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Despite a large number of model potentials having been developed in the last decades for silicon and
group-IV elements, only a few of them correctly reproduce the brittle propagation of fracture and provide a
proper estimate of the failure strength for such materials. We prove that the inability to model the brittle crack
opening shown by most model potentials is related to their short-range character, a feature which overestimates
the atomic force necessary to snap a bond. By using the universal energy relation we prove that any model
potential aimed at studying fracture in covalent crystals should include interactions longer than the second-
neighbor distance. We adopt the Tersoff force model to illustrate such a concept in the case of Si-Ge-C systems.
Finally, we demonstrate that by means of a suitable modification of the Tersoff force model it is possible to
recover the brittle fracture in Si, C, Ge, and SiC and to provide a quantitative prediction of many mechanical
properties.
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I. INTRODUCTION

The atomistic simulation of fracture has received much
interest in recent years since it is a central issue of multiscale
modeling of real materials.1,2 For metallic systems it was
possible to atomistically investigate several aspects of frac-
ture mechanics, like, e.g., the brittle-ductile transition3 or the
Griffith criterion for crack stability.4 At variance, the brittle
behavior of covalent materials �Si, Ge, C, SiC� turned out to
be a more challenging problem.5 Interestingly enough, most
of the classical potentials available for elemental as well as
compound group-IV materials are not able to reproduce
brittle fracture.5 In the case of silicon this holds for the Ter-
soff potential,6 the Stillinger-Weber �SW� potential,7 and the
environment-dependent interatomic potential �EDIP�:8 all of
them predict unphysical behavior during fracture. Similar
problems are found when simulating fracture in other
group-IV materials, as detailed in the following. To our
knowledge only a few force models are able to correctly
predict the brittle behavior in these systems: namely, the po-
tential developed by Kicuchi et al.9 used for SiC, the
embedded-atom method,10 and a modified version7 of the
SW potential used for Si. However, these improved poten-
tials only work for a specific material, no transferability be-
ing searched for, or heuristically found.

By comparing the atomic force provided by the SW po-
tential and EDIP with the universal energy relation �UER�
obtained by ab initio calculations,11 Holland and Marder7

concluded that none of the available models for silicon ac-
curately describe the force-separation curve. Such conclu-
sions have been recently supported by the use of the pseudo-
potential method to study quasistatistically the creation of
new surfaces.8,12 Therefore, several alternative approaches
have been explored in order to atomistically investigate frac-
ture in silicon and in other covalent materials by combining
classical force fields with other theoretical methods.1 In the
spirit of the multiscale approach, the classical force field is
used in the remote regions of the simulated system, while the
chemical bonding nearby the crack tip is described by semi-

empirical tight-binding8 or by ab initio density functional
calculations.13 Alternatively, the model potential is locally
�i.e., at the very crack tip� improved through a learn-on-the-
fly procedure.14 Very recently, a multiparadigm approach15

has been also proposed where a reactive force field is used.
The continued search for combined approaches is moti-

vated by a real need: fracture is a truly multiscale phenom-
enon, where both the long-range elastic fields and the atomic
separation forces must be accurately described at the same
time. Despite the success of the above hybrid approaches, the
search for classical model potentials still remains of great
relevance. This is mainly due to the lower computational cost
of model potentials with respect to methods involving ab
initio or tight-binding calculations.

The aim of the present work is to investigate whether
classical potentials can be developed to properly simulate
fracture in covalent materials. By comparing classical poten-
tials with the universal energy relation, we focus on the in-
teratomic separation force. Our investigation shows that any
model potential aimed at studying fracture should include
interactions longer than the second-nearest-neighbor �2NN�
distance. This is proved by developing a universal minimum-
range model �MRM� for fracture. By using the Tersoff po-
tential as the prototype of 1NN interaction force field, we
substantiate the above conclusion by showing that the sepa-
ration force during fracture is in fact largely overestimated,
as a result of the potential short rangeness. Although the
bypass of this artifact can be obtained by extending the range
of interactions, this solution is unfortunately demanding in
terms of the development of the new model potential. In
particular, this approach would imply refitting the force field,
possibly generating inconsistency with previous results. This
is an unpleasant feature, since a huge body of valuable
knowledge has been produced so far by the original short-
range potentials. Therefore, by following a different path
�i.e., by still keeping the 1NN range of the interactions� we
propose an improvement of the Tersoff force model which
will eventually be able to reproduce brittle fracture in el-
emental and compound group-IV materials. This result is ob-
tained by affecting the cutoff function of the force field in
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such a way so as to bypass the strict requirements of the
universal MRM. This choice, however, introduces some
limitation to the transferability of the model, as discussed
below. Nevertheless, the present modified Tersoff model pro-
vides good estimates of important fracture-related properties,
such as the failure strength and the crack resistance of a
perfect and a cracked group-IV material.

The paper is organized as follows. In Sec. II we describe
the universal energy relation, focusing on the case of cova-
lent materials. In Sec. III we describe the MRM and we work
out a comparison with the Tersoff one. Atomistic results are
finally presented in Sec. IV, where a modification of the Ter-
soff model is introduced.

II. UNIVERSAL ENERGY RELATION

The UER is a two-parameter equation of state originally
proposed by Rose et al.11 to describe the dependence of the
internal energy u�s� of a metal upon the scaled interatomic
separation s:

u�s� = − E0�1 + s�e−s. �1�

The UER equation also describes the binding energy of
many nonmetallic systems and, in particular, of covalent sol-
ids such as silicon, germanium,11 carbon, and silicon
carbide.16 In the above equation, E0 is the absolute value of
the cohesive energy per atom and s is

s = � r

r0
− 1� 1

�
, �2�

where r and r0 are the interatomic distances in the strained
and in the equilibrium structure, respectively. � is an adi-
mensional parameter that depends on the system, providing a
measure of the material anharmonicity. Such a quantity may
be fitted on experiments or ab initio calculations, and it can
be cast in the form11

� =
1

3
� E0

BVat
�1/2

, �3�

where Vat is the atomic volume and B is the bulk modulus.
To the aim of providing a physical interpretation of �, let us
assume an ideal linear elastic regime and let us define a
critical state of strain corresponding to an atomic volume
increment ��V� at which the elastic energy Ee= 1

2B��V /V�2

is equal to the cohesive energy E0. Such an equivalent vol-
ume, normalized by the equilibrium atomic volume, defines
the parameter �= 1

3 � �V
Vat

�1/2. In this work we will focus on the
case of zinc-blende or diamond crystals. Accordingly, the
atomic volume Vat is related to the interatomic distance
through the relation Vat= �2 /�3�3r0

3. The shell of 1NN con-
tains 4 atoms and it is located at a distance r1NN=r0; for the
second and third shells, both containing 12 atoms, r2NN
=2 /3�6r1NN and r3NN=1 /3�33r1NN are found, respectively. It
is interesting to calculate � in the actual case of group-IV
elements. In the case of silicon carbide, �=0.221 is found by
using r0=0.187 nm, E0=6.19 eV, and B=223 GPa.17 In the
case of carbon we obtain �=0.230 �we used for B the value

given in Ref. 18�; furthermore, for silicon and germanium
�=0.205 and �=0.198 are found,11 respectively. These val-
ues are relatively large, and they are not compatible with the
assumption that the covalent bonding is effectively modeled
by using short-range interactions only, as shown below. The
work w�s� necessary to hydrostatically stretch a perfect crys-
tal up to a scaled interatomic distance s can be obtained from
Eq. �1� as follows:

w�s� = E0 + u�s� . �4�

In the limit s→�, w→E0 is obtained �work necessary to
separate the solid into a set of isolated atoms�. The curve
w�s� is completely controlled by the three constants E0, �,
and r0, which, in turn, depend on the actual material. For
instance, the inflection point rI of w�s� corresponds to rI

=r0�1+��, occurring at s=1. Such an interatomic separation
is obtained by spending a work w�rI�= �1−2 /e�E0 as large as
26% of E0. In Fig. 1 �bottom� the work function w�s� �solid
line� is represented for the choice �=0.22, corresponding to
the SiC case.

The force f�s� necessary to separate atoms at the inter-
atomic distance s is straightforwardly obtained from w�s�:

f�s� =
dw

dr
�r�s�� = E0

s

�r0
e−s. �5�

This force is positive in the case of tensile strain �r�r0—i.e.,
s�0�. f�s� is represented in Fig. 1 �top panel� by a solid line.
The maximum separation force fmax=E0�e�r0�−1 is found at
rI=r0�1+��=1.44r0, falling within the 1NN distance r0

=r1NN and 2NN distance r2NN �r2NN=1.633r0�. At distances
r�rI �s�1� the force f�s� decreases as the separation in-
creases. A 90% force reduction �i.e., f = fmax /10� is observed
when r�2r0�r3NN=1.91r0 �see Fig. 1�.
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FIG. 1. �Color online� Work �bottom� and force �top� for hydro-
static separation of silicon carbide as a function of the interatomic
distance �r /r0�.
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III. MINIMUM-RANGE MODEL

In this section we discuss how to correctly reproduce the
fracture properties of a material by using a suitable short-
range force model fsr. The use of a short-range force model
is, of course, preferable as for the corresponding computa-
tional workload. It is important to clarify that the hydrostatic
separation energy described by the UER model does not cor-
respond to any realistic fracture event. Nevertheless, we
guess that any force model aimed at studying fracture must
be able to correctly reproduce the UER curve.

The development of a short-range force model is worked
out from the corresponding UER by imposing a small num-
ber of very fundamental requirements: �i� the force must be a
continuous function of strain, �ii� the maximum separation
force must be correctly reproduced �i.e., fsr

max= fmax�, �iii� the
bulk modulus at equilibrium must fit the experimental �or ab
initio� value, �iv� at tensile strains �up to rI� the bulk modulus
must not increase, and �v� the work of separation must cor-
rectly reproduce E0. The condition �ii� is related to the frac-
ture toughness of the perfect material. For instance, if the
maximum force is overestimated, the fracture toughness of
the material is overestimated as well. Similarly, condition
�iii� is needed in order to reproduce the elastic properties of
the material. Furthermore, condition �iv� stands for a simple
physical requirement: the atomic bonds cannot stiffen during
tensile deformation up to the maximum force. Condition �v�
is verified when the force model is the derivative of the en-
ergy �conservative force�.

The shortest force model fulfilling the above conditions
�i�–�v� is represented in Fig. 1 �top panel� as a dotted line
�the proof is given in Appendix A�. We will refer to such a
model as minimum-range model. It consists in a linear elas-
tic force over the range r0�r�rc �where the bulk modulus
is given by the constant value B�, while for rc�r�Sc the
force is constant and it is equal to the fmax value provided by
the UER. Finally, for any interatomic distance larger than Sc,
the force is zero. The actual value of rc is fixed by the inter-
section between the linear force with slope B, occurring in
the region �r0 ,rc�, and the constant fmax. Sc is, in turn, fixed
by the cohesive energy E0. It can be calculated �see Appen-
dix A� that

Sc = r0�1 + �e + 0.5e−1��� . �6�

This value sets the minimum range below which it is not
possible to find a force model satisfying the conditions �i�–
�v�; in other words, a model with force extension below Sc is
unlikely to describe brittle fracture.

The value Sc /r0 depends only on the parameter � charac-
terizing the material. We have found that in the case of co-
valent group-IV materials such a minimum value Sc is close
to the equilibrium 2NN distance. In particular, in the case of
carbon and silicon carbide, we get Sc	1.64r0 and Sc	1.66,
respectively: they are slightly larger than the 2NN distance
r2NN	1.63r0. In the case of silicon and germanium, Sc
�0.9r2NN. These values suggest that only by taking into ac-
count interactions beyond the second neighbors ��r2NN� is it
possible to correctly describe the maximum separation force
and, in turn, the fracture toughness of the investigated sys-

tem. At variance, the 1NN approximation is still valid when
studying properties where an overestimation of the maxi-
mum separation force is not critical.

The minimum-range model is a very rough model, its
only value being explicatory. In particular, this force model
can hardly be used for practical purposes like, e.g., an atom-
istic simulation. A better device �still short ranged� is ob-
tained by multiplying the ideally long-range energy function
u�s� by a cutoff function h�s�, so as to obtain a new force
model T�s�:

T�s� = u�s�h�s� . �7�

Although other cutoff schemes19 �e.g., T=u+h� have been
proposed in the literature, we point out that the following
analysis does not depend on the details of the actual cutoff.
The corresponding work separation wsr�s� is modified ac-
cordingly,

wsr�s� = E0 + T�s� , �8�

and it is short ranged as well. An example of such a model is
represented in the bottom panel of Fig. 1 as a dot-dashed
line; it corresponds to the Tersoff model.20 Let �R ,S� be the
range where the cutoff h�s� operates; it vanishes for r�S and
it equals 1 for r�R. The cutoff function does not modify the
total work of separation, wsr���=wsr�S�=E0, so that condi-
tion �v� is satisfied. Furthermore, the cutoff �which is a con-
tinuous function, together with its derivative� does not
modify the force field close to its equilibrium distance �al-
ways falling at r�R�. Accordingly, conditions �i�, �iii�, and
�iv� are always satisfied by construction. Condition �ii� is
instead satisfied only if the range S of the force model is
larger than Sc, as previously discussed. At variance, if S
�Sc, then an overestimation of the force is expected. The
above discussion is valid, in general, for any short-range po-
tential and for any cutoff scheme. In particular, it applies to
the Tersoff potential that corresponds to the case S=1.33r0,20

i.e., to a range much shorter than Sc. In Fig. 1 the Tersoff
model is represented by the dot-dashed line. As expected, the
force is overestimated in the range �R ,S� and an unphysical
peak is observed, resulting in being 4 times larger than the
correct maximum value fmax �Fig. 1, top panel�.

The unphysical artifacts due to the imposed short range-
ness of the interatomic forces are easily explained by consid-
ering the derivative of the T�s� energy function �see Appen-
dix B�. These artifacts prevent the correct description of
brittle crack propagation in group-IV materials, as shown in
Fig. 2 �right panels� where the original Tersoff model was
used. In the case of SiC �panel �A��� crack does not propa-
gate in the plane of maximum stress �the plane containing
the initial crack seed�; rather, it moves along a crystallo-
graphic equivalent plane. Similar features are observed in the
case of silicon �panel �B���, germanium, and carbon �not
shown here�. Unphysical deviations from the ideal brittle be-
havior are observed as well in silicon, when described by the
EDIP or by the SW force models.8,21 Once again, these prob-
lems arise from the existence of unphysical forces that con-
trast crack propagation.
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The deficiencies of the above force models are also quan-
titative. In the case of the Tersoff potential, we have verified
that the failure strength � f�c� of a uniaxially �111�-strained
monocrystal containing a slit crack of semilength c �oriented
along the �111� plane� is larger than the prediction by the
linear elastic fracture mechanics �LEFM�

�LEFM�c� =� 2

	


E

c
�9�

for the same system. In this equation 
 is the ideal surface
energy and E is the Young’s modulus. In particular, we found
an extremely high fracture toughness � f�c� /�LEFM�c��2 for
any crack length in the range between c0 and �50c0, where
c0 is the interbond separation along the slit crack. The same
deviation is found when calculating the ideal strength �th of
perfect crystal under similar loading conditions.

IV. RESULTS

In the previous section we have proved that any conser-
vative force field shorter than the MRM cannot satisfy all the
requirements �i�–�v�. As for the Tersoff force field it would
be necessary to use a larger cutoff �S�r2NN�, so as to take
into account at least the second shell of neighboring atoms.

In this work we do not follow this path since it would
require a new fitting of the whole set of the Tersoff param-
eters. Rather, we introduce an improvement of the Tersoff

model, �hereafter labeled as T̃� that is obtained by removing
the unphysical force due to the cutoff function �see Appendix
B�. The modified force model fulfills conditions �i�–�iv�, but
not condition �v�. Under the only conditions �i�–�iv� the
MRM is no longer valid. Therefore, it is possible to find a
new model, shorter than the MRM, that does not overesti-
mate the separation force. This new force model correctly
reproduces the results of the original Tersoff potential when
describing systems in the condition of small deformation
�i.e., when the action of the cutoff function is not involved�.
For example, all the elastic bulk properties are unchanged.

The work of separation corresponding to the new force
model is represented in Fig. 1 �dashed line�: it is in very
close agreement with the UER curve, up to the point where it
is set to h=0.

The present scheme is suitable for the calculation of any
mechanical or fracture-related properties at T=0 K. On the
other hand, its major drawback is that the force is noncon-
servative and the energy is ill defined. As a result, the present
solution is not good for simulating thermodynamical en-
sembles at finite temperatures or for performing free energy
calculations. Moreover, some care is required for the calcu-
lation of quantities relevant to fracture mechanics �such as
the work of separation or the work to create a surface in a
perfect crystal�: they are obtained by integrating the infini-

tesimal work performed by the modified forces f̃ during the
corresponding separation process. Another consequence of
the violation of the condition �v� is that the work of separa-

tion Ẽ0 is different from the original value E0. This differ-
ence corresponds to the removal of the work done by the
cutoff forces, and it is,

Ẽ0 = 

r0

�

dT̃ � E0. �10�

The difference Ẽ0−E0 corresponds to the shift of the dashed
horizontal line with respect to the value E0 �Fig. 1, bottom
panel�. Similarly, the difference 
̃−
 may be evaluated from
Table I. In particular, 
̃ was computed as the work performed

by the forces f̃ during the rigid separation of two semibulks
obtained by cutting a perfect crystal along a �111� shuffle

plane. Notably, the modified force model f̃ is able to repro-
duce the brittle behavior of silicon, carbon, germanium, and
silicon carbide. First of all, the model predicts correctly the
brittle crack opening for all these material, as shown in Fig.
2 for silicon and silicon carbide �panels �B� and �A��. In
addition, the calculated failure strength �̃ f of cracked sys-
tems is nicely close to the continuum Griffith predictions.
This is shown in Fig. 3, where we report the failure strength
of SiC, Si, Ge, and C samples containing a crack of semi-
length c. The systems were uniaxially loaded along the �111�
crystallographic direction in all cases. The LEFM Griffith
curve �LEFM�c� for any material is reported in Fig. 3, as well.
The deviations of the atomistic data from the Griffith theory
are of the order of few tens of a percent and do not depend
on the cutoff functions. We observe that at small crack
lengths the calculated failure strength is lower than the the-

A A’

B’B

FIG. 2. �Color online� Crack tip morphology during fracture
propagation in Si �bottom panels� and SiC �top panels�. According
to the original Tersoff model, artifacts are observed at the crack tip
when simulating fracture both in SiC �panel �A��� and Si �panel
�B���; at variance, the modified force model correctly reproduces
the brittle crack opening in SiC �panel �A�� and Si �panel �B��.

TABLE I. Comparison of physical properties related to fracture
under �111� uniaxial load in C, SiC, Si, and Ge.

C SiC Si Ge

E �GPa� 1276 565 189 167


 �eV Å−2� 0.256 0.157 0.080 0.067


̃ �eV Å−2� 0.193 0.125 0.060 0.043

�th �GPa� 163 103 55 51

�̃th �GPa� 114 58 23 17
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oretical expectation �that predicts an unphysical divergence�.
Similarly to previous findings,22,23 this is a consequence of
nanoscale effects since the crack size is close to the lattice
spacing and a continuum Griffith-like approach is not ad-
equate. These effects can be accounted for in modern con-
tinuum theories by introducing into the Griffith theory a
nanosized process zone close to the crack tip.24 Concerning
the limit of large cracks, we observe that the ratio
� f�c� /�LEFM�c� is slightly larger than 1. Although the devia-
tions are within the error bar, this may be attributed to lattice
trapping effects as we already reported for the case of silicon
carbide.22

In order to better quantify the difference between the

original T and the modified T̃ Tersoff models, we have com-
pared the failure strength in the two cases. The results for a
cracked SiC sample are reported in Fig. 4. Circles and dia-

monds refer to T and T̃, respectively. We can observe that the
original Tersoff model overestimates the failure strength of
an amount of about 24–32 GPa with respect to the modified
model. Both results have been compared with the Griffith
curve calculated using for the surface energy the values 

�dashed line� and 
̃ �solid line� reported in Table I. As al-
ready observed above, the atomistic data obtained according
to the modified Tersoff potential well reproduce the corre-
sponding LEFM curve �solid line� except for small devia-
tions at very short crack lengths. At variance, according to
the original Tersoff model, the failure strength calculated ato-
mistically is at least 24 GPa higher than the related LEFM
curve �dashed line�. This is a consequence of the unphysical
“force barrier” predicted according to the original formula-
tion of the Tersoff potential. Finally, we observe that the
modified Tersoff model strongly improves also the ideal
strength �̃th of perfect C, Si, Ge, and SiC crystals under the
condition of uniaxial loading. For the SiC case, in particular,
we observe that the calculated strength �̃th=58±1 GPa is
close to the density functional theory result25 �th

DFT

	50.4 GaP, whereas we get �th=103±1 GPa by using the
original Tersoff potential. In Table I a comparison of some

physical properties of the original versus modified Tersoff
model is presented.

V. CONCLUSIONS

By using the UER we have studied the separation force
under hydrostatic tensile deformations in group-IV materials.
We have found that it is not possible to reproduce the frac-
ture related properties by using a short-range model. In par-
ticular, we have identified the minimum range required by an
empirical force model to correctly describe fracture and we
have expressed it in terms of the anharmonicity parameter of
the UER theory. More importantly, we proved that interac-
tions up to the second-nearest-neighbor distance are re-
quired. This proof is validated by a detailed analysis of the
Tersoff atomic force model that overestimates the separation
force because of its short-range cutoff function.

In order to bypass the limit imposed by the MRM, we
proposed a modified Tersoff model in which, at the price of
affecting the original cohesive energy, a correct separation
force is obtained. The modified model properly describes the
brittle fracture in any group-IV materials while incorporating
only first-nearest-neighbor interactions. Although the present
modification is not good for simulating thermodynamical en-
sembles at finite temperatures, it nevertheless gives reliable
estimates of the failure strength and other crack-related quan-
tities.
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APPENDIX A

Let us consider a force model as described in Sec. III �see
also Fig. 1, dotted line�. The bulk modulus B is defined by
the relation
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FIG. 4. Comparison of the failure strength � f for a cracked SiC
sample, uniaxially loaded along �111� crystallographic direction,
calculated according to both original �circles� and modified �dia-
monds� Tersoff model. They are reported also the two Griffith
curves, obtained by using the surface energy calculated according to
the original �dashed line� and to the modified �solid line� Tersoff
model.
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FIG. 3. Failure strength � f, normalized with respect to the ideal
strength �th as a function of the crack semilength c. They are re-
ported the results for cracked Si, C, Ge, and SiC samples uniaxially
loaded along the �111� direction. The corresponding Griffith curves,
obtained with the calculated parameters E and 
̃, are reported as
well.
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B = �V
d2w

dV2�
eq

= �1

9

r0
2

Vat

df

dr
�

r=r0

= �1

9

r0

�Vat

df

ds
�

s=0
.

�A1�

By using scaled coordinates �see Eq. �2�� it is easy to prove
that

dnw

dsn = �− 1�n+1E0�s + 1 − n�e−s. �A2�

The minimum of w�s� is reached when s=0 and the inflec-
tion point occurs at s=1. According to Sec. III, rc is calcu-
lated as the point where the function in the linear regions
intersects the horizontal line fmax. The equivalent of rc in
scaled coordinates is sc= 1

�
� rc

r0
−1�. Since

�d2w

ds2 �
s=0

sc = �dw

ds
�

s=1
, �A3�

where � d2w
ds2 �s=0=E0 and � dw

ds �s=1=E0e−1, we get

sc = e−1 �A4�

corresponding to rc=r0�1+� /e�. Finally, the distance Sc

�which scaled becomes s2� is fixed by the condition �iii�, i.e.,
r0

s2fsrdr=E0. This condition can be expressed in terms of the
work and scaled coordinates as follows:



0

s2 dw

ds
�s�ds = w�s2� − w�0� = E0, �A5�

which gives w�s2�=E0. By using the linearity of w�s� in the
range �rc ,Sc�,

w�s� = w�sc� + �s − sc��dw

ds
�

s=1
, �A6�

and by using the square dependence in the range �r0 ,rc�, it is
found that

�1

2

d2w

ds2 �
s=0

sc
2 = w�sc� . �A7�

By combining Eqs. �A6� and �A7�

w�s� = �1

2

d2w

ds2 �
s=0

sc
2 + �s − sc��dw

ds
�

s=1
. �A8�

is finally obtained. From the condition w�s2�=E0 it follows
that

s2 = e +
1

2e
�A9�

and the absolute distance Sc is

Sc = r0�1 + �e + 0.5e−1��� . �A10�

The work associated with the force model fsr described
above is parabolic in the interval �r0 ,rc� and linear in the
range �rc ,Sc� with a slope equal to fmax. The relevant prop-
erty is that the above interaction model fsr is the shortest
force model satisfying all the conditions �i�, �ii�, �iii�, and
�iv�. By choosing a smaller rc either the slope of the force is
modified at r0 �and condition �ii� fails� or, because of the
mathematical continuity of the force, the concavity has to be
positive at some point in the range �r0 ,rc� �and therefore the
condition �iii� fails�. As a result, we conclude that rc is the
smallest possible value. On the other side, it is not possible
to choose a range S� smaller than Sc. In fact, because of the
mathematical continuity, if S��Sc, then the total work of

separation rc

S�fsrds would be equal to fsr����S�−rc�, where
� is a point within �rc ,Sc�. Since, according to �iv�, the
total work is E0 and E0= fmax�Sc−rc�, it follows that
fsr����S�−rc�= fmax�Sc−rc�� fmax�S�−rc� or, equivalently,
fsr���� fmax. This is in contrast to condition �i�. We conclude
that Sc is the shortest possible choice.

APPENDIX B

The work dT associated with an infinitesimal separation is
calculated as

dT = udh + hdu = dC + dT̃ . �B1�

The term dT̃=hdu is the work associated with the short-
range equivalent of the force f and it does not contain any
force overestimation; the term dC is due to the force fC

=w dh
dr , which, on the contrary, may be very large �if the range

is too short�. fC is of the order of �E0w�R� / �S−R�, and it
becomes arbitrarily large if R is close to S.

The original Tersoff energy is calculated as a sum over
two-body terms,

T = � h�ur − bua� , �B2�

where the indices i and j have been omitted for simplicity
and, therefore, it must be understood that �ij→�; ua�rij�
→ua, ur�rij�→ur, and h�rij�→h. We remark that h is the
cutoff function. The term b is a functional depending on the
quantity �ij, which counts the number of local bonds; more
explicitly, we write �ij =�k�ihikgijk where each term is
weighted by an angle-dependent term g�ijk� �ijk is the angle
formed by the bonds ik and ij�.

The work done by the Tersoff forces as a result of the
infinitesimal atomic displacements drij is the sum of two
contributions,

dT = dT̃ + dC , �B3�

where dC contains all terms related to the derivative of the
cutoff function,

dC = � dh�ur − uab� − � huadhb , �B4�

and dT̃ is the remaining part
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dT̃ = � h�dur − bdua� − � dgbua. �B5�

We made use of the notation

dgb =
db

d�ij
�
k�i

hikdgijk �B6�

and

dhb =
db

d�ij
�
k�i

gijkdhik. �B7�

The modified short-range force field f̃ associated with dT̃
is expected to remove the artifacts due to the cutoff forces
�dC terms�.
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