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Much attention has been given to a possible violation of the optical sum rule in the cuprates and the
connection this might have to kinetic energy lowering. The optical integral is composed of a cutoff-
independent term �whose temperature dependence is a measure of the sum-rule violation�, plus a cutoff-
dependent term that accounts for the extension of the Drude peak beyond the upper bound of the integral. We
find that the temperature dependence of the optical integral in the normal state of the cuprates can be accounted
for solely by the latter term, implying that the dominant contribution to the observed sum-rule violation in the
normal state is due to the finite cutoff. This cutoff-dependent term is well modeled by a theory of electrons
interacting with a broad spectrum of bosons.
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The integral of the real part of the optical conductivity
with respect to frequency up to infinity is known as the f sum
rule. It is proportional to n /m and is preserved by charge
conservation.1 In experiments, however, the conductivity is
measured up to a certain frequency cutoff. In a situation
when the system has a single band of low-energy carriers,
separated by an energy gap from other high-energy bands �as
in the cuprates�, the exact f sum rule reduces to the single-
band sum rule of Kubo,2

W = �
0

�c

Re ����d� = f��c�
�pl
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8
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�e2a2

2�2V
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Here a is the in-plane lattice constant, V the unit cell volume,
�c an ultraviolet cutoff, �pl the bare plasma frequency, and

EK =
2

a2N
�

k

�2�k

�kx
2 nk, �2�

with N the number of k vectors, �k the bare dispersion as
defined by the effective single band Hamiltonian, and nk the
momentum distribution function. For a Hamiltonian with
near-neighbor hopping,3 EK is equivalent to minus the kinetic
energy, Ekin� 2

N�k�knk, but in general these two quantities
differ.4 The cutoff �c is assumed to be larger than the band-
width of the low-energy band, but smaller than the gap of
other bands. For this reason, its value in cuprates is typically
chosen to be 1–1.25 eV. f��c� accounts for the cutoff depen-
dence, which arises from the presence of Drude spectral
weight beyond �c �Ref. 5� and is unity if we formally set �c
to infinity while ignoring the interband transitions.

Although the f sum rule is preserved, W��c ,T� in general
is not a conserved quantity since both f��c� �Ref. 5� and nk

�Ref. 6� depend on T. The T variation of W has been termed
the “sum-rule violation.” In conventional superconductors,
the sum rule is preserved within experimental accuracy.7 In
the cuprates, however, the c-axis conductivity indicates a
pronounced violation of the sum rule.8 More recently, similar
behavior was found for the in-plane conductivity.9–12

The reported violation takes two forms. First, as the tem-
perature is lowered in the normal state, the optical integral
increases in magnitude. Then, below Tc, there is an addi-
tional change in the optical integral compared to that of the
extrapolated normal state. For overdoped compounds, this
change is a decrease,13,14 but for underdoped and optimal
doped compounds, two groups9–12 found an increase, though
other groups found either no additional effect15,16 or a
decrease.17

The finite cutoff was taken into account in several theo-
retical analyses of the T dependence of the optical integral—
for instance, work based on the Hubbard model,18 the t-J
model,14 and the d-density-wave model.19 In Ref. 5, the ef-
fect of the cutoff was considered in the context of electrons
coupled to phonons. The goal of the present paper is to study
the influence of the cutoff on the optical integral for a model
of electrons interacting with a broad spectrum of bosons that
two of us have used previously to model optics data.20

In a Drude model, ����= ��pl
2 /4�� / �1 /�− i��. From Eq.

�1�, we see that the true sum-rule violation is encoded in the
T dependence of �pl. Although �pl is well known to be a
strong function of doping,21 the question of its T dependence
is more subtle because of the presence of f��c�. Integrating
over � and expanding for �c��1, we obtain W��c�
=

�pl
2

8 f��c�, where f��c�= �1− 2
�

1
�c�

�. For infinite cutoff, f��c�
=1 and W=�pl

2 /8, but for a finite cutoff,f��c� is a constant
minus a term proportional to 1 /�c�. If 1 /� changes with T,
then one obtains a sum-rule violation even if �pl is T
independent.5

In general, the optical integral changes due to EK �i.e.,
�pl� and f��c� are both present, and the difference of optical
integrals at two different temperatures, �W=W�T1�−W�T2�,
goes as

�W = 	�EK + 
�f��c� , �3�

where 	 and 
 are constants. The issue then is which term
contributes more to the sum-rule violation at a given �c. If
the variation predominantly comes from EK, it would be a
true sum-rule violation, related to the variation of the kinetic
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energy. The increase of W with decreasing T would then
imply that the kinetic energy decreases with decreasing T. If
the change of W comes from f��c�, the sum-rule violation
would be a cutoff effect, unrelated to the behavior of the
kinetic energy.

In this paper, for simplicity, we concentrate on the tem-
perature variation of the optical integral in the normal state.
We find that the data can be fit by Eq. �3� with �EK=0.
Based on the accuracy of the fit, we estimate that the true
sum-rule violation �EK must be smaller than �20% of �W.
Moreover, we find that the temperature variation due to the
second term in Eq. �3�, and its dependence on the cutoff, is
well modeled by a theory of fermions interacting with a
broad spectrum of bosons.

We considered two models for the bosonic spectrum. The
first is a “gapped” marginal Fermi liquid, where the spectrum
is flat in frequency up to an upper cutoff �2,22

	2F���GMFL =
�

�2 − �1
�� − �1���2 − �� , �4�

with a lower cutoff �1 put in by hand to prevent divergences.
The second is a Lorentzian spectrum typical for overdamped
spin and charge fluctuations,23

	2F���Lor =
��

�2 + �2 . �5�

The computational procedure is straightforward: 	2F is
used to calculate the single-particle self-energy and, from
this, the current-current response function to obtain the con-
ductivity. The computational procedure can be simplified, as
shown by Allen,24 by presenting ���� in a generalized Drude
form

���� =
�pl

2

4�

1

1/���� − i�m*���
�6�

and approximating 1 /���� by25
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�7�

where 2�i is the impurity contribution.26 For electrons inter-
acting with a broad spectrum of bosons, this approximation
is essentially identical to the exact Kubo result.20 The optical
mass m*��� can then be determined by a Kramers-Kronig
transformation of 1 /����.

One can show quite generally that for an arbitrary
form of 	2F���, W��c ,T� asymptotically approaches
W��� as W��c ,T�=W����1− �8 /��A�T� /�c�, where A�T�
=�0

�d�	2F���nB��� with nB the Bose function. At high T,
therefore, W��c ,T�−W��� scales as T for arbitrary �c. This
asymptotic behavior, however, sets in for �c much larger
than the upper cutoff in 	2F���. This behavior would ad-
equately describe the data if the bosonic spectrum sits at
low frequencies as for phonons,5 but this does not appear

to be the case in the cuprates, where the inferred bosonic
spectrum from the infrared data extends to quite high
frequencies.20,27,28 For comparison with experiment, there-
fore, we need to know W��c ,T� not only for arbitrary T, but
also for �c which are only a few times larger than the energy
range of 	2F.

We start with the gapped marginal Fermi-liquid model.
The parameters �, �1, and �2 were chosen20 so as to fit the
data of Ref. 29 at one particular temperature. We do not
optimize them for the data we compare to here, in order to
demonstrate the generality of our arguments. �2 is essen-
tially equal to the peak frequency in the real part of the
optical self-energy, �m*���−1�, whereas � is set by the
overall size of the optical self-energy. We treat 	2F and �pl
as T independent, so as to concentrate exclusively on the
effect of �c, though the actual quantities may depend on
T.27,28 As a consequence, the only thermal effects which en-
ter are the coth factors in 1 /���� in Eq. �7�. In Fig. 1�a�, we
show the variation of the calculated optical integral with T
for two different values of �i and compare this to the data of
Ref. 9. The results above Tc are consistent with a behavior
that goes as a constant minus a T2 term in both the data and
the theory. Moreover, the T2 slopes are identical �the relative
shift in W can be matched by small changes in either �i or
�pl�. In Fig. 1�b�, we show the difference of the calculated
optical integrals at two different T versus �c. After an initial
rise �due to the fact that the Drude peak is narrower at lower
T�, the difference decays. Unlike the simple Drude model
where this decay goes as 1 /�c, the decay appears to be more
like 1 /��c for cutoffs ranging from 0.1 eV to 1 eV. To ob-
tain more insight, we show in Fig. 2�b� the logarithmic de-
rivative of �W versus �c. The approximate −1 /2 power is an
intermediate-frequency result, and one can see the approach
to the asymptotic power of −1 for very large cutoffs.

The behavior for large �c can be also studied analytically.
To start, we rewrite the optical integral as
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FIG. 1. �Color online� �a� Optical integral W for a 1.25-eV cut-
off versus T2 for the gapped marginal Fermi-liquid model
��=270.5 meV, �1=15.5 meV, �2=301 meV� for two different
values of the impurity scattering �i, with �pl=2.4 eV. The curves
are fits to the calculated solid circles using the T dependence of Eq.
�11�. The middle curve is the experimental W of Ref. 9 for a
Bi2Sr2CaCu2O8 sample with a Tc of 88 K. The open circles are the
�i=26.5 meV case with �pl=2.356 eV instead. �b� Difference of
the calculated optical integrals �T=7 K minus T=260 K� versus the
cutoff for �i=26.5 meV. The dashed line is a 1 /��c fit �with
�EK�0�.
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W��c,T� = W��� − �
�c

�

Re ���,T�d� , �8�

where W���=�pl
2 /8. We then note20 that for � larger than the

upper cutoff �2 of the gapped marginal Fermi-liquid model,

1/� = 1/�high = 2�i +
�

�2 − �1�4T ln

sinh
�2

2T

sinh
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2T

−
�2

2 − �1
2

� � .

�9�

For T��2 and �1��2 �which are always satisfied�, this
reduces to

1/�high = 1/�0 −
4�T

�2
ln�1 − e−�1/T� , �10�

where 1 /�0=2�i+2�−��2 /�. Ignoring the frequency de-
pendence of 1 /�0 and setting m* to 1 ��c��2�,30 we then

obtain �W��c�=
�pl

2

4� ��tan−1��c�high� where again �W��c�
=W��c ,T1�−W��c ,T2�. Expanding in �T, we obtain

�W��c� =
�pl

2

2��2

�c
*

1 + ��c
*�2��T ln�1 − e−�1/T� , �11�

where �c
*=�c / �2��. In Fig. 2�a�, we plot Eq. �11� versus the

calculated optical integral difference and see that they match
for cutoffs beyond 0.7 eV. Moreover, the T dependence of
Eq. �11� matches the T evolution of the optical integral, as
can be seen in Fig. 1�a�, and so a T2 behavior is only ap-
proximate. The true dependence is T ln�1−e−�1/T� as in Eq.
�11�; however, this is very close to T2 over a wide range of
temperatures.

The above analysis can also be performed for the Lorent-
zian model �the numerical results are similar to Fig. 1, and
we do not present them here�. Extending the analysis in Ref.
20 to finite temperatures, we obtain

1/��T� = 1/�0 + 4��
0

� xdx

x2 + 1

1

ex/T*
− 1

, �12�

where 1 /�0=2� ln
��c

2+�2

� , with T*=T /�, and �c is an upper
cutoff for 	2FLor. Assuming that �c��, we have �W��c�

=
�pl

2

4� ��tan−1��c��. Expanding around T=0, we obtain

W��c,T� � W��c,T = 0� −
�pl

2

4�
C�T*�2, �13�

where

C =
�2

6

�c

� ln2��c/��
1

1 + � �c

2� ln��c/��	
2 . �14�

This time, we find a truly quadratic behavior in T,31 which is
a consequence of the fact that 	2FLor is linear in � at small
�. The dependence of �W on the frequency cutoff is the
same as the gapped marginal Fermi-liquid model, except that
the quantity �c

* in Eq. �11� is now �c / �2� ln��c /��.
We now return to experiment. In Fig. 1�a�, we plot the

experimental optical integral for a 1.25-eV cutoff from the
data of Ref. 9 versus our calculations. The magnitude and T
variation of W are essentially equivalent to these calcula-
tions, which assumed a T-independent �pl.

32 In Fig. 3�a�, we
show the difference between the measured optical integrals
for two temperatures versus the frequency cutoff from the
data of Ref. 12. A 1 /��c dependence, with a zero offset, fits
the data quite well, as with the theory in Fig. 1�b�. This is
further demonstrated by the logarithmic derivative, as plotted
in Fig. 3�b�. From these observations, we conclude that the
dominant contribution to the T dependence of the optical
integral in the normal state can be attributed to the finite
cutoff. The true sum-rule violation term �EK is estimated to
be no larger than �20% of �W, as noted above. Although
we do not expect our analysis to be the entire story, in that
there is experimental evidence that 	2F is T dependent,27

even though this dependence is weak in the normal state,28

still, based on the good agreement of the calculations with
experiment, we would argue that the bulk of the observed T
dependence in the normal state is related to the finite cutoff.

The above analysis is nontrivial to extend to below Tc, as
this requires some assumptions about the pairing kernel,
since one needs to construct the anomalous Green’s function
F in order to evaluate the current-current response function.
The additional increase of W��c ,T� below Tc in optimal and
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FIG. 2. �Color online� �a� Optical integral difference from Fig.
1�b� versus the cutoff as compared to the asymptotic expression of
Eq. �11�. �b� Logarithmic derivative of �W versus the cutoff.
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FIG. 3. �Color online� �a� Optical integral difference for a
HgBa2CuO4 sample with a Tc of 97 K �data from Ref. 12�. The
dashed line is a 1 /��c fit �with �EK�0�. �b� logarithmic derivative
of �W versus �c.
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underdoped cuprates, reported in Refs. 9–12, could be due to
the strong decrease in 1 /� observed by a variety of probes.
On the other hand, strong coupling calculations cast doubt on
a cutoff explanation, as the influence of f��c� would be to
give rise to a negative Wsc−Wn for cutoffs near 1 eV.33

Moreover, similar strong coupling calculations of the varia-
tion of EK between the normal and superconducting states
yield a positive EK

sc−EK
n �1 meV for the underdoped case,34

which is consistent both in sign and magnitude with the re-
sults of Refs. 9–12. This implies that there may be a true
sum-rule violation below Tc.
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