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In this paper, a simple spin-spin Ising interaction model for the surface ferromagnetism is combined with the
bulk Au diamagnetic response to model the size dependence of the magnetization of a Au nanoparticle. Using
the maximum entropy formalism, we obtain the average temperature dependent magnetization within a mean
field model. Our results qualitatively reproduce recent experimental observations of size-dependent magneti-
zation of Au nanoparticles in which the ferromagnetic moment of thiol-capped nanoparticles is seen to increase
for diameters larger than 0.7 nm, peaking at approximately 3 nm, and subsequently decreasing as the particle
diameter increases further.
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I. INTRODUCTION

The experimental observation of ferromagnetic moment
formation at the nanoscale in Au nanoparticles is an interest-
ing departure from the bulk behavior of gold, which is dia-
magnetic. The measured magnetization is strongly size de-
pendent, increasing with particle diameter at the smaller
nanoparticle sizes, peaking at approximately 3 nm for Au-
thiol nanoparticles, and subsequently decreasing with in-
creasing nanoparticle size.1 The latter observation is consis-
tent with the expected behavior that as the nanoparticle size
increases, the Au atomic configuration approaches that of the
bulk gold lattice. This has been confirmed by using x-ray
photoemission spectroscopy2,3 measurements of the nanopar-
ticle size dependence of the Au cluster electron binding en-
ergies �relative to bulk�.

There have been several ideas set forth as to the cause of
the observed ferromagnetic moment in Au nanoparticles.
These range from the Fermi hole charge imbalance at the
surface1,4 to Hund’s rule electron filling at the smaller
scales.5 Also, it has been acknowledged that the large surface
to volume ratio, and thereby surface coordination number,
plays an important role in the magnetic moment size depen-

dency, given that magnetic moments arising from a net spin
polarization in surface atoms are not fully quenched, in con-
trast to the quenching observed in core lattice arrangements.
Another possible cause is the increased charge localization
and the metal-insulator transition postulated at the extreme
small scale, reported for Au nanoparticles to be �3 nm in
diameter.1 This effect shows up at intermediate scales in a
tight binding model as a band narrowing.6

The most important quantum-mechanical aspect of the
problem is to characterize the underlying physical mecha-
nism that accounts for the ferromagnetic behavior of gold
nanoparticles. The causes for the ferromagnetic moment for-
mation will be discussed in more detail in a forthcoming
article.7 In a related work, we have performed detailed elec-
tronic structure calculations, reported elsewhere,8 of gold
clusters of different sizes that support a model where
changes in cluster geometry, compared to that of bulk gold,
are coupled to the appearance of localized magnetic mo-
ments. As cluster size increases, the onset of a distinct core-
shell separation is observed, where the magnetic moments
are essentially localized on the surface and there is a prefer-
ential ferromagnetic interaction.
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In this paper, we present a statistical-mechanical model of
the size dependence of the ferromagnetic moment, itself of
theoretical and experimental interests, which depends on a
few key assumptions about the microscopic behavior of the
system. A statistical model that accounts for the most rel-
evant features of the system must describe the core and sur-
face effects in a consistent way. The size-dependent magne-
tization in gold should exhibit a transition from the
nanodomain, where ferromagnetic behavior has been ob-
served, to the bulk diamagnetic behavior. In nanoparticles,
core atoms are characterized by a relatively high coordina-
tion, while surface atoms exhibit lower coordination as well
as reconstruction effects. Due to the existence of these two
different atomic environments, the numeric core to surface
atomic ratio becomes a key parameter. As this ratio in-
creases, the core should resemble the geometric and elec-
tronic properties of the bulk, with the magnetization becom-
ing essentially associated with the surface atoms. According
to this simple argument, the size dependency of magnetiza-
tion observed in gold nanoparticles is the result of a delicate
balance between the number of atoms in the surface and the
core.

Based on our results and the experimental observations,
we propose an Ising Hamiltonian model that describes sur-
face and core spin-spin interactions, where the total magne-
tization includes a diamagnetic contribution that will depend
on the ferromagnetic long-range magnetic field. This effec-
tive magnetic field created by the surface atoms will induce a
diamagnetic response of the core atoms in a way analogous
to the effect of the Weiss field. Thus, we systematically ac-
count for the surface and core effects and interactions be-
tween the two regions. For ease of calculations and in order
to obtain analytical expressions, we apply mean field aver-
aging techniques to obtain temperature dependent magneti-
zation. The use of statistical-mechanical methods in the lit-
erature to study pure and bimetallic nanoparticles is well
documented, e.g., Refs. 9–12. It reproduces in a semiquanti-
tative way the most striking experimental result, i.e., the
size-dependent magnetization in gold nanoparticles.

Section II of this paper presents the model Hamiltonian
and the mean field statistical treatment that we use to calcu-
late the magnetization of nanoparticles with a dominant fer-
romagnetic exchange interaction within a frozen-core ap-
proximation. Section III considers more general models of
nanoparticles where variable exchange mechanisms of
surface-core spin interactions are considered. Section IV
states the conclusions of our work.

II. THEORY: MEAN FIELD MODEL

A. Model Hamiltonian

A model Hamiltonian for the nanoparticle must include
the ferromagnetic exchange interaction of the spins at the
surface layer. The range of the spin-spin ferromagnetic inter-
action for Au has been postulated from the Fermi hole model
to be �

kF
, or approximately 1.5 nm.1 The surface spins are

then assumed to be in a shell near the surface.
Based on the physical assumptions described in the Intro-

duction, we consider as our starting point a semiclassical

Ising spin-spin interaction model such as the one considered
in Ref. 13, with the additional assumption that there is no
external magnetic field, so that the Zeeman interaction term
is absent. The total Hamiltonian can be partitioned into a
surface and a core term H=Hs+Hc, where

Hs = − �
i

Ns

��
j

Ns

Jij
s S� i · S� j −

1

2�
i

Ns

�
j

Nc

Jij
csS� i · S� j + �

i

Ns

ks�n̂r · S� i�2,

Hc = − �
i

Nc

��
j

Nc

Jij
c S� i · S� j −

1

2�
i

Ns

�
j

Nc

Jij
scS� i · S� j − �

i

Nc

kcSzi

2 , �1�

where the symbol �� indicates a restriction i� j in the indi-
ces, and g is an appropriated gyromagnetic factor, such that

the magnetic moment per atom is obtained as �� i=gS� i.
This Hamiltonian contains interactions between core and

surface spins and both surface and core anisotropy terms.13

The anisotropy terms represent the competition between lin-
ear and radial orientations of the core and surface spins
which are assumed to coexist in the nanoparticle; moreover,
kc and ks are the anisotropy constants of the core and surface
spins, respectively, and n̂r is a unit vector specifying the local
radial direction on the surface of the nanoparticle. The inter-
action terms are partitioned into Ns�Ns−1� surface atom in-
teractions, NsNc core atom interactions with the surface at-
oms, and Nc�Nc−1� core atom interactions with coupling
functions Jij

s , Jij
cs, Jij

sc, and Jij
c , respectively. The total number

of spins is N=Ns+Nc, and we assume that the ferromagnetic
interaction parameters Jij

x �0, where x=s ,c ,cs ,sc are con-
stants.

The atomic core to surface ratio can comprise two cases:
Ns�Nc�N and Nc�Ns. The latter case �Nc�Ns�, valid for
extremely small nanoparticles �a few tens of atoms�, will not
be explored in this paper. Following Ref. 14, the surface
anisotropy terms in Eq. �1� are assumed to be aligned along
the radial �n̂r�, whereas the bulk anisotropy is considered to
be unidirectional and chosen to lie along the ẑ axis in this
work. Based on the Hamiltonian given by Eq. �1�, we now
focus on developing expressions for the magnetization in the
partitioned regions of the surface and the core, with the in-
clusion of the respective anisotropies.

B. Surface and total magnetic moment

In this section, we focus in the treatment of the magneti-
zation arising from the surface atoms neglecting any interac-
tion with the core atoms. The surface-core interactions rep-
resented by the exchange terms Jsc and Jcs of Eq. �1� will be
considered in subsequent sections. The calculation of distri-
bution functions and observables obtained from the mo-
ments, such as the magnetization and the energy, can be per-
formed by utilizing the maximum entropy method or
analogously the information theoretic approach.16 Utilizing
this maximum entropy approach, the resulting spins at each
site are being taken as S= ±�= ±1. The Gibbs-Boltzmann
form of the entropy to be maximized for the surface spins is
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� = − kB�
ij

Ns

nij
s ��i,� j�ln nij

s ��i,� j� , �2�

where nij
s are joint probability distributions for the two par-

ticle interaction Hamiltonian in Eq. �1�. This entropy is
maximized given the constraints on the energy of the system
as represented by the interaction Hamiltonian. Mean field
approximations of the type we use here are extensively de-
scribed in the literature, e.g., in Ref. 17, so we present only a
brief account of the method including the surface terms that
are absent in lattice models.

To obtain the mean field result, we first average the first
term �the interaction term� of Eq. �1�, which becomes

�i
Ns� j

NsJsS� i �S� j�, and assuming that the surface spin average

�S� j�, it can be written in terms of a constant surface magnetic

moment per atom. With �s as �S� j�=g�s, we obtain the fol-
lowing expression for the mean field surface Hamiltonian in
the preferred ẑ direction �ignoring the interaction with the
core�:

HS
MF = − �

i

Ns 1

g
JsSiNs�s + �

i

Ns

ks��n̂r · S� i�2� . �3�

In the above expression, Ns is the number of magnetic sur-
face atoms. Maximization of the single spin entropy �=
−kB�i

Nsni
s��i�ln ni

s��i� including the mean field Hamiltonian
as a constraint leads to the following expression:

�� + ��	�HS
MF�	 
 0. �4�

Solving Eq. �4� using Eq. �3� and the single spin entropy
� of Eq. �2� leads to the following expression for the least
biased distribution ni

s���:

ni
s��� = exp�	��1/g�Js�iNs�s + ghz�i − �1 + ��2/8�	2�1/g2�


�ksNs
2�s

2��� , �5�

where the inverse temperature is 	= 1
kBT and the last term

�1+ �2

8
�2�ksNs

2�s
2� is obtained from averaging the anisotropy

term ��n̂r ·S� i�2�, as shown in the following. The averaged sur-
face anisotropy can be projected into the applied external
field direction under consideration. Rewriting the radial nor-
mal vector as n̂r= n̂z · cos−1��i�, the ẑ component of the spin is
obtained by

�n̂r · S� i�2 = �cos−1��i� · Szi
�2. �6�

The average of the squared term �cos−1��i� ·Szi
�2 in the

previous equation is related to the variance var by the fol-
lowing expression:

var = ��cos−1��i� · Szi
�2� − ��cos−1��i� · Szi

��2, �7�

where var scales as the inverse temperature 	. At low tem-
peratures, this will lead to a comparatively negligible contri-
bution, and we can write approximately

��cos−1��i� · Szi
�2�  ��cos−1��i� · Szi

��2

=��
0

� �
0

2� cos−1��i�
4�

sin��i�d�id�i�Szi
��2

.

�8�

At strong enough external fields or interactions, the angles �i
will be small, making it possible to approximate the inverse

cosine as �cos��i�	−11+
�i

2

4 after truncation to lowest order
of a series expansion in �i. Performing the integration with
these expressions substituted gives the averaged anisotropy
in the distribution of Eq. �5�.

The surface ferromagnetic polarization can be obtained
from the spin distributions directly, given that the magnetic

moment is defined as �s=
ni

s�↑�−ni
s�↓�

ni
s�↑�+ni

s�↓��B, where �B is the Bohr

magneton. We are then led to the following ferromagnetic
mean field result:

�s = tanh�	�1

g
JsNs�s + ghz�� , �9�

which is to be solved self-consistently or alternately by pa-
rametrizing the argument of the hyperbolic function,

�s = tanh�� ,

 = 	�1

g
JsNs�s + ghz� , �10�

and plotting the two equations. The value of the ratio JS /kBT
is chosen to give the order of magnitude observed experi-
mentally for the magnetic moment.15 All calculations are
done with g=1, and the number of surface atoms is related to
the radius of the nanoparticle as explained below. The inter-
section of the two curves gives the self-consistent magneti-
zation moment, as shown in Fig. 1. Note that this plot cor-
responds to a zero external magnetic field and that the
averaged anisotropy term has been factored out. This would
also occur if we had not averaged the anisotropy term, as any
�2 terms will not contribute to the polarization given that

-2 -1 0 1 2
Ξ

-1

-0.5

0

0.5

1

Μ

FIG. 1. Magnetic moment vs =	JsNsMs. The saturation mag-
netization is the solution of the intersection of the two parametrized
curves. For size dependence calculations and varying number of
atoms, a root finder is used to solve the self-consistent mean filed
magnetization equation.
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�= ±1, and �2= +1 can also be factored from the resultant
distributions.

The total magnetization can be obtained if one considers
that the nanoparticle consists of the surface shell of ferro-
magnetically ordered spins and the core contribution, which
in bulk Au is diamagnetic. The diamagnetic response of bulk
gold is induced by an external field, but in the case of a
nanoparticle, it is a response to the Weiss field created by the
surface spins. The effective field induces a core diamagnetic
contribution to the total magnetization provided that the fer-
romagnetism persists in the outer �surface� shell of spins.
This picture of ferromagnetic outer shell and an internal core,
which behaves as the bulk diamagnetic gold, is supported by
detailed ab initio density functional calculations performed
on 38 atom and 68 Au atom nanoparticles.8 As the size of the
nanoparticle increases, the core contribution becomes domi-
nant and the entire particle is diamagnetic.

We can write the total magnetization Mt as the sum of the
individual magnetic contributions Mt=Ms+Mc from the sur-
face and the core magnetizations. The surface magnetization
Ms=Ns�s is given by the mean field result in Eq. �9�. The
core magnetization can be obtained from the effective field

hef fective=�Ms= �̃JsNsMs and the diamagnetic susceptibility
per unit volume �D,

Mc = �Dhef fective = �D�̃JsNsMs,

�D = −
e2

12�mc2�3Nc

�
�1/3

, �11�

where � and �̃ are two phenomenological constants with
units of �D

−1 and ��DE�−1, respectively, and the gold suscep-
tibility is approximated as that of an electron gas given by
Eq. �11�.15 The total magnetization is now,

Mt = Ms + �D�̃JsNsMs, �12�

and it can be seen to depend only on the surface magnetiza-
tion which is ferromagnetic. The total magnetic moment per
atom �t=

Mt

Nt
is dependent on the number of surface and core

atoms Nt=Ns+Nc. Using Eqs. �11� and �12�, it can be written
as

�t =
Ns

Nt
�s�1 − �JsNs�Nt − Ns�1/3	 , �13�

where we have explicitly written the negative diamagnetic
susceptibility in terms of Nt and Ns and combined the con-
stants of the diamagnetic susceptibility into a different con-

stant �= 31/3e2

12�4/3mc2 �̃, which has units of E−1 and an approxi-
mate value of �−1=1
10−6 KJ /mol for the parameters used
in this work.

The total number of atoms is related to the size of the
nanoparticle as Nt= � R

rs
�3, where R is the nanoparticle’s radius

and the parameter rs is obtained from the density ��� relation
�

4
3�rs

3=1. The number of surface atoms is then related by the
density to the total number of atoms approximately as Ns
�4Nt

2/3. The ratio of surface to core atoms as well as Au-Au
bond lengths �approximately 2.88 Å for our Au nanopar-

ticles� can also be used to estimate the radial parameter. As
an example, for Au nanoparticles with a 1.4 nm diameter,
75% of the atoms lie on the surface, giving a value for the
radial parameter rs of 0.2107 nm. The total magnetic mo-
ment per atom �Eq. �13�	 can be plotted as a function of the
number of atoms �or diameter�. The results depicted in Fig. 2
show how our model reproduces, in a qualitative manner, the
size dependence observed experimentally. Figure 2 indicates
a net increase in magnetic moment at the very small scale �or
small total number of atoms� in the nanoparticle, a pro-
nounced peak with increasing number, and a subsequent de-
crease as the number of atoms increases into the hundreds of
atoms. The effect in the size dependence of the inclusion of a
core diamagnetic response due to the surface magnetic
�Weiss� field is shown in Fig. 3 for varying values of �, the
field-combined constants of the diamagnetic susceptibility.

III. COUPLED MODELS OF SURFACE AND CORE
INTERACTIONS

In several types of nanoparticles such as ferrites and fer-
romagnetic single domain core particles as well as bulk para-
magnetic particles, differing ferromagnetic and antiferromag-
netic exchange mechanisms are assumed to couple the
surface and core spin interactions, giving different magnetic
behaviors for different material nanoparticles.18 Examples of
the need to include surface-core interactions through an ex-
change mechanism are found in single domain ferromagnetic
nanoparticles in which the partitioning into surface and core

FIG. 2. Magnetic moment per atom as a function of nanoparticle
diameter �nm�. Js=0.01 and 	=0.0025 in arbitrary units.

FIG. 3. Magnetic moment per atom as a function of nanoparticle
diameter �nm� for different values of �. Js=0.01 and 	=0.0025 as
in Fig. 2. The curves correspond to �=1
10−6 �solid line�, �=5

10−7 �dashed line�, and �=1
10−7 �dotted line�.
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interaction terms allows the modeling of surface effects sepa-
rately from core or bulk effects. Also, oxidized surface nano-
particles have been described utilizing antiferromagnetic ex-
change interactions between the surface and the core.19

Interesting magnetic behavior in nanoparticles of different
metallic materials can be described by partitioned surface-
core Hamiltonians such as the full Hamiltonian of Eq. �1�
with the exchange terms explicitly represented by the
surface-core interactions.

Small gold nanoparticles similar to the ones considered in
this study have been reported to exhibit ferromagnetic mo-
ments independent of the external field applied at Refs. 1 and
20. It is interesting to examine the resulting expressions for
the magnetization obtained upon inclusion of an antiferro-
magnetic surface and core interaction term in the Hamil-
tonian. In order to achieve this, it is necessary to modify the
Hamiltonian with terms corresponding to surface-core inter-
actions Jsc, Jcs as in Eq. �1�. Making use of the simplified
mean field approach as before and performing the corre-
sponding maximization procedure, the following surface and
core least biased distribution functions are obtained,

ni
s��� = exp�	��1/g�Js�iNs�s + �1/g�Jcs�iNc�c + ghz�i

− �1 + ��2/8�	�ksNs
2�s

2/g2��� , �14�

ni
s��� = exp�	��1/g�Js�iNs�s + �1/g�Jcs�iNc�c + ghz�i

− ks�cos−1��i��2��i�2	� , �15�

ni
c��� = exp�	��1/g�Jc�i

cNc�c + �1/g�Jsc�i
cNs�s + ghz�i

c

+ kc��i
c�2	� , �16�

where the unaveraged surface and core anisotropy terms
have been included in the distributions given by Eqs. �15�
and �16�, respectively. In Eq. �16�, �i

c denotes the spin vari-
able.

The surface �s and core �c polarizations can be obtained
from the spin distributions as before,

�s = tanh�	�1

g
JsNs�s +

1

g
JcsNc�c + ghz�� ,

�c = tanh�	�1

g
JcNc�c +

1

g
JscNs�s + ghz�� . �17�

The sign of the Jc interaction term determines the magnetic
behavior of the core. A positive value �Jc�0� corresponds to
a ferromagnetic core nanoparticle, while a negative value
�Jc�0� would represent an antiferromagnetic interaction in
the core “sublattice” region. Given that, in our treatment, the
nanoparticle’s Hamiltonian has been partitioned into a sur-
face ferromagnetic region and a core that behaves more like
diamagnetic bulk gold, we can assume a zero valued core
spin-spin interaction such that Jc=0. This approximation is
appropriate as long as the “surface” comprises all the layers
of spins that exhibit the ferromagnetic interaction. If, how-
ever, the surface is considered to consist of only the surface

layer of atoms, a nonzero interaction constant Jc�0 would
have to be included in order to treat the outer layers of core
spins. The general expression for the surface magnetic mo-
ment per atom can be rewritten as

�s = tanh�	�1

g
JsNs�s + JcsNc tanh�	�1

g
JcNc�c

+
1

g
JscNs�s + ghz�� + ghz�� . �18�

This expression can be simplified by truncation of the expan-
sion of the hyperbolic tangent �tanh�x	x− x3

3 + ¯ � defining
�c in Eq. �13� to first order for small values of the argument.
Assuming Jc=0 and no external fields �such that we are solv-
ing for the spontaneous magnetization�, the following self-
consistent mean field result for the surface magnetization is
obtained,

�s = tanh�	�1

g
JsNs�s +

1

g
Jcs�Nt − Ns�	JscNs�s�� ,

�19�

which can be solved as before. The diamagnetic response of
the core can be accounted for by specifying that the interac-
tion of the surface with the core be negative Jsc�0. Using
the definition for the total magnetization moment per atom
�t=

Ns

Nt
�s+

Nc

Nt
�c, and substituting for �c and Nc as before, we

obtain

�t =
Ns

Nt
�s�1 − 	�Jsc�Ns�Nt − Ns�	 , �20�

which is to be compared with Eq. �13�. Note that in this
derivation, the terms corresponding to the diamagnetic terms
in Eq. �13� have an explicit temperature dependence, which
is more in keeping with a paramagnetic susceptibility. This
can be accounted for by the way that the effective field was
defined in our treatment and our definition of the � propor-
tionality factor.

IV. CONCLUSIONS

In this work, we report on a simple mean field theoretical
model to describe the size dependence of magnetization in
Au nanoparticles. The model incorporates mean field results
for the surface ferromagnetism and accounts for the diamag-
netic bulklike behavior of the core atoms due to the influence
of the internal magnetic field of the surface shell of atoms.
This surface magnetic field is the Weiss field and acts as an
effective applied field as seen by the core atoms. This is a
general effect and our results should be applicable in all
core-shell nanoparticles of diamagnetic metals where surface
magnetization results as a symmetry breaking effect that can
be described in terms of a Heisenberg Hamiltonian. The re-
sulting expression for the magnetization per atom is plotted
as a function of the number of atoms in the nanoparticle, and
it reproduces the experimentally observed peak in magneti-
zation and is reported in Ref. 1, the connection between the
experimental results and theory being made by considering
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the relationship between the number of Au atoms in the
nanoparticle and the nanoparticle diameter.

The results obtained are statistical in nature, and as such
they assume a certain microscopic behavior that in our case
is reflected in the appearance of surface ferromagnetism. A
quantum description that explicitly supports this kind of be-
havior will be presented elsewhere.
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