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Recent quantum oscillation measurements on underdoped cuprates are shown to be consistent with the
predictions of a mean field theory of the 1 /8 magnetic antiphase stripe order proposed to occur in high-Tc

cuprates. In particular, for intermediate values of the stripe order parameter, the magnetotransport is found to
be dominated by an electron pocket, whose size is sensitive to the value of the density wave potential.
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The interplay between magnetism and superconductivity
is an enduring theme in the physics of high-temperature
copper-oxide superconductivity. These superconductors are
created by doping antiferromagnetic insulating “parent com-
pounds,” and a wide variety of magnetic phenomena have
been observed in both doped and undoped cuprates. One of
the most interesting magnetic states proposed for the hole-
doped cuprates is the 1 /8 antiphase stripe state. This state
has the spin and charge pattern sketched in Fig. 1: a modu-
lation of the charge density which has the translation sym-
metry of the lattice along one direction �ŷ� and a four unit
cell repeat distance along the orthogonal direction �x̂�. The
basic spin pattern is a two-sublattice antiferromagnet, but the
lines of minimum charge density are taken to be antiphase
domain boundaries for the magnetization. This state was first
predicted in Hartree-Fock calculations of Zaanen and
Gunnarsson,1 Machida,2 and Littlewood and Inui.3 It was
later discussed extensively by Kivelson and collaborators
�for a review, see Ref. 4�.

A nonsuperconducting stripe phase has been unambigu-
ously established as the ground state of
La1.48Nd0.4Sr0.12CuO4 �Ref. 5� in which the hole density per
unit cell is 1 /8. A magnetically ordered state �believed to be
a stripe phase� can be induced by applying a magnetic field
to the superconducting state of La2−xSrxCuO4−� �LSCO�6 for
a range of x around 1 /8. Various anomalies associated with
1 /8 doping have been seen clearly in other La2CuO4-derived
materials,7–9 suggesting that a stripe phase, although perhaps
not the ground state, is very nearby in free energy and influ-
ences measured properties, for example, by competing with
the superconducting state. However, the relevance of stripe
phases to other members of the high-Tc family, in particular
the YBa2Cu3O7−� �YBCO� family of superconductors, has
been less clear. Magnetic fluctuations are observed in under-
doped YBCO, but in the best samples, zero field magnetic
order is apparently observed only in very underdoped com-
pounds in the region where superconductivity has already
vanished.10 Transport11,12 and magneto-optical13 data have
been argued to be indications of density wave or stripe order
in moderately underdoped YBCO materials, and the “60 K
Tc plateau” has also been suggested14 to arise from 1 /8 ef-
fects similar to those seen in LSCO. While these experiments
have been suggestive, definitive proof of magnetic ordering
has been lacking.

Recently, a very remarkable series of magnetotransport
experiments have transformed the situation. In ultrapure
samples of ortho-II YBa2Cu3O6.5 �Ref. 15� and
YBa2Cu4O8,16,17 quantum oscillations have been observed at
fields above about 50 T. The measured oscillation frequen-
cies suggest that the signal arises from small Fermi surface
“pockets” such as might be produced by density wave
ordering.15–18 Very recently, LeBoeuf et al.19 have found that
the temperature below which the high-field Hall coefficient
becomes negative peaks at a doping of 1/8, providing strong
evidence that the quantum oscillations arise from a Fermi
surface reconstruction caused by “1/8” type ordering. How-
ever, the sign of the measured Hall conductance suggests that
the transport arises from electron pockets,19 whereas the pre-
vailing consensus is that hole pockets are expected: in par-
ticular, a simple two-sublattice ordering pattern does not
yield robust electron pockets18 while a large-amplitude stripe
ordering would be expected to lead to effectively one-
dimensional transport characterized by open Fermi surfaces
which would not give rise to magneto-oscillations.

In this Rapid Communication we present a theoretical in-
vestigation of the Fermi surface and oscillation frequency
implied by a stripe ordering pattern such as that sketched in
Fig. 1. Generically, complicated Fermi surfaces occur involv-
ing open orbits, hole pockets, and electron pockets. How-
ever, we find that in some intermediate parameter regimes,
the periodic potential associated with the stripe state can pro-
duce a Fermi surface consisting of a set of open �quasi-one-
dimensional� bands, along with a single, simple electron
pocket. The open orbits will make no contribution to the
magneto-oscillations, while the electron pocket exhibits

FIG. 1. Sketch of the magnetic and charge density in the 1 /8
stripe state proposed for cuprate superconductors. Circles represent
copper ions with their surrounding oxygens, arrows denote the cop-
per spins, and empty circles indicate the “charge stripe” �antiphase
domain wall�.
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properties which are in qualitative agreement with the
magneto-oscillation data. We therefore argue that the recent
magnetotransport data support the idea that stripe phases
�competing with superconductivity, and most probably field-
induced� are generic to hole-doped cuprates.

We consider the canonical tight-binding model of elec-
trons hopping on a square lattice which is believed to de-
scribe the Fermi surface of the cuprates:

�k = − 2t�cos kx + cos ky� + 4t� cos kxcos ky

− 2t��cos 2kx + cos 2ky� − � , �1�

where following Ref. 20 we choose t=0.38 eV, t�=0.32t,
and t�=0.5t�, noting that � is the chemical potential. We
express momenta in � /a units, with a the lattice parameter
of the underlying square lattice.

We assume that electrons moving in this band structure
are scattered by potentials with the periodicity of the stripe
order. As can be seen from Fig. 1, the stripe state has a unit
cell containing eight sites of the underlying lattice. Fourier
transforming the spins, we obtain a potential Vn connecting
the state k with those at k±nQ with Q= �3� /4,��. We ex-
pect that the term V1 will be the dominant spin-derived scat-
tering term, with a weaker third harmonic V3 at 3Q±. There
will be a charge component V2 at 2Q± with a weaker second
harmonic at 4Q±. We have found that the influence of V3 and
V4 on our results is minor; these terms will be neglected here.
Relabeling the spin potential V1 as V and the charge potential
V2 as Vc, the resulting Hamiltonian may be written as an
8�8 matrix for k in the first Brillouin zone of the ordered
state:

H =�
�k Vc 0 Vc 0 V V 0

Vc
�k+�1

2
,0� Vc 0 0 0 V V

0 Vc �k+�1,0� Vc V 0 0 V

Vc 0 Vc
�k+�3

2
,0� V V 0 0

0 0 V V �k+�1
4

,1� Vc 0 Vc

V 0 0 V Vc
�k+�3

4
,1� Vc 0

V V 0 0 0 Vc
�k+�5

4
,1� Vc

0 V V 0 Vc 0 Vc
�k+�7

4
,1�

� . �2�

We have diagonalized this matrix and determined the Fermi
surface for various dopings and Vn �note that the chemical
potential has to be adjusted for each set of Vn to preserve the
doping�. We find that the Fermi surfaces are most easily vi-
sualized if the results are plotted not in the reduced Brillouin
zone, but in a quadrant of the full square lattice zone
�0�kx�1� , �0�ky �1�.

To understand the results, it is useful to examine first the
nonordered �V=Vc=0� case. Figure 2�a� shows the Fermi
surface from Eq. �1� at 1 /8 hole doping. The Fermi surface is
a large hole surface centered at the point �1,1�. Figure 2�b�
shows this Fermi surface, along with the surface translated
by multiples of Q±. The result is a highly complicated set of
bands. The key feature, however, is the nearly flat segments.
These arise from the portions of the Fermi surface which
approach the zone boundaries kx=1 /ky =1. We shall see that
the scattering potential implied by the stripe order reconnects
these into an electron pocket, which exists over a wide range
of parameter values.

The four panels of Fig. 3 shows the effect of the stripe
order. Panel a shows the effect of a weak spin potential with
no charge potential. The resulting Fermi surface is recon-
structed and begins to reveal the one-dimensional structure
associated with motion along the stripe direction. The elec-

tron pocket has also emerged, although its size is consider-
ably larger than that observed in Ref. 15.

Panel �b� shows the Fermi surfaces implied by the stron-
ger coupling V=0.2 eV �with Vc=0�. The increase in V
shrinks the electron pocket and separates it from the one-
dimensional band. In addition, the “zig-zag” band has

1.0

0.8

0.6

0.4

0.2

0.0

ky

1.00.80.60.40.20.0
kx

(b)
1.0

0.8

0.6

0.4

0.2

0.0

ky

1.00.80.60.40.20.0
kx

(a)

FIG. 2. �a� Fermi surface from Eq. �1�, corresponding to a hole
density of 1/8, plotted in the first quadrant of the Brillouin zone of
the underlying square lattice �note that � /a momentum space units
are used in all figures�. �b� Fermi surface in �a� plus its images
under translation by the stripe order �multiples of Q±�, equivalent to
Eq. �2� with V=Vc=0.
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pinched off, leading to hole pockets. Reducing the hole dop-
ing to 1/10 or moderately increasing V causes these hole
pockets to decrease and ultimately disappear, leaving only
electron pockets. For yet larger V, the electron pockets van-
ish and only the quasi-one-dimensional bands remain.

Panels �c� and �d� explore the effect of adding a potential
due to the charge order. Fourier transformation of the stan-
dard stripe ordering pattern implies Vc�0 as may be under-
stood from the lower electron density on the charge stripe
row, but for completeness we show both signs. In both cases
the effect of Vc is to reconnect the hole pockets into one-
dimensional bands; the Vc�0 case tends to eliminate them
more rapidly than does Vc�0.

One question which arises is the relative effects of mag-
netic and charge order. To investigate this point, we have
recomputed the Fermi surface for the case V=0 with varying
Vc �i.e., assuming that the magnetic order has a negligible
effect on the electron dynamics�. A representative Fermi sur-
face is shown in Fig. 4�a�. We see that in the absence of spin
order, the pockets have a very extreme aspect ratio. As the
potential is made stronger, the aspect ratio of the pocket in-
creases until it collapses into a single line and vanishes �Fig.
4�b��; and in this purely charge case, the pocket is a hole
pocket. We have also investigated spin in-phase stripes, find-
ing for the electron pockets results similar to those found for
the spin antiphase case. However, in the spin antiphase case,
the holelike bands tend to form open quasi-one-dimensional
orbits �cf. panels �c� and �d� of Fig. 3�, whereas in the spin
in-phase case, one finds robust hole pockets that exist for a
much larger range of V than the electron pockets. A similar
effect is found for a d density wave order parameter.21 We
conclude that spin ordering plays the essential role in the
formation of the observed electron pocket, with antiphase

ordering having the additional feature of not producing hole
pockets for a range of potentials.

We next examine in more detail the pockets implied by
our calculations. Within the model, the size of the electron
pockets depends strongly on V; the value of V may therefore
be adjusted to produce any area desired at a given doping.
Since there are eight magnetic zones per square lattice zone,
and there is one electron pocket per magnetic zone, a pocket
with size 7.6% of the area of the first quadrant of the square
lattice Brillouin zone, as seen in Ref. 15, corresponds to an
occupation factor of 0.038 electrons per copper atom �noting
that the magnetic state retains a Kramers degeneracy�.

The electron pocket, centered at the magnetic zone
boundary �1 /4,0�, has a cyclotron mass which varies from
0.5 to 1.0 for the various cases shown in Fig. 3. The hole
pocket in Fig. 3�b� has a lighter cyclotron mass of 0.3. There-
fore if such a hole pocket existed, it would be very apparent
in any magneto-oscillation measurement. The measured cy-
clotron mass is 1.9me.

15 We suggest that the difference be-
tween the calculated and measured masses is due in large
part to the renormalization of band theory inferred from
other measurements. For example, the nodal velocity mea-
sured in angle-resolved photoemission experiments is about
1.6 eV Å,22 which is reduced from the calculated band ve-
locity of 3.8 eV Å from Eq. �1� by a factor of 2.4. Such a
renormalization would imply a bare cyclotron mass of 0.8,
which is within the range of the values we find for the elec-
tron pocket.

In summary, we have shown that at intermediate coupling,
a periodic potential such as would be produced by a mag-
netic antiphase domain “stripe” structure produces electron
pockets which are consistent with experiment, if the energy
scales are renormalized from band theory by a factor similar
to that observed from angle-resolved photoemission experi-
ments. The results are sensitive to the details of the scattering
potential: in particular, for stronger potentials V�0.3 eV,
only open orbits associated with one-dimensional transport
along the stripe direction exist, whereas for a range of com-
binations of spin and charge potentials, both electron and
hole pockets are found, though the latter exist for a much
narrower range of parameters than the former. We empha-
size, though, the generic feature of our results, namely that
the spin potential associated with antiphase stripe order pro-
duces robust electron pockets in hole-doped high-Tc super-
conductors. These results confirm the interpretation of Ref.
15 that the quantum oscillations imply the existence of a
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FIG. 3. Fermi surfaces from Eq. �2� with a hole doping of 1/8
plotted in the first quadrant of the Brillouin zone of the underlying
square lattice: �a� V=0.1 eV, Vc=0, �b� V=0.2 eV, Vc=0, �c�
V=0.2 eV, Vc=0.15 eV, and �d� V=0.2 eV, Vc=−0.2 eV.
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FIG. 4. Fermi surface from Eq. �2� with V=0 and �a�
Vc=0.1 eV and �b� Vc=0.2 eV, for 1 /8 hole doping, plotted in the
first quadrant of the Brillouin zone of the underlying square lattice.
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density wave state at high magnetic fields in the YBCO cu-
prates, and indeed confirm the identification of the state as
the 1 /8 magnetic antiphase stripe state discussed by many
workers. However, we note that our results �and, more fun-
damentally, the identification of electron pockets� imply that
the ordering is not strong enough to confine the electron
motion completely to one-dimensional paths. Our findings
suggest several further directions for research. X-ray or elas-
tic neutron scattering experiments should be performed at
high fields to confirm this identification. Further, as noted by
Ando et al.,12 stripes in the YBCO materials are expected to
be aligned along the chain direction; thus in single-domain
samples, the stripe domains may all be aligned, leading to an

increase in the anisotropy. Optical and magneto-optical ex-
periments may reveal the excitation gap implied by the stripe
order. A future paper will present a more comprehensive the-
oretical investigation, including the effects of bilayer cou-
pling and oxygen ordering,23 as well as computing in detail
the magneto-transport and magneto-optical properties of the
various states.
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