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Density-functional calculations of Esterel twinning in quartz
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Models for Esterel twin interfaces with mirror and rotation symmetry are presented that satisfy stoichiometry
at the composition plane. The starting points are unrelaxed models constructed from bulk quartz crystal and
keeping the bulk volume per formula unit. The proposed unrelaxed models also maintain the fourfold coordi-
nation of all Si atoms and the twofold coordination of the O atoms, albeit with significant variation of bond
length and bond angles at the composition plane. More realistic atomic positions were sought with density
functional calculations. Relaxation energies are quite significant, as the initial unrelaxed interface energy is
about 15 eV above the relaxed energy for our cells containing two twin interfaces. After relaxation, bond
length and bond angles are close to bulk quartz values. It was found that reflection twins have lower interface

energy than rotation twins.
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I. INTRODUCTION

The stable modification of SiO, at room temperature is
a-quartz (trigonal, space group P3,21 or P3,21 for right- or
left-handed crystals, respectively). At elevated temperature it
undergoes a reversible phase transition to B-quartz (hexago-
nal, space group P6,22 or P6,22). The transition tempera-
ture is 573 °C (846 K) at ambient pressure and is raised by
1 °C per 40 bar of pressure increase. There exist further
polymorphs of silica, some of which will be considered in
Sec. II.

Almost all silica found in nature at ambient temperature
and pressure is a-quartz. Quartz originally formed as
a-quartz will be referred to as low quartz, and quartz origi-
nally formed as SB-quartz as high quartz. Characteristic dif-
ferences between low and high quartz are found in the mor-
phology and in the occurrence of twinning. Twins in which
the principal axes of the two components are not parallel are
rare in low quartz but occur frequently in high quartz; most
frequent in high quartz are Esterel twins,' the interface en-
ergy of which will be investigated by means of density-
functional calculations.

II. DENSITY-FUNCTIONAL CALCULATIONS

The energy differences among the SiO, polymorphs are
quite small, on the order of or less than 0.1 eV per SiO,
unit.? This is small enough that the calculated energetic or-
dering may depend on the choice of the density functional
and the variational basis sets in the calculation. Other com-
putational details can be controlled well enough that no fur-
ther issues about energetic ordering arise. As a representative
sampling of density functionals we consider the local-dens-
ity-functional approximation of the Perdew Wang corre-
lation® (PWC) plus local exchange and the Perdew-Burke-
Ernzerhof (PBE) functional,* which has an explicit depen-
dence on density gradients. The PBE functional has recently
been shown to be rather successful in predicting relative en-
ergies of a large number of molecular structures.’ It is widely
used in solid state density-functional theory (DFT) calcula-
tions. The present calculations were done using the DMol?
code.®7
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Calculations were done with a double numerical with po-
larization (DNP) local orbital basis set.’ It consists of a
double set of valence s and p functions, and a set of
d-polarization functions arising from the product of one ra-
dial function and five Y, functions. As the basis set always
includes the free atom orbital functions, the limit of (spin
restricted, spherical) dissociated atoms is always attained ex-
actly. The DNP basis set is found to consistently provide an
excellent approximation for energies obtained with much
larger and more computationally costly basis sets. DNP cal-
culations run relatively fast and are thus useful for the large
cells studied here. Larger basis sets of the DMol® numerical
type yield lower total energies and thus greater atomic dis-
sociation energies than smaller basis sets. A triple valence set
with double d plus f polarization (TNP) is such a basis set
with significantly more variational flexibility und conse-
quently lower energy with respect to dissociated atoms cal-
culated numerically with high accuracy for the functional
under consideration. Reference 5 shows that both DNP and
TNP can reproduce experimental enthalpies very well for a
wide class of molecules.

For the purpose of the present calculations a modified
basis set of DNP type is considered (DNP,). This set is ob-
tained by optimizing the variational basis functions so as to
minimize the energy of an a-quartz crystal. Table I shows
experimental lattice parameters for four SiO, structures. An
important high-pressure, high-density polymorph and a
simple low-pressure polymorph were taken for comparison
with quartz.

The calculations using the PWC functional are total en-
ergy calculations for the experimental structures. The energy
per SiO, unit of a-quartz is relative to a highly accurate
numerical PWC solution for spin-unrestricted spherical at-
oms. The energies of the other structures are relative to
a-quartz with the same basis set. The calculations using the
PBE functional are done with minimization of all structural
and lattice parameters.

Table I shows that the PWC functional exaggerates bond-
ing in the high-density structure of stishovite. As this persists
for the larger variational basis set, it is clear that PWC erro-
neously identifies stishovite as the ground state at ambient
pressure.
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TABLE 1. Some SiO, structures. Calculated density-functional total energies per SiO, unit: a-quartz
relative to spin-unrestricted spherical atoms, energies of the other structures relative to a-quartz. PWC
calculations for experimental structure data, PBE calculations minimizing energy with respect to lattice
constants, and Wyckoff position parameters of the atoms.

a-quartz [B-quartz High cristobalite Stishovite

Lattice constants Hexagonal Hexagonal Cubic Tetragonal
a (A) 4910 4.998 7.166 4.176
¢ (A) 5.402 5.460 2.665
Functional Basis set (eV) (eV) (eV) (eV)
PWC TNP -22.534 +0.045 +0.267 -0.118
PWC DNP,, -22.009 +0.093 +0.365 —-0.164
PBE TNP -20.006 +0.074 +0.051 +0.565
PBE DNP,, -19.453 +0.043 +0.098 +0.409

The calculations with the local density functional PWC
relatively exaggerate the binding in stishovite. This happens
for the TNP basis set as well as for the DNP, set. This
misrepresentation of relative bonding is thus not coming
from a basis set deficiency. It is rather a consequence of the
PWC local-density-functional approximation. We expect that
other local-density-functional approximations would show a
similar imbalance.

The slightly more complicated functional PBE provides a
more balanced approximation. For the experimental struc-
tural parameters a-quartz has lowest energy. With lattice op-
timizations, the energy of high cristobalite is lowered more
than the energies of other structures, but remains higher than
the energy of a-quartz, as should be. For the subsequent
calculations we use the PBE functional with a DNP basis set
optimized to minimize total energy for the experimental
a-quartz structure: DNP,,.

From I' point vibrational calculations we estimate that
B-quartz has a 0.45 kcal/mol lower zero-point vibrational
energy and a 1.1 cal/(mol K) higher vibrational entropy than
a-quartz. The observation of an «-f3 phase transition at
846 K suggests then that the total energy of B-quartz is about
0.06 eV higher than for a-quartz, in semiquantitative agree-
ment with our DFT results.

The calculated lattice constants differ from the experi-
mental ones as a consequence of the approximations inherent
to the functional and, to a lesser degree, due to the varia-
tional basis set used here and to further numerical approxi-
mations (see Table II).

Distorsions at the twin interface raise interest in elastic
properties. Elastic stiffness constants were calculated using
least-squares fitting for a set of calculations with small
strains (see Table III).

TABLE II. Lattice parameters at PBE energy minimum relative
to experimental ones.

Lattice parameter a-quartz S-quartz High cristobalite Stishovite

a +0.8%
c +1.0%

+2.2%
+2.4%

+4.4% +1.4%

+1.7%

The calculated diagonal stiffness constants (including the
shear constants ¢4y and c4g) appear slightly too soft as com-
pared to experiment.

III. ESTEREL TWIN MODELS WITH PERIODIC
BOUNDARY CONDITIONS

A. Esterel twinning

We start our discussion of twins in a- or B-quartz using
the conventional hexagonal crystal coordinate system with
basis vectors a,b,c satisfying |a|=|b|=a, |¢|=c, and a=p
=90°, y=120°, where a and ¢ take the values at the PBE
energy minimum, as indicated in Table II. Notice that a, b,
and ¢ span a primitive cell of the quartz lattice, the volume of
which is %\@azc. The most common twin in high-quartz is
the Esterel twin.” From a macroscopic point of view, the
two individuals of an Esterel twin are related by a mirror
reflection in the plane (0111) if the two individuals are of
opposite hand and by a 180° rotation about the axis [0112]
=[122] if the two individuals are of the same hand. Notice
that the axis [0112] is parallel to the twin plane (0111). The
composition plane is parallel to (0111) in most cases, but
also composition planes perpendicular to (0111) have been
observed.

Twins with twin plane (0111) are much less common in
low quartz, where they are known as Reichenstein-

TABLE III. Elastic stiffness constants of a-quartz in GPa. cgg
=(cpi—cp)/2.

Experiment (Ref. 8) PBE DNP,
u 85.0-87.3 80.1
s 105.5-107.7 103.7
Cas 57.2-59.7 55.0
i 48-9.9 9.9
13 10.5-15.1 16.0
i ~16.8 to ~18.3 ~13.0
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FIG. 1. Model of Esterel twin with four primitive cell layers
with unrelaxed bulk positions in each component. View along the
symmetry translation vector a in the composition plane. O atoms
are shown as large gray dots, Si atoms as small black dots. Supple-
mentary atoms have been added outside the cell to show all bonds
that emerge from the cell.

Grieserntal twins.! For simplicity, we shall speak of Esterel
twins in both cases.

A model of the arrangement of the atoms in an Esterel
twin boundary with composition plane parallel to the twin
plane has been proposed in Fig. 5 of Ref. 10, where the
mirror reflection in the composition plane passes through O
ions. This model seems unrealistic to us because it has Si
ions at close distance on both sides of the twin boundary. The
O ions necessary for charge neutrality at the interface are
missing because there is no space for them.

In the following subsections we first construct Esterel
twins from the unrelaxed bulk quartz lattice. In Sec. IV we
study the relaxation of these twin models with DFT, while
keeping the composition plane fixed.

B. Esterel reflection twins

A more realistic model of an Esterel reflection twin is
proposed in Fig. 1. The vectors marked ¢ and %a+b +c refer
to the orientation of the component on the left-hand side. The
composition plane contains a, which is normal to the plane
of the drawing, and %a+b+c. Figure 1 shows the starting
point for one of the present calculations. It has unrelaxed
B-quartz positions in each twin component. The figure shows
that the component on the right-hand side was obtained not
simply by a mirror reflection in the composition plane at the
center of the figure, but by a glide reflection. The glide vec-
tor is %(a+b+c), which has a component %(%a+b+c) in the
plane of the drawing and a component :-‘a perpendicular to it.
The position of the glide plane was chosen such that the
starting twin structure has the same density as the bulk.

TABLE IV. Distances between neighboring ions for our model
of the Esterel reflection twin in S-quartz with lattice constants as
indicated in Table II. The glide vector is (1/2)(a+b+c¢) for solution
1, (1/2)(b+c) for solution 2.

Across twin boundary

Distance (A) Bulk Solution 1 Solution 2
Smallest Si-O distance 1.628 1.957 2.312
Smallest O-O distance 2.602 1.936 2.504
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FIG. 2. Model of Esterel reflection twin with four primitive cell
layers in each component. View along the symmetry translation p,
in the composition plane.

Periodic boundary conditions are needed for DFT calcu-
lations, i.e., we have to consider a periodic arrangement of
twin boundaries, a periodic polysynthetic twin. Figure 1
shows composition planes at its left and right ends and at the
center (marked by vertical lines); the vector 4¢ connects
neighboring composition planes, i.e., each twin lamella has a
thickness of four single-crystal periods normal to the com-
position planes. Each composition plane is a glide-reflection
plane of the polysynthetic twin with glide vector %(a+b
+c¢). The polysynthetic twin has an all-side centered ortho-
rhombic cell (oF) with a conventional basis consisting of the
three mutually orthogonal vectors v,=a, vo=a+2b+2¢, vj3
=16¢-[32c¢%/(3a>+4c*)](a+2b+2c); the space group is
Fdd2 (no. 43). If the thickness of a twin lamella is n single
crystal periods, the space group and v; and v, remain the
same, whereas v; becomes viy=4nc—[8nc?/(3a*+4c?)](a
+2b+2c¢). The volume of the cell spanned by v, v,, and vs,
i.e., the volume of a conventional cell of the polysynthetic
twi_n, is 4n\3aZc, the volume of a primitive cell therefore
ny3aZec, i.e., 2n times the volume of a primitive cell of the
quartz lattice.

Table IV gives the distances between neighboring ions in
the bulk and across the composition plane for our model of
the Esterel reflection twin, where the glide vector has been
chosen as %(a+b+c) and for an alternative model with glide
vector %(b+c). The component of the glide vector perpen-
dicular to the plane of the drawing of Fig. 1 is +%a in the first
case, —%a in the second.

Table IV shows that even for solution 2 the distance be-
tween the closest O ions across the twin boundary is smaller
than in the bulk. We conclude that, as expected, the density
in the boundary will in reality be less than in the bulk as a
consequence of O-O repulsion.

Figure 1 showed our model of an n=4 polysynthetic Es-
terel reflection twin projected along a. Solution 2 looks the
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FIG. 3. Model of Esterel rotation twin with four primitive cell
layers in each component. View along the vector a+b+c in the
composition plane. The glide vector of the 180° screw rotation con-
necting neighboring components is %(a+b+c) at all twin bound-

aries, leading to an all-side centered orthorhombic cell.
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FIG. 4. Model of Esterel rotation twin with four primitive cell
layers in each component. View along the vector a+b+c in the
composition plane. The glide vector of the 180° screw rotation is
%(a+b+c) at the central twin boundary and %(b+c) at the two outer
twin boundaries, leading to a one-side centered orthorhombic cell.
[Notice that the two glide vectors %(a+b+c) and %(b+c) give rise
to twin boundaries with the same local symmetry, differing only by
a translation. ]

same as solution 1 in this projection. In the following we
shall restrict our attention to solution 1. A primitive cell is
spanned by p;=v,=a, p2=%(v1+v2)=a+b+c, p3=%(v1
+v;3). Notice that p, and p, lie in the composition plane.
Figure 1 can now be interpreted as normal projection of this
primitive cell on a plane perpendicular to p;. Figure 2 shows
this cell in normal projection on a plane perpendicular to p,.

The model shown in Figs. 1 and 2 will serve as starting
point for our density-functional calculations of the Esterel
reflection twin, in which the symmetry translations v; and v,
in the composition plane will be left fixed, whereas v; will be
allowed to change its length.

C. Esterel rotation twins

In our models of Esterel rotation twins the orientation of
the composition plane is the same as for reflection twins and
its position again such that twinned and untwinned crystals
have the same density. The two components are related by a
180° screw rotation about an axis in the composition plane
parallel to %a+b+c with glide vector %(a+b+c). This glide
vector has a component %(%a+b+c) parallel to the screw
axis and a component %a perpendicular to it.

The periodic boundary conditions needed for DFT calcu-
lations can be obtained in two different ways: (1) the com-
ponent of the glide vector perpendicular to the screw axis is
%a in every twin plane or (2) it changes sign between neigh-
boring twin planes, in which case the total glide vector alter-
nates between %(a+b+c) (as in solution 1 for the reflection
twin) and %(b+c) (as in solution 2 for the reflection twin).
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FIG. 5. Relaxed reflection twin, viewed along a+b+c¢ (above)
and along a (below).

Both glide vectors lead to shortest Si-O and O-O distances
across the twin boundary that alternate between the values
for the reflection twin solutions 1 and 2.

In case 1 the polysynthetic rotation twin has the same
periodicity as the reflection twin, i.e., a conventional all-side
centered cell spanned by the three mutually orthogonal vec-
tors v, V,, vz, and a primitive cell spanned by p;, p,, Ps-
This cell is shown in Fig. 3.

In case 2 the polysynthetic rotation twin has a conven-
tional one-side centered cell spanned by the three mutually
orthogonal vectors v{,v,, %V3 and a primitive cell spanned by
pi=vi=a, p,=5(v;+V,)=a+b+c, and by ;vs. This cell is
shown in Fig. 4.

Viewed along a, the structures shown in Figs. 3 and 4
look as in Fig. 1. Whereas our model of the periodic
polysynthetic reflection twin had the space group symmetry
Fdd2, the models of rotation twins have only monoclinic
symmetry, C2 (no. 5) in the case of Fig. 3 and P2, (no. 4) in
the case of Fig. 4. [A model of a periodic polysynthetic ro-
tation twin with orthorhombic symmetry C222; (no. 20) can
be constructed but has ions of the same charge next to each
other across the composition planes.] The symmetry direc-
tion of C2 is along vy, the symmetry direction of P2, along
V3.

Figures 1-4 have been constructed from the S-quartz
structure. The symmetry of the polysynthetic twin is low, so
that the corresponding polysynthetic twins for a-quartz have
the same space group. This fact has an immediate conse-

TABLE V. Distances between neighboring ions for the Esterel reflection twin in B-quartz with lattice

constants as indicated in Table II.

Unrelaxed Relaxed
Bulk
Distance (A) Bulk Across twin boundary Min. Max. Across twin boundary
Smallest Si-O distance 1.628 1.957 1.618 1.646 1.638
Smallest O-O distance 2.602 1.936 2594 2.644 2.606
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TABLE VI. Energies and displacements per interface. E,;, is the energy per area of a primitive cell,
stretch gives the extension normal to the interface, and shear across the interface is parallel to v,.

B-quartz a-quartz
Number Ewin Stretch Shear Eiwin Stretch Shear
Twin type of layers (eV) (pm) (pm) (eV) (pm) (pm)
Reflection 1 0.14 10 0.25 11
Fdd?2 2 0.51 17 0.62 20
3 0.75 21 0.70 23
4 0.59 21 0.64 22
5 0.69 23 0.98 39
6 0.68 25 0.95 41
7 0.74 38 1.02 41
Rotation 1 0.56 2 2 0.49 6 2
C2, 2 0.76 -8 -1 0.82 2 -5
monoclinic 3 0.99 -6 -13 0.89 4 -17
axis v; 4 0.84 4 7 0.79 3 -11
5 0.99 -1 -10 0.89 7 -14
Rotation 1 1.34 -6 1.19 -4
P2, 2 0.91 2 0.78 1
monoclinic 3 0.94 -4 0.86 0
axis vy 4 0.93 -4 0.99 22
5 0.95 -3 1.02 17

quence for hypothetical calculations in the limit of many
layers in each twin component. If we assume the ideal twin
interface as a dislocation-free, strained structure, the transla-
tion vectors in the composition plane are fixed at the
B-quartz values. But as the low-temperature ground state is
a-quartz, the bulk, i.e., the middle part of the thick twin
components, must converge to uniaxially strained a-quartz
in such (not feasible) calculations. The uniaxial strain arises
from the fact that the two-dimensional interface lattice pa-
rameters are kept fixed at the B-quartz structure.
Corresponding models have been calculated also for other

FIG. 6. Relaxed rotation twin of Fig. 3, viewed along a+b+c
(above) and along a (below).

thickness values of the twin components and also for
a-quartz.

IV. DFT RELAXATION OF THE TWIN INTERFACE

The models illustrated in Figs. 1-4 serve as starting points
for our density-functional calculations of the Esterel twins.
The symmetry translations v; and v, in the composition
plane will be left fixed. In the case shown in Fig. 3, the
monoclinic axis is vy. It follows that v; is allowed to change
its length and the angle that it makes with v,. The cell may

FIG. 7. Relaxed rotation twin of Fig. 4, viewed along a+b+c
(above) and along a (below).
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then become monoclinic. In the case shown in Fig. 4 the
monoclinic axis is v3, from which it follows that v; can
change only its length. The metric of the cell then remains
orthorhombic.

The relaxation of all parameters except the lattice param-
eters in the composition plane leads to an atomic rearrange-
ment which is shown in Fig. 5 for the reflection twin. The
vector v3 being normal to the composition plane, its length
remains free for relaxation.

The relaxation brings the Si-O bond distance and the
smallest O-O distance back very close to the bulk values
(Table V). It is interesting to note that the extremal values of
the bond length for the relaxed structure do not occur across
the composition plane.

The energies of the relaxed twin models can be compared
to the bulk energies to extract the interfacial energy of twin-
ning:

_ 1
Et(nlayer) - nlayerEa + 2Etwim

where E:Y is the relevant bulk energy per cell. In the case of
a-quartz interface geometry, this is just the bulk energy of
a-quartz. In the case of B-quartz interface geometry, E}I is
the bulk energy of uniaxially strained a-quartz matching the
constrained geometry of the composition plane.

It is possible to do low-temperature bulk SB-quartz calcu-
lations by maintaining the high symmetry of the B phase.
Because of the low symmetry of the twin model, this ap-
proach is not possible here. A proper calculation of the inter-
face enthalpy in the S phase requires in principle vibrational
calculations for the entropy term in the enthalpy. This is
beyond the scope of the present work. We know that the
different vibrational entropy contributions let the enthalpies
as a function of temperature cross at the phase transition. The
present calculations lead to quite similar estimations of the
interfacial energies of a- and B-quartz, as shown in Table VI.
The vibrational calculation would be expected to show soft-
ened vibrations due to the stretched bonds at the interface,
which in turn lead to a slight lowering of the interface en-
thalpy at elevated temperature. The Esterel reflection twin
has clearly lower energy than the two rotation twins. As its
nucleation energy must be connected to this interfacial en-
ergy, it is evident that (even at B phase temperatures) spon-
taneous thermal formation of this defect will occur only
rarely. Indeed, occurrence is typically much less than one
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such interface per specimen. The present calculations suggest
that occurrence of an Esterel rotation twin interface is even
more rare.

The next figures show the relaxed structures for the rota-
tion twins with symmetry C2 (Fig. 6) and symmetry P2,
(Fig. 7).

V. DISCUSSION

The twin energies given in Table VI do not converge ver-
sus component thickness. Relaxation takes place deep into
the twin components. The present calculations suggest that
for the S-quartz reflection twin the interfacial energy is
0.7 eV per surface cell, but convergence with thickness is
probably only within +0.2 eV. It is interesting to note that
the low-thickness calculations all give relatively low twin
energies for the reflection twin and the rotation twin with
symmetry axis vj.

The interface energies of the polysynthetic twins studied
here suggest an even-odd alternation with the number of
primitive units in each twin component. The occurrence of
this appears to be a consequence of having stiff SiO, tetra-
hedra connected flexibly at the vertices. For thicker twin
components than studied here the oscillation should die out.
The oscillation is irrelevant for natural specimens, which
typically contain a single twin interface.

VI. SUMMARY

We have presented models for Esterel twin interfaces with
mirror and rotation symmetry that satisfy stoichiometry at
the composition plane. The starting points are unrelaxed
models constructed from bulk crystal and keeping the bulk
volume per formula unit. the present unrelaxed models also
maintain the fourfold coordination of all Si atoms and the
twofold coordination of the O atoms, albeit with significant
variation of bond length and bond angles at the composition
plane. More realistic atomic positions were sought with
density-functional calculations. Relaxation energies are quite
significant, as the initial unrelaxed interface energy is about
15 eV above the relaxed energy for our cells containing two
twin interfaces. After relaxation, bond length and bond
angles are close to bulk quartz values. The energetics from
DFT say that the mirror symmetry twinning has the lowest
interface energy among the models investigated here.

I'C. Frondel, The System of Mineralogy (Wiley, New York, 1962),
Vol. III.

2 http://webbook.nist.gov/

3J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

4J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,
3865 (1996).

3B. Delley, J. Phys. Chem. A 110, 13632 (2006).

B. Delley, J. Chem. Phys. 92, 508 (1990).

"B. Delley, J. Chem. Phys. 113, 7756 (2000).

8G. Simmons and H. Wang, Single Crystal Elastic Constants, 2nd
ed. (MIT Press, Cambridge, MA, 1971).

°J. Drugman, Miner. Mag. 21, 366 (1972).

10A. C. McLaren, in Mineral and Rock Deformation: Laboratory
Studies, edited by B. E. Hobbs and H. C. Heard, Geophysical
Monographs Vol. 36 (American Geophysical Union, Washington
D.C., 1986), pp. 233-245.

224106-6



