PHYSICAL REVIEW B 76, 224401 (2007)

Microwave spectrum of square permalloy dots: Multidomain state
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We provide in this paper a detailed interpretation of the measured and simulated spin-wave spectra for
Permalloy square dots in a Landau remanent configuration. Various semianalytical approaches are combined to
show how the domain walls present in the Landau configuration may (i) confine low-frequency spin waves and
(ii) set a triangular geometry for the propagation of higher frequency spin waves, which leads to a somehow
counterintuitive quantization process. The knowledge gained from this study is finally used to reconstruct the
magnetization process of the dots from the evolution of their microwave spectrum under an applied field.

DOI: 10.1103/PhysRevB.76.224401

I. INTRODUCTION

The normal modes of the magnetization field in microme-
ter size elements (spin-wave modes) have been extensively
studied for a few years.! The motivations for this are not only
technological (high speed magnetic devices for data process-
ing, recording, and sensing) but also fundamental. Indeed, on
the micrometer scale, the dynamics of the magnetization
field involves a quite subtle interplay between the exchange
and dipolar interactions. This results in several properties
contrary to the intuition derived from conventional wave me-
chanics (waves with nonmonotonic dispersion’ and break-
down of Chladni’s law?).

Up to now, the efforts in the field of dynamic micromag-
netism have been concentrated on a few types of magnetic
ground states: rectangular elements in a quasisaturated state
(see, e.g., Ref. 4 and references therein) or elliptical elements
in a quasisaturated or vortex state (see, e.g., Refs. 5-8 and
references therein). In these cases, the observed normal
modes could be successfully interpreted in terms of quan-
tized and localized modes with an additional low-frequency
mode associated with the motion of a vortex. However, sev-
eral complications are expected when the magnetic ground
state comprises domain walls. Those strongly localized fea-
tures are indeed expected to confine and/or to scatter spin
waves™!9 This was confirmed by recent experiments,!'~!8
where the normal modes have been imaged for the Landau
conﬁguration.]9 In addition to a vortex-motion mode, these
measurements revealed a mode strongly confined in the do-
main walls and several spin-wave mode features extending
in the domains, the shape of which indicates a sizable influ-
ence of the domain walls. With the help of numeric
simulations,?-2* those features were qualitatively reproduced
and the normal modes were classified according to their sym-
metry properties. However, a physical understanding of both
domain-wall modes and domain modes is still missing. This
paper aims at providing such a description.

For this purpose, we make use of a microwave absorption
spectrum measured for an assembly of Permalloy square dots
in its remanent state. We first show that this spectrum is well
reproduced by a full micromagnetic simulation for a square
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dot in the Landau configuration. In a second time, we pro-
pose a set of semianalytical calculations accounting for the
domain-wall modes and domain mode features observed in
the measured and simulated spectra. Note that most of the
experimental, numerical, and theoretical approaches are
identical to those described in Ref. 4, where the same Per-
malloy square dots were brought in the quasisaturated state
by applying a high enough magnetic field (10~150 mT). In
this respect, the present paper constitutes, therefore, the low
field counterpart of Ref. 4.

The paper is organized as follows. The experimental
method is first described in Sec. II. The measured absorption
peaks are then reproduced and identified with the help of a
micromagnetic simulation (Sec. III). Sections IV-VT are de-
voted to the understanding of these features: While the low-
frequency peaks are described within a simple domain-wall
resonance framework (Sec. IV), the high-frequency features
are attributed to a more complex spin-wave quantization pro-
cess, which is analyzed in detail for the simpler case of an
“isolated domain” (Sec. V). For the case of the Landau con-
figuration, we show how the symmetry influences this pro-
cess (Sec. VI). Our description of domain and domain-wall
modes is finally applied to the interpretation of the evolution
of the microwave spectrum under the application of a small
magnetic field (Sec. VII). A quite general discussion of the
notion of “regularity” for spin-wave spectra is provided in
the Appendix.

II. EXPERIMENTAL SETUP

As in Ref. 4, the system investigated is a row of 103
Permalloy square dots having a side w=3 um, a thickness
t=30 nm, and spaced 3 um from each other. At remanence,
most of these dots exhibit a Landau configuration [see a
typical magnetic force microscopy picture in Fig. 1(b)].
Their microwave spectrum is measured with the help of a
frequency-domain broadband inductive technique. This ex-
periment, which is described in detail in Ref. 4, may be
summarized as follows: a shorted portion of a coplanar
waveguide is fabricated on top of the row of dots [see a
microphotograph of a small portion of the sample in Fig.
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FIG. 1. (Color online) (a) Dark field microphotograph showing
a small portion of the sample with the coplanar waveguide on top of
the row of square dots. (b) Magnetic force microscope picture of
one square dot at remanence. (¢) Simulated Landau equilibrium
configuration (note that the corners have been rounded with a
300 nm radius of curvature to reproduce the shape of the dots).

1(a)]. Using a vector network analyzer, we measure the self-
inductance L of the coplanar waveguide loaded by the dots.
A high field reference measurement is then substracted from
these data to get the variation of the self-inductance AL. This
is a purely magnetic response function and the spin-wave
modes appear as resonance peaks in its imaginary part AL".

The top curve in Fig. 2(a) shows a semilogarithmic plot of
the spectrum measured at remanence.” The absorption ap-
pears to be somehow spread over seven broad peaks cover-
ing the range 1-8 GHz [see the black triangles in Fig. 2(a)].
As a first observation, notice how different this spectrum is
from the one measured in the quasisaturated state, for which
the absorption was concentrated into several narrow peaks
[see Fig. 3 of Ref. 4 or Fig. 10(a) of the present paper]. This
essential difference shall later be attributed to some “scatter-
ing” of the spin-wave modes by the domain walls (Sec. V).
However, for the moment, let us simply reproduce this spec-
trum with the help of a micromagnetic simulation.

III. MICROMAGNETIC SIMULATION

As in Ref. 4, the simulation is performed in the time do-
main using the LLG code.?® The dot is first discretized into
10 nm square cells and the Landau state is obtained by re-
laxation from an artificial four domain configuration [see
Fig. 1(c), where the simulated equilibrium is shown together
with the coordinate axes used in the remainder of this paper].
A 50 ps x-directed 1 mT square field pulse is then applied.
The subsequent precession of the magnetization is registered
within each cell and finally Fourier transformed to get the
magnetic susceptibility x,.. The global absorption (i.e., the
imaginary part of the spatial average of yx,,) is displayed as
the bottom curve in Fig. 2(a). One clearly distinguishes eight
broad absorption peaks on this curve [see the blue triangles
in Fig. 2(a)]. Most simulated peaks account correctly for the
measured ones: the identification of the four peaks below
5.5 GHz and of the broad feature around the 7 GHz one is
sketched by dashed lines in Fig. 2(a). On the other hand, the
peaks simulated above 8 GHz do not show up in the mea-
surement (probably because their intensity is too low). Note
also that the 6 and 7.8 GHz measured peaks do not show up
in the simulation at all. This should be understood in terms of
the symmetry of the excitation field: The simulation uses a
spatially uniform pulse field. Being perfectly symmetric with
respect to the yz midplane of the microsquare, this excitation
couples only to modes whose oscillating magnetization m, is
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FIG. 2. (Color online) (a) Comparison between the measured
(top curve, black) and the simulated (bottom curve, blue) micro-
wave spectra. The peaks are named using a convention explained in
the text. The arrows above the graph show the frequencies calcu-
lated using the semianalytical approaches of Secs. [IV-VL. (b) Simu-
lated susceptibility maps for 12 selected frequencies. The amplitude
S spanned by the color scale is indicated for each map. The satura-
tion magnetization, exchange constant, gyromagnetic ratio, and
damping constant for the simulation are respectively w,M,
=113 T, A=10"" Jm™", 22228 GHz T, and @=0.005.

symmetric with respect to the yz midplane. On the other
hand, due to a small misalignment of the coplanar waveguide
relative to the row of dots, the microwave field in the experi-
ment is not perfectly symmetric and, therefore, slightly
couples to modes with an antisymmetric m,. This explana-
tion is supported by a measurement on a sample providing a
mostly antisymmetric excitation (DR sample in Ref. 4),
which shows a significant enhancement of the 6 and 7.8 GHz
peaks compared to the other ones (not shown).

Let us now identify the absorption peaks. For this pur-
pose, susceptibility maps have been extracted from the simu-
lation for several chosen frequencies [see Fig. 2(b)]. Note
that only y oriented domains may contribute to y,,, which
explains why the intensity is concentrated in the left and
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right domains.?’ Note also the distinct change of the suscep-
tibility map when going from one side of the peaks to the
other (compare, e.g., the 3 and 3.1 GHz maps or the 4.1 and
4.2 GHz ones). This change is actually observed for all peaks
except the 1.5 GHz one. Anticipating on the results of Sec.
V, this is attributed to the composite nature of these peaks:
the spectrum calculated in Sec. V is, indeed, composed of
many modes whose frequency spacing is of the order of their
intrinsic linewidth (about 125 MHz for in-plane magnetized
Permalloy with @=0.005). The susceptibility of these modes
add together to form the total susceptibility shown in Fig.
2.28 As a consequence, the labeling proposed below should
be understood as a peak labeling, but not as a mode labeling.

Starting at the lowest frequency, the first peak appears to
be strongly localized in the domain walls (DW’s). Because it
has only one antinode along each of them, it is labeled DW.
The map corresponding to the low-frequency part of the sec-
ond peak also has maximum intensity in the domain walls.
Because one recognizes in this map three antinodes along
each domain wall, it will be referred to as DW;. All other
susceptibility maps show significant intensity over the whole
left and right domains (D’s). The corresponding peaks are,
therefore, named D,,, where n describes the degree of inho-
mogeneity inside one domain. Following previous works on
quantized spin waves, we know that the dispersion of spin
waves is much stronger in the direction perpendicular to the
equilibrium magnetization.>* So n is chosen as the number
of nodal domains counted perpendicular to the magnetization
of the domains considered (in other words, n—1 is the num-
ber of y-directed nodal lines). There are actually three peaks
of the D, type. The susceptibility map for the lowest fre-
quency one (named D7) shows about ten x-directed nodal
lines, while the maps for the two other ones (D? and DY) are
quite uniform. This frequency ordering is again explained in
terms of spin-wave quantization: indeed, spin waves propa-
gating parallel to the magnetization are known to have a
slightly negative dispersion.>?’

The aim of Secs. IV-VI is now to interpret these absorp-
tion features in detail. Our attention shall be concentrated
onto the four lowest frequency peaks, which are also the
most intense ones. For these peaks, the simulated and mea-
sured maxima do not differ by more than 300 MHz. In the
following, the labels DW,, DW;—-D, D(l), and DJIr shall, there-
fore, refer indiscriminately to measured and simulated peaks.
We shall strive toward a physical description, which, though
approximate, should be accurate enough to account quantita-
tively for the frequencies of these features. Moreover, we
wish this description to account qualitatively for the broad-
ness of most of these features and for the appearance of the
corresponding modes. Anticipating the results of the next
sections, the arrows on top of Fig. 2(a) show the frequencies
obtained from our semianalytical calculations (in the follow-
ing, the results of these calculations shall be noted f°%)
Notice the reasonable agreement with the position of the ab-
sorption peaks. Let us now start with a simple description of
the specific dynamics of the domain walls.

IV. DOMAIN-WALL MODES

In order to describe the dynamics of the domain walls,
one should first consider their equilibrium configuration. For
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FIG. 3. (Color online) Profiles (a) of the equilibrium transverse
magnetization and (b) of the equilibrium effective field across one
domain wall. (¢) Comparison of the oscillating magnetization pro-
files deduced from Eq. (1) (continuous line) and from the dynamical
simulation (dotted line). (d) Definition of the system of coordinates.
[(e)—(g)] Sketch of the bending of one domain wall for n=1-3. The
distorted magnetization configuration is also sketched in (e), to-
gether with the induced magnetic charges and the corresponding
in-plane dipole field &..

this purpose, we define two axis & and 7 directed respectively
across and along one of the domain walls [see Fig. 3(d)], and
we plot the simulated transverse equilibrium magnetization
M, as a function of ¢ [see Fig. 3(a)]. One recognizes from
this plot the classical profile of a Néel wall:*" a large part of
the magnetization rotation is concentrated in a narrow core,
while the remainder is distributed into two long tails. This
picture is confirmed by inspecting the equilibrium effective
field H,,, generated by this configuration [see Fig. 3(b)]. One
recognizes a narrow dip in the core center and two shoulders
in the tails, which are attributed respectively to the short-
range and long-range parts of the dipole field generated by
the core.3! Following recent works on edge modes,*> we ex-
pect the narrow dip to act as a potential well for the spin
waves, thus creating modes highly localized in the domain-
wall core. In the following, we shall proceed to a quantitative
analysis of these modes. For this purpose, we will adapt to
our geometry the theory of domain-wall resonance, which
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was initially developed for bubble and stripe domains.33-*

This provides one with an ansatz for the dynamic magneti-
zation, which we then inject into a variational calculation for
estimating the mode frequencies.

As the core of the domain wall is much smaller than the
dot, we first assume that the domain wall can move without
a major change of its transverse magnetic configuration
(which is the basic assumption of domain-wall resonance
theory).333* The dynamic in-plane magnetization m(&, 7) is,
therefore, obtained by simply shifting the equilibrium wall
configuration M by a small amount €(7):

Men.

m(¢,7) =M(£+ €(7),7) - M(&7) = (1) P

. . . .M, .
This conjecture is confirmed by extracting p: from the equi-

librium simulation and comparing it to a & cut of the
1.5 GHz simulated mode [see Fig. 3(c)]. Both profiles look
very similar and fit quite well to a 6y =60 nm wide Lorent-
zian.

We also assume the wall bending €(7) to have a sinusoidal
profile and to be pinned both at the corner and at the
vortex,>® with a given number of antinodes n in between [see
Figs. 3(e)-3(g)]. This allows one to write the following an-
satz for the in-plane dynamic magnetization:

nmoTT nm

1 . [nmT nm
m,(&71) = mom sm( Iy - ) (2)

Here, 6py and luw=% stand respectively for the width and
the length of one domain wall.

Let us now inspect the effective fields created by this
quasistatic motion of the domain-wall core. Because the
short scale structure of the domain wall is preserved, there
are no extra in-plane dipole-exchange fields generated on the
short scale. It is actually the bending of the domain wall
which generates a nonzero in-plane effective field. As this
deformation happens on quite a large length scale, this effec-
tive field is dominated by a long-range demagnetizing effect
which occurs as follows: when it bends, the domain wall
generates extra volume magnetic charges close to its ex-
tremities. These charges generate, in turn, a small dipole field
oriented along the domain wall [%, in Fig. 3(e)]. Then, the
motion of the domain wall also creates a torque which
slightly tilts the magnetization out of the film plane. This
out-of-plane dynamic magnetization m, generates an effec-

tive field h,. For the length scales of our problem (A <<7

<4, where A=/ 21;2:5 nm is the exchange length), A, is

dominated by the laﬁgé out-of-plane demagnetizing term and
m, is simply proportional to m, and out-of-phase with respect
to it (see, e.g., Appendix A in Ref. 4).

In a mechanical analogy, &, and /, are to be interpreted as
a restoring force and an inertia, and their combination deter-
mines the mode frequency.*3*34 This picture is made quan-
titative using a variational approach:3*-3® we calculate the
effective demagnetizing factors (G,,) by projecting the ker-

. . . 2
nel of the dipolar interaction G ,4(r,r")=— &x‘g o ‘rl—r‘ onto the
adXp |T=

ansatz’’ m,;:
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f dr J dl"ma,n(r)Gw(r - r,)ﬁla,n(l‘,)

(Gaahn = ENE))

f drma,n(r)ﬁla,n(r)

and the mode frequencies are obtained with the help of a
Kittel-like formula:

v A
ffW: ;TMOMS\'<GTT>n<Gzz>n' (4)
This calculation was done numerically by discretizing a

300 nm wide area around the domain wall into 60 X 60 par-
allelepipedic cells. We obtain in this way flf Y=1.6 GHz,

2%=2.9 GHz, and f5"=4.0 GHz. Looking back at Fig. 2(a),

we see that /" accounts perfectly for the DW, peak. On the
other hand, because of its antisymmetric profile, the n=2
mode is not selected by a uniform excitation and, therefore,
it does not show up in the susceptibility maps of Fig. 2(b).
Finally, our calculated f‘? Y falls 1 GHz above the DW3-Dy
peak. This discrepancy shall be interpreted in Sec. VI as a
consequence of the dynamical coupling between this
domain-wall mode and the set of domain modes: by account-
ing perturbatively for this coupling, we shall obtain a fre-
quency f3V—]8fPP¥|=3.6 GHz, in better agreement with
the position of the DW3-D| peak. Once we have seen how a
domain wall generates its own vibration modes,* let us now
see how the dynamics of the remainder of the dot is affected
by the presence of domain walls.

V. SPIN-WAVE MODES IN A SATURATED TRIANGULAR
BODY

In the Landau state, the shape of each domain is a trian-
gular one. In this section, we consider, therefore, a fictitious
preliminary problem consisting of the determination of the
quantized spin-wave modes for a saturated and isolated tri-
angular body. We shall later see how the domain modes in
the Landau configuration might be connected to the spin-
wave modes of such an “isolated” domain (Sec. VI). We start
with a full numerical diagonalization of the eigensystem
(Sec. V A). The high irregularity of the obtained spectrum
indicates that this preliminary problem is already far from
simple (see the Appendix for an interpretation of this lack of
regularity). As a consequence, we shall give up trying to
derive the frequencies and profiles of single modes. We shall
rather describe the spectrum as a whole: On one hand, we
shall predict generic properties such as the level spacing and
the minimum frequency with the help of an approximate
“adiabatical” quantization procedure (Sec. V B). On the
other hand, we shall estimate the frequency for which the
modes couple optimally to a uniform excitation (i.e., the fre-
quency of the absorption maximum) with the help of a varia-
tional approach (Sec. V C).

A. Diagonalization

The body representing the right domain of the Landau
configuration is shown in the inset of Fig. 4: it is an isorect-
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FIG. 4. (Color online) Spin-wave spectrum for the fictitious
saturated triangular body problem (geometry shown in the inset).
The eigenfrequency and eigenmodes were obtained by a diagonal-
ization of the dynamical matrix. The maximum level of the spatially
averaged susceptibility is reported for each mode as a vertical bar.
Susceptibility maps are also reported for six selected modes at the
bottom of the graph.

angle triangle with base w=3 um. Its equilibrium magneti-
zation is assumed to be uniformly saturated along its base.*
All the eigenmodes of this problem are calculated using a
diagonalization procedure already described in Ref. 4: The
triangular body is first discretized into 23 nm wide square
cells. By linearizing the Landau-Lifschitz equation, writing it
in the frequency domain, and discretizing it, one obtains an
eigensystem.*! The system is then solved with the help of a
Householder reduction and a QL algorithm.*> The coupling
of the eigenmodes to a uniform excitation is finally estimated
by calculating the maximum of the spatially averaged sus-
ceptibility corresponding to each of them [see Eq. (B9) of
Ref. 4]. The obtained spectrum is shown in the main panel of
Fig. 4. Note that only modes symmetric with respect to the
mirroring across the horizontal midaxis of the dots have been
considered because antisymmetric modes cannot couple to
the uniform excitation. One sees immediately from Fig. 4
that the spectrum does not consist of individual well-
resolved peaks but, rather, of a dense series of levels, starting
at about 3.5 GHz, reaching a maximum susceptibility around
5 GHz, and with a mean level spacing of the order of
200 MHz. Inspecting the eigenmodes (see the maps at the
bottom of Fig. 4) does not allow one to recognize a clear
nodal structure. In particular, one cannot distinguish any qua-
siuniform mode: all modes (even the most intense ones) ap-
pear to be quite inhomogeneous in the y direction (i.e., par-
allel to the equilibrium magnetization).

Apparently, a finite size body of triangular shape fails in
producing well-defined standing spin-wave features dominat-

PHYSICAL REVIEW B 76, 224401 (2007)

ing the absorption spectrum, as observed in the case of rect-
angular or elliptical geometries (see, e.g., Refs. 4—6 and 8,
and references therein). This counterintuitive lack of regular-
ity is attributed to the interplay between the anisotropic-
nonmonotonic character of the spin-wave dispersion and the
low symmetry of the triangular shape. A detailed interpreta-
tion of this lack of regularity is provided in the Appendix,
where an analogy with the classical motion and the wave
motion in bounded bodies (“billiards™) is proposed, together
with an experimental verification relying on the spectra for
obliquely magnetized squares. Note that this lack of regular-
ity is of practical importance for our present discussion: the
mean-level spacing of Fig. 4 is of the same order as the
intrinsic linewidth of the Permalloy film (125 MHz for «
=0.005), so that individual modes are expected to be re-
solved neither in a measurement nor in a realistic micromag-
netic simulation including the damping. The spectrum shown
in Fig. 4 can, therefore, be seen as a structured quasicon-
tinuum, which we shall now describe with the help of sim-
plified calculations.

B. Semiclassics

From the conclusions of the last section and from those of
the Appendix, it is clear that there exists no quantization
procedure able to describe all normal modes for our geom-
etry. However, it is clear that the overall spectrum should
reflect somehow the shape of the dispersion of the spin
waves and the specific boundary conditions governing their
reflection on the edges. For pedagogical purposes, we pro-
pose below an “adiabatical” quantization procedure which
does not describe realistically all normal modes, but allows
one to understand better the appearance of the spectrum.

Taking advantage of the anisotropy of the spin-wave
dispersion,>?* we consider separately the quantization along
the x direction (i.e., perpendicular to the equilibrium magne-
tization). More precisely, we assume the x profile of the dy-
namic magnetization to be sinusoidal, with vanishing ampli-
tude at the left and right edges and n, antinodes in between
[see the sketch of the n,=1 profile in Fig. 5(a)]. This “strong
pinning” assumption is expected to be realistic for the mi-
crometer size considered here.** Now, the triangular shape
makes the x quantization wave vector y dependent:

T
n .
w2 -y

k(y) = (5)
In order to see the effect of the other component of the wave
vector k,, we calculate local spin-wave dispersions
f(n,,y,k,) by injecting Eq. (5) in the two-dimensional
dipole-exchange spin-wave dispersion.> The resulting disper-
sions are three-dimensionally displayed in Fig. 5(b) for vari-
ous locations y between the center of the triangle and one
apex (from front to bottom) and for two different antinode
numbers (gray curves, n,=1; brown curves, n,=3). Those
curves provide one with a semiclassical picture of the propa-
gation of spin waves through this triangular body: keeping its
frequency constant, a spin wave coming from the center of
the triangle changes its k, gradually (“adiabatically”) in order
to compensate for the increase in k, due to the coming to-
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FIG. 5. (Color online) Semiclassical adiabatical description for
spin waves propagating in a saturated triangular body. (a) Sketch for
a spin-wave mode which is quantized along x (profile shown for
n,=1) and propagating along y. (b) Local dispersions f(n,,y,k,) for
n,=1 (gray curves) and n,=3 (brown curves). The red dotted curves
are parabolic approximates of the local dispersions for n,=1. The
red dashed curve is a parabolic approximation of the minima of
these dispersions. The eigenfrequencies calculated for the corre-
sponding harmonic oscillator problem are reported as horizontal
bars on the frequency axis.

gether of the two edges. The minimum frequency (f,;,
=2.8 GHz) is reached for an n,=1 wave propagating from
the center of the dot with k;'“'”27277T (for which the y=0,
n,=1 dispersion has a minimum). This accounts correctly for
the appearance of the lowest lying calculated eigenmode (
3.5 GHz mode in Fig. 4). As one departs from the condition
y=0 and kka;,"i", the frequency gradually increases (see,
e.g., the 4.7 GHz mode in Fig. 4). The triangular shape may,
therefore, be seen as a shallow potential well for each of the
n'™ partial wave.

To get a global picture of the resulting spectrum, we con-
sider an oscillator problem which reproduces very roughly
our wave-in-a-potential problem: We replace each local dis-
persion by a parabolic approximation [see dotted red curves
in Fig. 5(b)] and we also fit the y dependence of the minima
of these approximate dispersions to a parabola [see the
dashed red curve in Fig. 5(b)]. The resulting approximate
system (a wave with parabolic dispersion confined in a para-
bolic well) is exactly a harmonic oscillator. Solving for it, we
obtain a series of levels with a nearly constant spacing of the
order of 200 MHz [see the horizontal bars in Fig. 5(b)], in
good agreement with the mean-level spacing seen in Fig. 4.
This calculation illustrates directly the dependence of the
spectrum on the size of the triangular body: decreasing the
lateral size would increase the curvature of the potential well,
resulting in an increase of the level spacing, which could
allow one to resolve individual eigenmodes in a measure-
ment or in a realistic micromagnetic simulation. Alterna-
tively, decreasing the thickness would decrease the amplitude
of the minimum of the local dispersions, resulting in a de-
crease of the number of short-wavelength low-frequency
modes. The global appearance of the spectrum, is therefore,
strongly size dependent. From our point of view, this is part
of the explanation for the different aspects of the domain
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(b)

FIG. 6. (Color online) Ansatz for the oscillating magnetization
of domain modes deduced from standing-wave modes for the full
square. Equation (6) has been used with (a) (p,q)=(1,3) and (b)
(p.q)=(1,2).

mode spectra reported in Ref. 14 (measurements on
0.75-4 um wide, 16 nm thick squares), in Ref. 22 (simula-
tion on a 1 uwm wide, 16 nm thick square), in Ref. 21 (simu-
lation on a 305 nm wide, 20 nm thick square), in Ref. 24
(simulation on a 150 nm wide, 25 nm thick square), and in
the present paper (measurements and simulations on 3 wum
wide, 30 nm thick squares).

Note that our adiabatical approximation does not allow
the spin wave to switch between different n,, which may
happen as long as the frequency exceeds the minima of the
corresponding dispersions. This happens actually for some of
the modes (see, e.g., the 5.1 GHz map in Fig. 4). At higher
frequencies, one even recognizes a “constant k,”” behavior: as
one goes from the dot center toward its top corner, the x
spacing between nodal lines does not change much, but the
number of nodal domains fitting between the two edges de-
creases gradually (see, e.g., the 9.5 GHz map in Fig. 4).
These different behaviors illustrate again the difficulty to
build a single rule for predicting the appearance of the spec-
trum.

The analysis reported above provides one with a global
picture of the eigenmodes (what might be called the “spin-
wave manifold” of the dot). However, it does not indicate
which of these modes are likely to couple to the uniform
excitation used in both the experiment and the simulation,
i.e., it does not explain the position of the peak in Fig. 4. For
this purpose, we shall now resort to a variational approach.

C. Variational estimate

Among the quasicontinuum described earlier, only modes
having a sizable long-wavelength envelope may couple to a
spatially uniform excitation. Naturally, the frequencies of
these modes are governed by the shape of their envelope
(more precisely, by the magnitude of the demagnetizing
fields it generates) rather than by the short-wavelength de-
tails. We shall convert this idea into a quantitative estimate
with the help of a variational approach: the ansatz for the
envelope function is generated by substracting from a
standing-wave mode of the full square its image under the
operation** x ¢ y:

X y X Y
my, ,(x,y) = cos| pm— |cos| gm= | — cos| gm— |cos| pm= |,
w w w w

(6)

where p # g are integers. The first two members of this fam-
ily of functions (i.e., the most uniform ones) are shown in
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TABLE I. Extended character table for the symmetry group Cyg,. For the vectorial representation E, the
matrices representing the symmetry operations are written for the basis (e;,e,) [instead of the equivalent

basis (e,,e,) sketched in gray].
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Fig. 6. Naturally, these functions all vanish along the first
diagonal of the square (y=x), but they also vanish along the
second diagonal for (p,q) both odds. While being as uniform
as possible, the (p,q)=(1,3) function shown in Fig. 6(a)
satisfies, therefore, strong-pinning boundary conditions at the
edges of the triangle (these conditions are expected to be
realistic for the micrometer size considered here).*> This
ansatz® is finally injected into a variational estimate of the
frequency [see Egs. (3) and (4) with 7=x and (G_)=1]:

fp,q = TTMOM.YV”<Gxx>p,q' (7)

The exchange interaction was neglected in writing Eq. (7),
which is justified for the micrometer size considered here.
This calculation is finally done numerically by discretizing
the triangular body into 23 nm wide square cells, which
gives flT’3=5.0 GHz, in good agreement with the frequency
of the maximum of the spectrum in Fig. 4. On the other
hand, the frequencies for higher-index ansatz, which all have
nodal lines within the triangular domain [e.g., (p,q)=(1,5),
not shown], are above 6 GHz, so that they might account for
the low-intensity high-frequency shoulders observed in Fig.
4 around 7 and 9 GHz. Please note that such a procedure
produces errors that are quadratic with respect to the differ-
ence between the ansatz and the true wave function. As a
consequence, the ansatz is required to reproduce only very
roughly the wave function. Let us now extend our analysis to
the more complicated case of the full Landau configuration.

VI. DOMAIN MODES IN THE LANDAU
CONFIGURATION

For a full description of quantized spin-wave modes in
domains, it would be desirable to derive boundary conditions
describing the behavior of the spin waves in the domain-wall
regions. These boundary conditions should account both for
the acceleration associated with the very low value of the
equilibrium effective field in the core region [see Fig. 3(b)]
and for the changes of wave vector allowed by conservation

laws (complicated reflection and/or refraction rules). This
task is quite a nice challenge, but it is far beyond the scope
of the present paper. However, an approximate description of
the overall spectrum is still possible. This description pro-
ceeds in two steps: to justify the analogy with billiard sys-
tems (see the Appendix), it is enough to say that the spin
waves undergo a pretty brutal change of wave vector when
they meet a domain wall. The details of this change are not
of major importance (there exist, indeed, billiard with Di-
richlet, Neumann, or mixed boundary conditions). Once one
accepts this analogy, it is likely that the domain spin-wave
spectrum is nonregular (see the Appendix). Then, following
Sec. V C, the main absorption peaks constituting this non-
regular spectrum can be determined by describing the enve-
lope of the modes which couple efficiently to the excitation.
In the following, we show how to derive the behavior of this
envelope from an analysis of the overall symmetry and of the
dipole fields generated in the domain-wall regions. This
analysis provides a simple ansatz, which can then be used for
variational estimates of the peak frequencies.

The Landau configuration has the full symmetry of the
square dot. As underlined by Yan et al.,>' group theory can
be used to derive the possible symmetries for the eigen-
modes. Table I summarizes the group theoretical description
of the symmetry of the Landau configuration. This extended
character table can be described as follows:*® The group,
labeled C,,, consists of the eight symmetry operations
sketched in the top row.*” It admits five irreducible represen-
tations (four scalar ones and a vectorial one), which are listed
in the left column. Eigenmodes belonging to these represen-
tations transform under the symmetry operation as indicated
in the table. Pictorially, the mode profile (mg4,m.) in the
whole square may be deduced from that in one elementary
white triangle by unfolding it according to the symmetry
operation, with an additional change of sign for dark tri-
angles (see the sketches on the left of Table I). Quite natu-
rally, the frequency and the appearance of normal modes are
expected to depend quite critically on their symmetry, i.e., on
the irreducible representation they belong to. The domains
are, indeed, strongly coupled by dynamic dipole fields whose
amplitude and orientation depend on the phase shift between
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FIG. 7. (Color online) Sketch of the dynamic demagnetizing
effects occurring in the vicinity of domain walls for an e;-type
mode. The dynamic in-plane magnetization for a mostly uniform
mode (mp) is shown together with the magnetic charges and the
dipole fields (hp) it generates. The dynamic in-plane magnetization
for an n=3 domain-wall vibration mode is also shown on the first
diagonal (mpy).

the dynamic magnetization of adjacent domains.?!??

From a practical point of view, an excitation belonging to
a given row of an irreducible representation only couples to
modes belonging to the same one. For the uniform x-directed
excitation field used in our case, the torque generated on the
magnetization changes sign between the left and the right
domain, so that it is of e, type (see Table I). The measured
absorption feature shall, therefore, be attributed to E-type
modes. More precisely, we shall follow the conclusions of
Sec. V, thus restricting our attention to those of the £ modes
which couple efficiently to a uniform excitation. In the fol-
lowing, we shall describe these modes using the (e, e,) basis
instead of the equivalent one (ex,ey) because the former in-
volves a simple symmetric and/or antisymmetric behavior
across each domain wall. This is shown in Fig. 7 in the case
of an e¢-type mode.

Let us first consider the behavior of this mode in the vi-
cinity of the second diagonal (y=—x, see the bottom part of
Fig. 7). Because the symmetry requires a change of sign for
the precession angle, the dynamic magnetization adopts here
a head-to-tail arrangement. This arrangement allows for an
efficient compensation of the magnetic charges generated in
adjacent domains, so that the mode can keep a sizable am-
plitude even in the vicinity of the domain wall. In such a
case, the dipole field is, indeed, concentrated in the domain-
wall area, where the very low value of the equilibrium effec-
tive field can compensate for it. In other words, the spin
wave is strongly accelerated in the domain-wall core, allow-
ing for a pretty abrupt change of sign for the dynamic mag-
netization. Compared to the isolated domain case, one, there-
fore, expects an increase of the amplitude of the mode in the
vicinity of this domain edge (“dipolar attraction” effect). Let
us now consider the vicinity of the first diagonal (y=x, see
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the top part of Fig. 7), where the symmetry requires a head-
to-head arrangement. In this case, a nonzero amplitude
would generate locally very large dipole fields, which a
mostly uniform mode could not accomodate. As a conse-
quence, the amplitude is expected to vanish at this domain
edge. We, therefore, end up with a symmetry-driven dipolar-
dominated edge behavior: The dynamic magnetization is al-
lowed to be large in the vicinity of the domain wall across
which an antisymmetrical behavior is required, whereas it is
required to be small in the vicinity of the domain-wall across
which a symmetrical behavior is required. The most uniform
ansatz satisfying these conditions for the right domain is ob-
tained from Eq. (6) with (p,q)=(1,2) [see Fig. 6(b)]. To
estimate the corresponding frequency, we generalize the
variational estimate of Sec. V C: The Landau structure is
approximated by assembling four triangular saturated do-
mains spaced 60 nm from each other (domain walls are re-
placed by empty regions). The ansatz for the right domain is
unfolded onto the other three domains according to the rep-
resentation e;. The frequency is then estimated using Eq. (7),
extending the space integration over the four domains and
rotating properly the dynamic magnetization between them.
We obtain )‘ll) »,=4.5 GHz. As expected, this value is lower
than the one obtained for an isolated domain, indicating that
the dipolar attraction effect renormalizes significantly the
mode frequencies.*®

In the description above, domain walls were assumed to
be “dynamically dead,” and we have only considered their
ability to accomodate for very fast magnetization changes.
However, the domain wall has its own dynamics (see Sec.
IV), which may interact with the domains. Indeed, an e;-type
domain mode is expected to generate a sizable dipole field
along the first diagonal, and this might couple efficiently to
the dynamic magnetization of a domain-wall mode located in
this region (see the top part of Fig. 7). We account for this
effect with the help of a very rough perturbation approach:
We calculate the dipole field generated onto the first diagonal
by the domain-mode ansatz [Eq. (6) with (p,q)=(1,2)] and
project it over the domain-wall mode ansatz [Eq. (2) with
n=3; this mode is, indeed, expected to couple the strongest
because it is nearly degenerate with the domain modes in the
range of 3—5 GHz]. After a suitable normalization, this pro-
vides a dipolar coupling factor which translates into a fre-
quency shift |9f°P"|=0.4 GHz. The coupled system is fi-
nally expected to display two types of modes: those for
which the mostly uniform domain modes and the domain-
wall mode are in-phase (f=f7,—|5f*"""|=4.1 GHz) and
those for which they are out of phase (f=f7,+|8f>P"|
=4.9 GHz). This analysis accounts for the D?—DT doublet
observed in Fig. 2(a). Indeed, for the 4.2 GHz map of Fig.
2(b), there is no change of sign for the dynamic magnetiza-
tion when reaching the domain wall (so that part of the dy-
namic magnetic flux generated in the domains might exit
through the domain wall), whereas there is such a change of
sign for the 5.2 GHz map.

Once we get a global description of both domain and
domain-wall dynamics, let us summarize our interpretation
of the spectra in Fig. 2(a):

(i) The peak DW; is attributed to the fundamental string-
like vibration mode of the domain walls. The frequency of
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this mode is correctly accounted for by Eq. (4) with n=1 [see
the arrow 2" above Fig. 2(a)]. As this frequency falls far
below the manifold of domain spin waves, this mode does
not extend much into the domains. Moreover, the four do-
main walls are far enough from each other to neglect their
direct dipolar coupling.

(ii) The composite peak DW;-Dj is attributed to the bot-
tom of the domain spin-wave manifold coupled to the npy
=3 domain-wall vibration mode, with estimated frequencies
/2. =2.8 GHz (see Sec. V B) and f3"'~|8f°P"|=3.6 GHz.

(iii) Higher frequency peaks are attributed to sets of
modes selected by the uniform excitation out of a quasicon-
tinuum of quantized domain spin waves. The composite fea-
ture DY-D7 corresponds to those of the domain modes, which
are as uniform as possible. The splitting is basically associ-
ated with the coupling between these modes and the n=3
domain-wall vibration mode.

(iv) Features D,_s are governed by the same mechanism
except that the envelope functions now involve nodal lines
within each domain. The amplitudes of these peaks are much
lower than those of the D; peaks because of the smaller
overlap integrals.

VII. EVOLUTION UNDER AN APPLIED FIELD

Once a global description of the dynamics of domains and
domain walls is available, it becomes possible to perform
true micromagnetic spectroscopy, that is, to identify a do-
main configuration according to its “microwave signature,”
i.e., its absorption spectrum. To demonstrate this possibility,
we consider in this section the spectrum measured when the
sample of Fig. 1(a) is subjected to an external field H, di-
rected along one diagonal of the squares [see Fig. 8(a)], and
we try to deduce from it a plausible scenario for the magne-
tization process.

Figure 8(b) shows the quasistatic hysteresis cycle mea-
sured for a large array of dots similar to those of Fig. 1(a).
Coming from a large negative field, the dot seems to remain
significantly magnetized up to ugHy=-2 mT, where a low-
moment state appears. Apparently, a high-moment state
emerges again around 10 mT. However, the nature of these
high- and low-moment configurations remains mysterious.
We shall now try to elucidate this point with the help of Fig.
8(c), which shows a semilogarithmic grayscale plot of the
absorption as a function of the applied field H,, (swept from
negative to positive values) and of the frequency. On such a
plot, absorption features appear as clear areas in a darker
background. Our understanding of the position and the shape
of these absorption features is the following.

Starting at large negative values, we first distinguish sev-
eral nearly parallel white trails with frequency increasing
steadily as a function of |H,|. This is typical of a quasisatu-
rated configuration: The higher frequency most intense line
is attributed to a set of quasiuniform modes, while the lower
frequency lines are attributed to spin-wave well modes local-
ized in the edge areas. [For comparison, see the high field
spectrum of Fig. 10(b)]. Such a quasisaturated configuration
is shown in Fig. 8(d), which shows the equilibrium configu-
ration simulated after applying a —1.4 T saturating field and
reducing it back to —12 mT.
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FIG. 8. (Color online) (a) Geometry for the measurement. (b)
Magneto-optical Kerr effect magnetization loop measured on an
array of square dots similar to those used for the microwave mea-
surement. (c) Semilogarithmic grayscale plot of the measured ab-
sorption as a function of the external field H,, swept from negative
to positive values, and of the frequency. The colored dots and dotted
lines are deduced from calculations described in the text. [(d)—(h)]
Equilibrium magnetization configuration for a few values of H, as
indicated. The curves are the contour lines of (rot M),, so their
concentration indicates the presence of a domain wall. The simula-
tions were performed using the OOMMF package (Ref. 49) with the
same parameters as indicated in Sec. III. The sequence (d)—(f) was
obtained starting from a saturated configuration. The sequence (g)
and (h) was obtained starting from the Landau state at remanence.

At —10 mT, two branches emerge from the quasisaturated
spectrum at about 2 and 4 GHz, with frequency distinctly
decreasing (increasing) as |H| further decreases. We at-
tribute this to the nucleation of a five-domain structure [see
Figs. 8(e) and 8(f), which show the configurations simulated
starting with the configuration of Fig. 8(d) and reducing the
field to —6 and —3 mT]: The high-frequency branch is asso-
ciated with the precession of the magnetization in the bot-
tom, middle, and top domains (as |H,| decreases, the magne-
tization in these domains rotates parallel to their longest
dimension, which causes the frequency of the most uniform
modes to increase). On the other hand, the low-frequency
branch is associated with the fundamental vibration modes of
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the top and bottom domain walls (as |H,| decreases, these
domain walls gradually decouple from the domains, resulting
in a frequency decrease.) For H,, increasing above —5 mT,
this latter branch tends to zero frequency, which probably
indicates that the five-domain configuration becomes less
stable.

Indeed, the spectrum is seen to change abruptly at —1 mT,
with the apparition of pale areas around 1.5, 4, and 5 GHz.

denly before remanence. With further increase of H,, the
attributed to the field-induced deformation of the Landau
show the configurations simulated starting from a Landau
narrowing (broadening) of the top and left (bottom and right)
evaluated by a rough scaling: The dominating in-plane dy-
w(Ho)’

is the t

——— which is plotted in Fig. 8(c) for f(0)=4.2 and
tively, corresponding to the two most intense peaks identified
Then, the motion of the vortex also modifies the domain
main walls get respectively strongly shortened, strongly
The n=1 domain-wall mode peak observed at 1.5 GHz at
help of the variational approach described in Sec. IV, in
culation, shown in Fig. 8(c) as green diamonds, cyan circles,
quite well for the observed absorption. The inflection of the
field expulsion-penetration phenomenon:>® For very low H,,
ever, this becomes too difficult when H, becomes too high.
bottom-right domain wall [see Fig. 8(h)], i.e., in the increase
=11 mT, corresponding to the reappearance of the quasisatu-

This is reminiscent of the spectra of Fig. 2. We, therefore,
postulate that a Landau configuration nucleates quite sud-
pale areas then split into several branches, showing both an
increase and a decrease of f as a function of |H,|. This is
state. Under a small external field, the vortex moves perpen-
dicular to the field direction [see Figs. 8(g) and 8(h), which
configuration at remanence and increasing the applied field
to +3 and +8 mT]. The motion of the vortex results in the
domains, resulting in an increase (decrease) of the frequency
of the corresponding domain modes. These variations can be
namic dipole field is expected to vary as —=—, where w(H,)
ical size of the domain. This gives f(H,)
w(0)
=f (O) w(Hy)?
5 GHz (green down triangles and purple up triangles, respec-
in the remanent spectrum of Fig. 2). This accounts well for
the global shape of the absorption in the 3—6 GHz range.
walls it is attached to. Under the application of a small posi-
tive field, the top-left, bottom-right, and two remaining do-
elongated, and weakly elongated [see Fig. 8(g)], which
should directly affect the corresponding vibration modes.
remanence is, therefore, expected to split into three branches.
The frequencies of these features can be estimated with the
which the domain-wall length and width extracted from
equilibrium simulations are injected. The results of this cal-
and red squares (corresponding respectively to the bottom-
right, top-left, and two remaining domain walls), account
line joining the green diamonds, which may appear surpris-
ing at first glance, is actually a direct manifestation of the
the domain configuration distorts itself in order to produce a
dipole field which exactly cancels the applied field. How-
As a consequence, the external field penetrates in the element
along the first diagonal, resulting in the shortening of the
of the associated vibration frequency.
Another abrupt change is finally observed at woH,
rated configuration as suggested by the parallel pale trails
which are observed again.
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In summary, the measured absorption spectrum is prop-
erly accounted for by the magnetization process scenario
sketched in Figs. 8(d)-8(h). Note that this scenario differs
from the one provided by a direct micromagnetic simulation
of the magnetization process, which indicates the survival of
the high-moment five-domain configuration up to a quite
strong positive field (not shown). Our scenario, involving the
nucleation of the low-moment Landau state before rema-
nence, is certainly in better agreement with the measured
hysteresis loop. Note also that this spectroscopic technique
provides quite local information in spite of its spatially av-
eraged character. For instance, the field penetration phenom-
enon evidenced above is quite a subtle one, and high
resolution—high sensitivity imaging would have been re-
quired for its direct observation in real space.

VIII. CONCLUSION

In this paper, we have proposed a semianalytical descrip-
tion for both domain and domain-wall modes in the case of a
Landau equilibrium configuration. The generic ingredients
for this description are the following. A domain wall should
be seen as a specific micromagnetic object having a sizable
influence on spin waves. On one hand, it confines low-
frequency spin waves, thus creating highly localized modes
which can be seen as simple stringlike vibration modes. On
the other hand, it scatters the higher frequency spin waves
propagating through the domains, which sets the geometry
for the quantization process. Those of the quantized domain
modes which couple efficiently to the excitation and/or de-
tection signals than give rise to measurable absorption fea-
tures. Due to the complicated shape of the dipole-exchange
dispersion, the quantization process for spin waves becomes
quite complicated as long as the geometry is not highly regu-
lar (which is the case for the triangular domains forming the
Landau configuration). The absorption might then be distrib-
uted over a large set of modes rather than concentrated into a
few individual modes. The frequency of the corresponding
features is also influenced by dynamic interdomain cou-
plings, which strongly depend on the global symmetry of the
eigenmode considered. Accounting for these specific effects,
we could unambiguously identify and interpret the absorp-
tion features observed in Fig. 2. This result, which consti-
tutes the main achievement of this paper, opens the attractive
perspective of a true micromagnetic spectroscopy.
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APPENDIX: REGULAR AND IRREGULAR SPIN-WAVE
SPECTRA

As already mentioned in Sec. V, the global appearance of
a confined spin-wave spectrum depends quite drastically on
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the amount of symmetry of the confining body. The aim of
this appendix is to make this rather vague assertion more
precise with the help of an analogy. For this purpose, we first
quote some results on the regularity of the motion in billiard
systems. We then show how to identify qualitatively a spin-
wave problem to a classical billiard one. Finally, we provide
an experimental illustration of the relevance of the notion of
regularity for spin-wave spectra.

1. Classical billiards and wave billiards

In the classical planar billiard problem, one considers a
pointlike particle moving freely within a two-dimensional
enclosure and undergoing specular reflections at the bound-
ary of this enclosure. The hard-wall reflection condition
makes this problem nonlinear, and the motion is generally
chaotic.’! However, for a few special geometries, the prob-
lem is said to be “integrable,”? which basically means that
there exists an extra constant of motion besides the energy.
This restricts the motion in phase space to a two-dimensional
torus, and the resulting trajectories have a highly regular ap-
pearance [see Fig. 9(a)]. The only geometries for which the
classical billiard problem is integrable are the rectangles, the
ellipses, and several special polygons.’! The integrability of
rectangular and elliptical billiards can be seen as a simple
consequence of their separability. A separation of variables in
the Hamilton-Jacobi equation reduces, indeed, the problem
to two one-dimensional problems which are automatically
integrable (in one dimension, only one constant of motion—
the energy—is required). On the other hand, for the generic
nonintegrable case [see Fig. 9(b)], the motion explores the
whole three-dimensional constant energy surface of the
phase space (ergodicity) and the resulting trajectories look
highly irregular. As a matter of fact, generic polygonal bil-
liards (i.e., having one angle not rationally related to ) are
also nonintegrable, because the surface restricting the motion
in phase space is infinitely handled, resulting in an ergodic
motion.>!

The wave billiard problem (also called quantum billiard)
consists in the determination of the spectrum of a particle
confined in a two-dimensional enclosure with hard walls. It
has naturally a deep connection with its classical counterpart:
only in the classically integrable systems is a simple quanti-
zation procedure available. In particular, separable problems
are easily quantized because the wave equation reduces to
two one-dimensional wave equations which can be solved
separately. The quantum numbers provided by such a proce-
dure allow one to classify the wave functions and to build
selection rules (i.e., to predict which wave functions are
likely to couple to a well-defined excitation), which are of
great importance in practice. Figure 9(d) shows the qualita-
tive features of the absorption spectrum for a rectangular
wave billiard subjected to a uniform excitation. The
standing-wave indices (nx,ny), which constitute the relevant
quantum numbers in that case, are used for labeling the nor-
mal modes and for predicting the magnitude of their cou-
pling to the excitation (the coupling is inversely proportional
to nini for both n, and ny odd, and zero otherwise). The
wave functions look quite regular, with two arrays of nodal
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FIG. 9. (Color online) Schematic representation of the analogy
between classical billiards, wave billiards, and quantized spin-wave
problems. (a) Typical example for an integrable classical billiard; a
typical trajectory is also shown. (b) Same for a nonintegrable clas-
sical billiard. (c) Typical wave dispersion (e.g., that of a free quan-
tum particle wave). (d) Sketch of the spectrum for a wave billiard in
the integrable case [the shape of the enclosure is the same as in (a)].
The height of the vertical bars is proportional to the squared aver-
age of the wave function (so that it describes the coupling to a
uniform excitation). Three wave functions are also sketched [color
scale as in Fig. 2(b)]. (e) Same for the nonintegrable case. (f) Wave
dispersion for spin waves in an in-plane magnetized film. (g) Sketch
of a “regular” spin-wave spectrum (i.e., the shape of the magnetic
body corresponds to an integrable classical billiard). (h) Sketch of
an “irregular” spin-wave spectrum.

lines oriented perpendicular to each other. On the other hand,
there is no such simple quantization procedure in the nonin-
tegrable case. This means that the only index available for
classifying the solutions is their energy ordering. This also
means that there are no selection rules, so that every mode
could a priori couple to a uniform excitation. Let us mention
another result which constitutes a basis of the common intu-
ition one has on wave problems. In standard wave mechan-
ics, one encounters positive wave dispersions [i.e., the fre-
quency increases as the wave vector increases, see Fig. 9(c)].
Then, for confined geometries, the magnitude of the wave
vector is estimated by counting nodal domains. So it is gen-
erally admitted that the mode frequency increases steadily as
the number of nodal domains increases (a result known as
Chladni’s rule or Courant nodal line count theorem).** This
rule enables generic predictions about the appearance of the
low lying wave functions (first mode as uniform as possible,
second one containing one nodal line roughly in the middle
of the body, etc.) and their coupling to, e.g., a uniform exci-
tation. On the other hand, the higher order wave functions
for nonintegrable billiards are expected to look quite chaotic,
with meanderlike nodal domains.’'3 In semiclassical terms,
these wave functions take their complexity from the classical
trajectories they are built onto. Figure 9(e) shows qualita-
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tively these features for a generic wave billiard in the non-
integrable case.

2. Spin-wave billiards

The determination of the spin-wave modes in a thin mag-
netic element constitutes a wave-mechanics problem, which
is formally analogous to the wave billiard.>* However, there
are several essential differences which are made apparent
by looking at the respective wave dispersions. In contrast
with the simple parabolic dispersion of quantum mechanics
[Fig. 9(c)], the dipole-exchange dispersion for a spin wave
propagating in an in-plane magnetized film is, indeed, both
anisotropic (with respect to the angle between the wave vec-
tor and the equilibrium magnetization) and nonmonotonic
[Fig. 9(f)].>*

Qualitatively, an anisotropic wave problem can be
mapped over an isotropic one by simply rescaling one axis
compared to the other. A confined spin-wave problem
should, therefore, be identified to a classical billiard whose
shape is deduced from that of the “spin-wave billiard” by an
elongation along the direction of the equilibrium magnetiza-
tion. For example, rectangular bodies magnetized along one
edge are expected to have a regular spectra (because the
equivalent classical billiard is also rectangular, i.e., inte-
grable; note that this problem is even close to separable).
However, the appearance of this regular spectra is largely
influenced by the nonmonotonic shape of the spin-wave dis-
persion: because the frequency may decrease as the wave
vector increases, the Chladni rule is broken and some high-
index low-intensity modes are brought below the low-index
high-intensity ones [Fig. 9(g)]. In addition, for a certain
range of frequencies, one may have two different wave-
vectors at the same frequency [see dotted line in Fig. 9(f)]. A
wave can, therefore, split into two waves after reflection on
the boundary. This leads to a certain mixing of the short- and
long- wavelength spin waves, which may give a rippled ap-
pearance to some modes [see Fig. 9(g)].

Figure 9(h) shows a typical irregular spin-wave spectrum,
expected when the classical billiard obtained after the rescal-
ing operation is not integrable. Compared to Fig. 9(e), the
complexity of the spectrum is still increased because the de-
gree of uniformity of one mode is not simply related to its
frequency anymore.

3. Experimental check: Spin-wave spectrum in an obliquely
saturated square dot

To illustrate the fundamental difference between regular
and irregular spin-wave spectra, we shall now compare re-
sults obtained for the same physical system (a quasisaturated
square dot), which can be made to have either a regular
spectra (when the external field is applied along one edge) or
an irregular one (when the external field is applied along one
diagonal).

The spectra reported in Fig. 10(a) are the same as those of
Fig. 6(c) of Ref. 4. The experimental spectrum was obtained
using the same micrometer square Permalloy dots as those
used in the present paper and applying a 80 mT quasisatu-
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FIG. 10. (Color online) Comparison of regular and irregular
spin-wave spectra. (a) Measured and calculated spectra for Permal-
loy square dots subjected to an in-plane quasisaturating field
moHy=80 mT directed along one side of the squares. The measured
spectrum (black curve) has been obtained using the broadband in-
ductive technique described in the text. The calculated spectrum
(vertical blue bars) has been obtained by a diagonalization of the
dynamical matrix. The maps of a few selected eigenmodes are also
shown. (b) Same for the in-plane quasisaturating field directed
along one diagonal of the square.

rating external field along one edge of the dots. The vertical
bars are the result of a diagonalization procedure similar to
that of Sec. V. As foreseen in the last section, the absorption
for this regular system is concentrated in several well-
resolved peaks, each of them being associated with a single
eigenmode.

Let us now turn our attention to the spectra reported in
Fig. 10(b), for which the 80 mT external field was oriented
along one diagonal of the dots. The spin-wave spectrum is
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now expected to be irregular: after elongation along one of
its diagonal, a square becomes, indeed, a flat rhombus, and
rhombus billiards are generally not integrable. Indeed, the
measured absorption [see black line in Fig. 10(b)] is some-
how spread over a single wide peak. The diagonalization [see
vertical bars in Fig. 10(b)] shows that this peak consists of
several modes whose frequency spacing is smaller than the
intrinsic linewidth of the Permalloy film, so that they cannot
be resolved experimentally. It should be noted that these re-
sults are in good agreement with those of Barman et al.,>
who measured the transient magnetization distribution in a
square dot and observed a much more irregular behavior
when the field was applied along the diagonal of the square.
In a similar way, the domain mode spectra studied in this
paper belong to the class of irregular spectra. Indeed, the
domains of the Landau configuration have the shape of
isorectangle triangles. After elongation along the direction of
the equilibrium magnetization, these triangles become ge-
neric isosceles ones, and classical billiards with generic tri-
angular shape are not integrable.

To conclude, let us summarize the mechanisms respon-
sible for the relatively featureless spin-wave spectra obtained
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for saturated bodies with generic polygonal shapes: Generic
polygonal geometries are ergodic, so that the motion ex-
plores the whole isofrequency line in the wave-vector space.
Due to the complex anisotropic and nonmonotonic shape of
the dipole-exchange dispersion, this isofrequency line cov-
ers, in general, a wide range of wave vectors, from very long
to very short wavelengths. As a consequence, the modes can-
not be described by well-defined quantization wave vectors
(except the lowest frequency mode which lies at the mini-
mum of the spin-wave dispersion). In particular, one cannot
define a quasiuniform mode, because the longest wavelength
spin wave is continuously scattered over all the degenerate
spin waves. Indeed, the main absorption peak for a uniform
excitation is composed of several modes whose y profiles
display both a slowly varying background and a fast oscil-
lating component [see the 4.7, 5.1, and 5.4 GHz maps in Fig.
4 or the 8.7 and 8.9 GHz maps in Fig. 10(b)]. This is in
contrast with, e.g., rectangular bodies magnetized along one
side, for which the reflections on the sides give only access
to a small number of wave-vector values (integrable dynam-
ics), so that a well-defined quantization wave vector can be
assigned to each mode.
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