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As spin glass materials have extremely slow dynamics, devious numerical methods are needed to study
low-temperature states. A simple and fast optimization version of the classical Kasteleyn treatment of the Ising
model is described and applied to two-dimensional Ising spin glasses. The algorithm combines the Pfaffian and
matching approaches to directly strip droplet excitations from an excited state. Extended ground states in Ising
spin glasses on a torus, which are optimized over all boundary conditions, are used to compute precise values
for ground state energy densities.
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The Ising spin glass is a model for disordered magnetic
alloys which captures the complexity of materials with fro-
zen randomness and competing interactions, including frus-
tration, extremely slow dynamics, and intricate memory
effects.1 The spins in the model are coupled by random
choices of ferromagnetic or antiferromagnetic bonds, leading
to a complex free-energy landscape. There are at least two
theoretical approaches,2 including the droplet and replica-
symmetry-breaking pictures, used to describe the nonequilib-
rium dynamics and low-free-energy structure of the spin
glass phase space. As these theoretical approaches differ sig-
nificantly and exact results for spin glasses are rare,3 compu-
tational work has been essential for computing scaling expo-
nents and as a qualitative check of theoretical pictures.4

The history of the relationship between the physical
analysis and the mathematics of numerical approaches to
spin glasses is long and rich. In general, characterizing the
complex free-energy landscape of disordered materials is
challenging. Direct Monte Carlo simulations are hindered by
the same high free-energy barriers that inhibit equilibration
in the physical system. It is expected1,2 that times t satisfying
ln�t��L� are required to equilibrate systems of size L, where
��� and � determines the energy scale �E��� of excitations
or domain walls on length scale �, �E���. To replicate the
many decades of experimental time scales and to develop a
better understanding of disordered systems for t→�, algo-
rithms for either accelerating the approach to equilibrium or
finding ground states in spin glasses have been developed.
Many of these techniques �which are often generally appli-
cable to disordered materials� are inspired by, or have in-
spired, approaches for combinatorial optimization problems.
Parallel tempering, genetic algorithms, and extremal optimi-
zation are examples of heuristic algorithms to find close ap-
proximations to equilibrated and ground state
configurations.6 Exact general algorithms such as transfer
matrix methods7 and branch-and-cut methods8 require times
that are exponential in powers of the system size, though
extensive development has led to computing ground states in
three-dimensional Ising spin glasses with up to 123 spins.8

We have found a simple algorithm for studying two-
dimensional �2D� Ising spin glasses that combines use of the
classical Kasteleyn city9 and application of a standard com-
binatorial optimization algorithm. Besides solving the prob-
lem on planar graphs and linking together these methods, we

use this algorithm to study “extended” ground states, which
optimize the energy over choices of periodic or antiperiodic
boundary conditions, as well as the spin configuration. This
approach dramatically improves the treatment of boundary-
free samples, so that the finite-size effects are greatly re-
duced. We have used this algorithm to determine very pre-
cisely the energy of the Ising spin glass in the large-volume
limit.

The Edwards-Anderson Hamiltonian that is used for Ising
spin glasses is H��si��=−��ij�Jijsisj, where the couplings Jij

between nearest neighbor pairs of spins �ij� are independent
identically distributed variables, fixed in a given sample, and
the si are Ising spin variables, si= ±1, with Ld sites i on a
d-dimensional lattice. The distribution for Jij is generally
taken either to be Gaussian or bimodal �the “±J” case�.
Barahona10 has shown that computing the ground state en-
ergy of a 3D spin glass �or even two coupled 2D layers� is an
NP-hard problem.5 This implies that, if the ground state of
the 3D spin glass could be efficiently computed, i.e., found
in a time polynomial in L, many outstanding computational
problems that are believed to require worst-case exponential
time to solve, such as the traveling salesperson problem,
could also be solved in time polynomial in the size of the
problem. Improvements in 3D spin glass calculations there-
fore focus on reducing the numerical constants in the expo-
nent for the expected solution time.

The two-dimensional Ising spin glass �2DISG� is a case
where exact algorithms have allowed for study of the ground
state and density of states. These approaches have used two
methods: the dimer-Pfaffian method �Pfaffian method� and
matching to minimize frustration.

The partition function for Ising models with arbitrary cou-
plings can be solved for either open or toroidal boundary
conditions by using techniques developed for the pure Ising
model,9 i.e., computing and summing Pfaffians, antisymmet-
ric combinations of ordered statistical weights, from
L2�L2 sparse matrices. The ground state energy can be
computed11 in O�L5� time for discrete-valued disorder; the
spectrum is discrete and bounded by a power of L. Note that
the Pfaffian method uses perfect matchings �dimer cover-
ings� on a decorated lattice and requires a sum over four
combinations of odd and even constraints on these matchings
on a torus.

The fastest ground state algorithms for the 2DISG map

PHYSICAL REVIEW B 76, 220406�R� �2007�

RAPID COMMUNICATIONS

1098-0121/2007/76�22�/220406�4� ©2007 The American Physical Society220406-1

http://dx.doi.org/10.1103/PhysRevB.76.220406


the Ising spin glass problem to the weighted perfect match-
ing problem, a common problem in combinatorial optimiza-
tion. Given a graph G= �V ,E�, with vertices V and edges E,
with a weight function w :E→R, the problem is to select a
perfect matching, a subset of edges M �E where every ver-
tex in V belongs to a single edge e�E, such that the total
weight w�M�=�e�Mwe is minimal. The solution can be
found in time polynomial in the number of edges.5 Matching
is the core routine in two mappings for finding 2DISG
ground states. The mapping by Bieche et al.12 uses a graph
where the vertex set V contains the frustrated plaquettes
�primitive polygons p with ��ij��pJij 	0�. The edges connect
points in V within some distance rmax. This algorithm is exact
as rmax→�, but it works for a large fraction of cases even
with small values of rmax, especially for ±J disorder. Bara-
hona’s mapping10 replaces each plaquette with a subgraph
that is connected to neighboring subgraphs by dual bonds,
with each dual bond crossing one edge in G 	see Fig. 1�a�
.
The subgraph edges have zero weight and the dual edges that
cross bonds of strength Jij have weight wij = �Jij�; the sub-
graph comes in two types, assigned according to the frustra-
tion of the plaquette. These algorithms have been extremely
useful, e.g., in studying domain walls and the nature of the
ground state as L→�.13,14 Note that the graphs used are
derived from the �sample-dependent� plaquette frustrations;

this is not the case with our algorithm, where the graph is
independent of the Jij, so its implementation is simpler.

Matching algorithms have been used for planar graphs.
The case of the torus, with periodic boundary conditions in
both directions, has not been addressed in very large sys-
tems, as Pfaffian methods are much slower �and, in practice,
mean-time exponential run-time algorithms are still com-
monly used�. Studies of smaller toroidal systems with Gauss-
ian disorder have used the branch-and-cut algorithm13 or the
transfer matrix; such studies confirm that the finite-size cor-
rections vanish much more quickly in toroidal geometries
rather than planar geometries. It would therefore be useful to
have a fast algorithm for finding information about the
ground states for the 2DISG on the torus.

We have developed an approach that is not limited to
planar graphs; it also provides significant information about
the ground state on the torus. One component of this ap-
proach is a ground state algorithm that combines a represen-
tation from the Pfaffian method with matching. The other
component is applying this algorithm on the torus to find an
extended ground state: the minimum-energy state over all
spin configurations and over the set of four boundary condi-
tions �BCs�. That is, we find the extended state ��si

0� ,
h
0 ,
v

0�
which minimizes H*=−��ij�Jijsisj
ij, with 
ij =1 except on
one vertical column of horizontal bonds, where 
ij =
v, and
on one horizontal row of vertical bonds, where 
ij =
h and

h and 
v take values 
h,v= ±1. The extended ground state
on the torus is the minimum-energy state over the four pos-
sible combinations of BCs given by choosing �anti�periodic
BCs for each direction. The standard ground state for given
BCs is therefore exactly found for 1

4 of the samples. Note
that, in general, when all 
ij =1, H*=H, so the extended
ground state is equal to the standard ground state �this is
always the case for planar graphs, so the algorithm finds
ground states of planar graphs without modification�. The
extended ground state on the torus is also of interest in its
own right. For example, it can be used as an edge-free back-
ground for studying equilibration and droplets15 and to rap-
idly compute the energy density for large samples.

We first give an overview of our algorithm. A spin and
bond configuration is used to define a weighted dual lattice
D, which in turn is mapped to a weighted graph G. A
minimum-weight perfect matching for G is computed and
used to identify a set of negative weight loops in D with the
most negative total weight. These loops are exactly the exci-
tations of the current configuration relative to an extended
ground state. The configuration is thus set to the ground state
by flipping the spins “within” each loop. This method can be
applied to any planar graph by supplying the appropriate
boundary conditions �i.e., in the same way as the Bieche et
al. and Barahona algorithms�.

A more detailed description of the method for the L�L
toroidal square lattice starts with a list of the inputs: an initial
configuration c= ��si� ,
h ,
v� and couplings Jij. The dual lat-
tice D= �V ,E� has edges eij �E �eij crosses the bond �ij� in
the original lattice� connecting neighboring plaquettes �these
make up V� on the original spin lattice; it also is an L�L
torus. Given c, weights wc for edges in E are set by wc�eij�
=Jijsisj
ij; see Fig. 1�a�. The value of the extended Hamil-
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FIG. 1. �Color online� An outline of the steps that convert a spin
and bond configuration first to the dual weighted lattice D and then
to the weighted graph G, in order to compute the extended ground
state. �a� The original spin system, here with initial spins si=1 in-
dicated by white circles, and bond configuration Jij �dashed lines�
determine edge weights wij =Jijsisj �taking the initial BCs to be
periodic� in the dual graph D �solid vertices and edges�, with peri-
odic boundary conditions. �b� The vertices in D are replaced by
Kasteleyn cities �light lines have zero weight in G�. �c� An example
set S of negative weight loops in D is shown, with two simple loops
and one winding loop. �d� Heavy lines indicate the minimum-
weight perfect matching M for G �light lines are free edges and
solid circles are vertices in G�. The negative weight loops S �heavy
dashed lines� are found by clipping out the Kasteleyn cities and
keeping the remaining edges. Finally, spins are assigned by scan-
ning across the sample: each time an odd number of loops is
crossed, the spins are flipped �gray circles indicate si=−1�. In this
case, the inconsistency at the right side is corrected by changing
horizontal boundary conditions from periodic to antiperiodic.
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tonian is then H*�c�=−wc�E��−�eij�Ewc�eij�.
To minimize H*, we find the extremal �i.e., minimum

total weight� set of negative weight loops in the dual graph D
by computing a minimal-weight perfect matching M on a
related graph G. In the case of a square lattice, we form G by
replacing each vertex in D by a “Kasteleyn city” subgraph, a
complete graph with four nodes 	see Fig. 1�b�
; such map-
pings exist for any lattice. Weights for edges in G are zero on
city edges and are given by wc�eij� on edges eij kept from D
�cf. the Barahona algorithm, which instead uses �w�eij��,
which is independent of c; frustration is incorporated via the
use of two distinct graph decorations�. Matchings in G can
be mapped to sets of loops in D: one simply contracts out the
Kasteleyn cities from M to arrive at a set of loops made of
edges S�E 	see Figs. 1�c� and 1�d�
. The Kasteleyn cities
enforce the constraint that an even number of edges in S
meet at each dual vertex �i.e., S is a collection of Eulerian
subgraphs of D�.

To prove the correctness of the algorithm, we first show
that the weight of the loops that relate two configurations is
proportional to the energy difference between the configura-
tions. For an extended spin configuration c, let bij�c�
=sisj
ij. When comparing two extended configurations c and
c�, call S the set of bonds in which bij�c�=−bij�c�� 	note that
bij�c�= ±bij�c�� always
. Since in S, bij�c�=−bij�c�� and in
E \S, bij�c�=bij�c��, we have that

H*�c� − H*�c�� = − �
�ij�

Jijbij�c� + �
�ij�

Jijbij�c��

= − �
eij�S

Jijbij�c� − �
eij�E\S

Jijbij�c�

+ �
eij�S

Jijbij�c�� + �
eij�E\S

Jijbij�c��

= − 2 �
eij�S

Jijbij�c�

= − 2 �
eij�S

w�eij�c�� , �1�

so that the energy difference between configurations is given
by twice the weight of S.

The proof that the minimum-weight even-degree sub-
graph always finds the ground state, then, is as follows. As-
sume, for the sake of contradiction, that there exists some
extended spin configuration c0 with a lower total energy than
the c� returned by our algorithm from initial configuration c.
Call S the set of bonds for which bij�c�=−bij�c��, and S0

the set of bonds for which bij�c�=−bij�c0�. Since
H*�c0�	H*�c��, the energy difference H*�c�−H*�c0�
�H*�c�−H*�c�� gives 2�eij�S0wc�eij�	2�eij�Swc�eij�,
which means S0 is an even-degree subgraph of D with a
more negative weight than S, in contradiction with the as-
sumption that S is the extremal-weight even-degree subgraph
of D.

Note that Kasteleyn cities are often described on the origi-
nal lattice, where loops represent a high-temperature expan-
sion, but here on the dual lattice these loops contain clusters
in a low-temperature expansion. The terms that contribute to

the Pfaffian9 are products of statistical weights ±e−�Jij over
edges in loops in D and statistical weights of unit norm from
the Kasteleyn cities. The dominant term in the Pfaffian that
maximizes the norm of such a product minimizes the sums
of the wij consistent with a perfect matching in the graph G.
Least-weight paths on graphs with negative weights have
been used to find domain walls in 2D spin glasses.16 We note
that there has been at least one mention of using matching on
the torus,17 where one of the four ground states was found
using the Bieche et al. algorithm, but the utility of the ex-
tended ground state has been made apparent and proven by
this algorithmic framework.

This algorithm is simple to implement �given a standard
matching algorithm� and fast. On a 3.2 GHz Pentium IV pro-
cessor, the extended ground state for a 1002 square lattice on
a torus is computed in 0.8 s for Gaussian disorder, where we
use BLOSSOM IV �Ref. 18� for the matching routine. The
mean solution time scales approximately as L3.5 through to-
roidal lattices of size 4002. On toroidal graphs with L128,
our algorithm, which finds exact ground states, is at least
three times as fast as our implementation of the Bieche et al.
algorithm. Note that the Bieche et al. algorithm does not find
the exact optimal state in all cases—in this case 1.5% of the
samples �when rmax=8�. Because the structure of the graph
used in the Barahona algorithm is similar in structure to that
of our algorithm, the two algorithms have similar perfor-
mance, with the Barahona algorithm using slightly less time
�about 20%� and more memory �about 20%�.

On a torus, we use this algorithm to exactly solve for the
extended ground state, which is closely related to, but differ-
ent than, finding the ground state of the spin glass for given
BCs. The ground state energies for the four possible BCs
differ by O�L��, which is the energy of a system-spanning
domain wall. The extended ground state, the minimum of the
four, therefore has at most an energy difference of O�L��
from that for specified BCs.
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FIG. 2. �Color online� Extended ground state energy density
e0�L� for the 2D Ising spin glass on a torus vs scaled system size
L�−2. Two scales for each disorder type are used, to show the
linear fit at large L and the higher-order corrections at
small L. �a�,�b� Assuming �−0.28 for Gaussian disorder gives
e0���=−1.314 788�4�. �c�,�d� A similar plot using �=0 for discrete
values of Jij = ±1 gives e0

±���=−1.401 925�3�.

MATCHING KASTELEYN CITIES FOR SPIN GLASS… PHYSICAL REVIEW B 76, 220406�R� �2007�

RAPID COMMUNICATIONS

220406-3



This O�L�� difference is the same order as the expected
finite-size correction to the ground state energy in a periodic
system, so the extended ground state is useful for studying
energy densities. We computed the sample average of the
extended ground state energy H0

*, using at least 5�106

samples for L64 and at least 106 samples for sizes
128�L�64, both for Gaussian disorder �Jij

2 =1, Jij =0� and
for the ±J model, Jij = ±1 with equal probability. We then
plotted the sample average of the ground state energy den-
sity, e0�L�=H0

*L−2, vs L�−2, which will give a straight line
where the leading finite-size correction dominates. For
Gaussian disorder, we find a linear fit to be very good for
L�32, as shown in Figs. 2�a� and 2�c�, for a wide range of
�−0.28�4� �� is not precisely determined by this method;
see a summary of results in Ref. 13� and a highly precise
estimate e0=−1.314 788�4� �cf., e.g., e0=−1.314 79�2� from
Ref. 13�. Taking �=0 for the ±J data also gives a good fit,
with e0

±=−1.401 925�3� �cf. e0
±=−1.401 93�2� from Ref. 19;

finite-size effects in our L=48 samples are less than those for
L=1800 samples with open BCs�. The extra precision results
from the rapid convergence to the thermodynamic limit in
boundary-free samples, which can be solved much faster
than standard periodic samples solved using branch-and-cut
techniques.

In conclusion, we have linked together Pfaffian and
matching methods to develop a fast algorithm for finding
extended ground states in the two-dimensional Ising spin
glass on a torus or standard ground states on planar graphs.
For many purposes, the extended ground states on a torus are
as useful as ground states that are computed for a fixed
choice of periodic and antiperiodic boundary conditions, as
we show by precisely computing ground state energy densi-
ties. In the Pfaffian method for computing the partition func-
tion Z using the dual lattice �i.e., low-temperature expan-
sion�, the dominant term in any of the four Pfaffians used to
compute Z is due to this extended ground state; the partition
function for a specified BC combination is found by care-
fully canceling out configurations with other boundary con-
ditions in the sum. Our method therefore is a combinatorial
method, based on matching, for finding the term that domi-
nates the contributing Pfaffians at low temperature.
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