The horizontal axis is normalized by the saturation
field H,.

should be noted that the previous estimation for Tis) was
based on the correlation amplitude at zero magnetic field for
A<1M

III. RESULTS
A. Phase diagram

On the basis of (19) and (20), we calculate the magnetic-
field dependences of the transition temperatures of J'=0.01
for various A. The correlation amplitudes are extracted from
the correlation functions obtained via the density matrix
renormalization group, as mentioned in the previous section.
In Fig. 2, we show the resulting phase diagrams in the 7-H
plane, where the solid and broken lines, respectively, indicate
(19) and (20), and the magnetic field is normalized by the
saturation field H,. The curve corresponding to the higher 7,
is realized as an actual order-disorder transition. In the fol-
lowing, we concentrate on the order-disorder transitions be-
tween the critical field H,. and the saturation field H,. Thus
the z Néel phase of M=0 below H, is not shown here ex-
plicitly. In addition, note that H,. for A=1.05 and 1.5 is in
vicinity of H=0 in the scale of Fig. 2.

In Fig. 2, we can see that IC order certainly occurs above
the critical field H,.. For A=1.05, the IC order appears in the
vicinity of H=H_.=0. As A increases, the transverse stag-
gered order is suppressed, while the IC order develops rap-
idly and the corresponding range of H extends to the higher-
field region. An unportant feature of the IC order is that the
field dependence of T(“ illustrates a characteristic curve;
T<’C) has a maximum near H,, and it decreases rapidly as H
increases. This shape of the phase boundary should be con-
trasted with the semicirclelike boundary for the field-induced
staggered order in the coupled Haldane system. On further
increasing H, the curves for T(’c) and T< intersect at a certain
magnetic field, which is denoted as H" henceforth and trans-
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verse staggered order appears for H >H>H". We can also
see that, as A becomes large, H" shifts to the higher-field
side.

The behaviors above are basically consistent with the ar-
gument based on the TL exponents of the XXZ chain, since
the region of 7> 1 appears above the critical field H, and it
extends rapidly to the higher-field 51de as A is increased.
However, it should be noted that H" does not coincide with
the effective SU(2) point m=1. This is because 7=1 is
achieved at the effective field theory level and thus A; # By is
permitted even at =1, in contrast to the isotropic Heisen-
berg chain at zero field having SU(2) symmetry at the spin
operator level. Since the correlation amplitude A; has a
larger value than B (e.g., see Fig. 2 i in Ref. 9), T(’C) is more
enhanced than Tﬁs, implying that H slightly shlfts to the
higher-field side of the effective SU(2) point. In this sense,
the precise amplitudes are essential in the interchain mean-
field theory. In addition, we can see that A in (19) is also a
source of such an enhancement of the IC order.

We next discuss the interchain-coupling dependence of
transition temperatures. According to Egs. (19) and (20), the
precise J' dependences are given by T(“)OCJ 7271 and
TiY)OCJ "1/2=1) 5o that the scale of the transition temperature
naturally becomes large, as J' is increased. In particular, we
can see that Ti’c) is more easily lifted toward the higher-field
region where 7<<1, since, as mentioned above, the IC order
is basically enhanced by the correlation amplitude A, and the
anisotropy A. However, we should remark that such en-
hancement of Ti,”) in the interchain mean-field theory does
not always lead to a clear observation of the IC order for a
larger J'; we need to pay special attention to the stability of
the IC order. Let us recall that the spin-flop transition occurs
for the case of spatially isotropic exchange coupling (J=J'),
where the magnetization directly jumps from the z Neel
phase of M =0 to the transverse staggered ordered state. This
suggests that the IC order becomes thermodynamically un-
stable beyond a certain critical J ".15 50 that it is embedded in
the magnetization jump. Unfortunately, the critical J' cannot
be determined within the framework of the mean-field theory
for the interchain coupling, since analytical calculation of the
free energy is still a difficult task. In the next section, never-
theless, we shall show that stable IC order actually occurs in
the experimental situation of BaCo,V,Og.

B. Comparison with experiment

Let us discuss the field dependence of the transition tem-
perature of BaCo,V,0g. The basic parameters were deter-
mined by magnetization and ESR measurements.’ The ex-
change coupling in the chain direction is given by /=65 K
and the precise anisotropy parameter is A=2.17. The critical
field is H.=3.9 T and the saturation field is about 23 T
with g=6.2. In addition, we have actually calculated the
correlation amplitudes for A=2.17. In Fig. 3, the field
dependence of the transition temperature for J'=0.09 K
(J'/J=0.001 38) is illustrated, together with the experimen-
tal data, where the solid and broken lines indicate (19) and
(20), respectively.
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FIG. 3. (Color online) Transition temperatures for the IC and
transverse staggered orders. The solid and the broken lines, respec-
tively, represent Tffc) and T(C’) for A=2.17 and J'/J=0.001 38. The
vertical dotted line indicates H.=3.9 T. The solid circles indicate
the experimentally observed transition temperature (Ref. 4) and the
solid triangles mean the phase boundary between the z Néel order
and the field-induced IC order.

In the left side, with H,. corresponding to the solid tri-
angles, the z Néel order occurs at which the uniform magne-
tization is zero. Note that the transition temperature to the z
Néel phase at H=0 is about 5.4 K, which is much higher
than Ti’c). Above H,, the z Néel order is destroyed by the
magnetic field and then we come into the targeted region of
the present theory. The solid circles indicate the experimental
transition temperature up to 12 T. We can see that the theo-
retical curve (19) excellently reproduces the experimental re-
sults, implying the interchain mean-field theory is basically
correct for 3D. A remarkable point is that the shape of the
experimental phase boundary is consistent with the theoreti-
cal curve for IC order; as H increases above H,, Tiw) de-
creases rapidly from 7=1.7 down to 0.4 K. The above facts
support the idea that the IC order driven by the one-
dimensionality can be thermodynamically stabilized in the
experimental situation. Another interesting point is that, on
further increasing H, the theoretical curves for T(’C) and T(S)
intersect at H* =15.1 T, which predicts that transverse stag-
gered order appears above H=15.1 T. In order to verify the
theory, a specific heat measurement in a higher field is highly
desirable. However, the value of Tis) is relatively low and
thus the experimental observation in the competing region
may be difficult.

IV. SUMMARY AND DISCUSSIONS

We have discussed field-induced IC order on the basis of
bosonization combined with mean-field theory for the inter-
chain interaction. In particular, the numerically exact corre-
lation amplitudes play a crucial role in explaining the shape
of the experimental phase boundary. In order to investigate
the IC order beyond the mean-field level, we have also per-
formed quantum Monte Carlo (QMC) simulations based on
the directed loop algorithm. Then we confirmed that the IC
order actually occurs for J'/J=0.1."® We can therefore con-
clude that field-induced IC order is certainly realized in the
actual system and the interchain mean-field treatment cap-
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tures its essential nature. The interchain coupling of
BaCo,V,04 estimated within the mean-field theory is
J'=0.09 K.

From the theoretical point of view, the phase transition for
the 3D classical spin model with easy-axis anisotropy was
intensively studied in 1970s, in the context of the spin-flop
transition.'” The low-magnetization state is unstable in the
3D isotropic lattice system and the magnetization jumps di-
rectly from the z Néel to the spin-flopped state. The spin-flop
transition also occurs for the 2D Ising-like XXZ model on the
isotropic square lattice at zero temperature.'® The present
result implies that, as the 1D fluctuation is enhanced, the IC
order—the spin version of the charge density wave
(CDW)—emerges in the phase diagram. Of course,
BaCo,V,0g is insulating, and thus the mechanism is attrib-
uted to the nesting of “spin” itself. In this sense, the present
IC order is very similar to that in the spin-Peierls system.'”
However, the driving mechanism is the interchain spin-spin
interaction itself rather than a spin-phonon coupling in the
spin-Peierls case. Since the interchain interaction favors
transverse staggered order as well, the spin-flop transition
may be induced with a certain finite interchain coupling, im-
plying that the thermodynamic stability of the IC order is a
nontrivial question. The present result demonstrates that the
IC order based on the 1D mechanism is certainly stabilized
in the actual experimental situation. For the quasi-1D spin
model, the Fermi wave number kr can be easily controlled
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by the magnetic field, in contrast with the CDW in the me-
tallic system. A further experimental study, particularly neu-
tron scattering experiment in a magnetic field, would be
highly interesting. In addition, the connection to the spin-flop
transition in the high-field region is also a theoretically im-
portant problem, although the experiment for BaCo,V,0Og
suggests a weak first-order transition at H, accompanying the
spin-lattice coupling, which may cooperatively stabilize the
incommensurate order.

Finally, we remark that our theory is valid not only for
similar quasi-1D systems with easy-axis anisotropy, but also
for a class of frustrated systems. In fact, frustrated systems
are often mapped onto an effective XXZ model, for which IC
order is actually known.?2?! This enhancement of the IC
fluctuation is also reported for an anisotropic S=1 chain.?
We hope that the rich physics associated with spin anisotropy
and quantum fluctuation can be developed by more theoret-
ical and experimental research.
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