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We study the dynamics of a triangular single-plaquette Josephson-junction array in the development of the
fractional Shapiro steps. We show that synchronization on fractional steps can happen due to an intricate
interplay of the three junctions as the plaquette is made dynamically unsymmetric, either by applying an
external magnetic field or by changing the configuration of external currents. We propose a mechanism for
synchronization when the asymmetry is only due to the frustration induced by the magnetic field.
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I. INTRODUCTION

A sufficiently large dc current through a Josephson junc-
tion causes the phase difference across the junction to grow
with time �we will say “the phase rotates��. The rate of in-
crease can be detected as a voltage difference across the
junction. In the ac Josephson effect, an ac component to the
applied current �or an external rf field� can synchronize with
the rotation rate of the phase, leading to the dc part of the
voltage across the junction to be proportional to a multiple of
the frequency of the current or field.1 This state is stable
against small perturbations, so that as system parameters
�such as the dc current through the device� are varied, the
system exhibits constant voltage steps. This effect was pre-
dicted by Josephson and verified by Shapiro experimentally,
subsequently taking on the name Shapiro steps.1,2 A variation
on this scheme uses two rf signals producing a device for
frequency mixing with unconventional properties. Constant
voltage steps can now appear that correspond to linear com-
binations of the rf frequencies; for example, steps appear at
the difference frequency or the multiples of the difference
frequency.3

In general, we can index the steps by integers m and n
according to

2e�V� =
n

m
�� , �1.1�

where �V� denotes the time average voltage across the junc-
tion, � is the frequency of the applied field or the frequency
of the ac part of the driving current, and the integers n and m
are mutually prime. The cases where m=1 are called “integer
steps;” otherwise, we have “fractional steps.”4

For a single overdamped junction, only integer steps are
observed. The explanations5,6 of the absence of fractional
steps are specific to the model: in particular, the relationship
between supercurrent and phase difference must be exactly
Isuper= Ic sin���� and not some more general periodic func-
tion. This suggests that fractional steps can occur in more
general models.

Arrays of Josephson junctions can present several new
effects. If the N junctions in series evolve in synchrony, the
voltage is N times larger, giving an effect called integer giant
Shapiro steps.7 A perpendicular magnetic field will induce
vortices and for special values of the field, there will be a

vortex crystal present; the coherent motion of the vortex
crystal can produce fractional giant Shapiro steps.8,9 The
question of the response of a single plaquette and how it
compares with that of the array in the latter case has also
been studied.10,11 It was concluded that a single plaquette
exhibits predominantly half-integer steps, for different rea-
sons than those for the large arrays.11

The intrinsic nonlinearity of the Josephson equations will
couple the dynamics of the array to an external rf signal. For
a single junction, steps are observed when the period of ro-
tation in the absence of the signal is close to the period of the
external signal or an integer multiple of it.

Generalizing this rule to a network of junctions leads to
other possibilities because the dynamics of the network is not
necessarily periodic, and when it is periodic the period may
require several phase slips of a junction, so that the period is

not given by 2� / ��̇�.
A triangular array of Josephson junctions, as shown in

Fig. 1, is the simplest system of its type to study such inter-
play of the internal degrees of freedom, both amongst them-
selves and with the external frequency drive. This is the sim-
plest Josephson-junction array to exhibit fractional Shapiro
steps as well as integer Shapiro steps.

The main purpose of this paper is to explore how the
dynamics of the array in the absence of an rf signal is related
to its behavior when the rf signal is added. In particular, for

FIG. 1. The model circuit.
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some choices of the system parameters, the array will exhibit
periodic behavior and the imposed signal can entrain these,
giving Shapiro steps.

We will also show that to have fractional steps, the trian-
gular plaquette needs to be made asymmetric. This can be
achieved by either applying an external magnetic field or by
dividing up the input current unevenly.

In Sec. II, we will introduce the model and the equations
governing the dynamics. We also introduce the integer and
fractional Shapiro steps for a special set of parameters, to be
discussed in detail further on. Three interesting special solu-
tions in the absence of an ac signal are introduced in Sec. III;
the stability of each solution is also discussed in this section.

Looking at the dynamics of the system in the absence of
an ac signal, in Sec. IV, we argue for the presence of internal
resonances as the dc current is varied. We will make good
use of these arguments in Secs. V and VI.

Sections V and VI give details of the mechanisms bring-
ing about the fractional Shapiro steps: Sec. V considers the
case that the current is divided unevenly �in the absence of a
magnetic field� and Sec. VI shows what happens when there
is an applied magnetic field and the current is divided
equally. The discussion hinges on the role of the junction
denoted as � in Fig. 1. We will show how this junction can
be looked upon as a coupling for the other two junctions in
describing the dynamics of the system. Section VII is de-
voted to our conclusions.

II. MODEL

The circuit consists of three identical overdamped Joseph-
son junctions. The character of the junction is determined by
the McCumber parameter, 	=2eIcR

2C /�, where Ic denotes
the critical current of the Josephson junction, R its resistance,
and C its capacitance. A small 	 means that the system is
strongly damped and that the transients may be neglected.12

The junctions are placed on a triangular plaquette; exter-
nal currents are supplied and extracted, as shown in Fig. 1.
The external current may have both a dc and an ac compo-
nent, so that Iext= Idc+ Iac sin �t. The parameter 
 sets the
asymmetry of the current division, with 
=0 being the sym-
metrical case and 
= ±1 the fully unsymmetric case. We
define the superconducting island forming the top node to
have the phase and voltage zero and let the other two nodes

have phases and voltages � and �̇ �for the bottom left node�
and � and �̇ �for the bottom right�.

In the presence of a magnetic field perpendicular to the
plane of the plaquette, the resistively shunted junction model
for this circuit is given by

Iext = sin�� − �f� + sin�� + �f� + �̇ + �̇ , �2.1�

1

2
�1 + 
�Iext = sin�� − �f� + sin��� + �̇ + �̇ , �2.2�

where �=�−�. The frustration parameter f =� /�0 is the
magnetic flux through the plaquette in units of the flux quan-
tum, �0=hc /2e. The equations are written in a dimension-
less form wherein Iext is scaled by the critical current for the

junction Ic �that is, we set Ic=1 in what follows�, voltage is
scaled by IcR, and Iext is scaled by � /2eIcR. We will refer to
the three junctions as �, �, and � �Fig. 1�. We note that the
equations have a symmetry �corresponding to the geometri-
cal symmetry of the diagram�: replacing 
→−
, f →−f , and
�→� �and of course �→−�� leaves the equations un-
changed.

Depending on the value of Idc and other parameters, the
system can exhibit several different behaviors.

When Idc is small �so that all junction currents are less
than Ic�, there is no need for a normal current. The phases are
constant �except for overdamped oscillations driven by Iac�
and the junction voltages �proportional to the time averages

of �̇ and �̇� are zero.
At large values of Idc, the dynamics is nonperiodic. The

phases increase with time at different rates, so that the junc-
tion voltages are different and not rationally related. If the ac
component of the external current has a frequency that
matches one of these voltages �as described by Eq. �1.1��,
integer Shapiro steps might be observed.

At intermediate values of Idc, there can be periodic collec-
tive modes of the system. In the simplest case, � and �
increase at the same average rate and the junction voltages
are the same; however, there also can be more complicated
periodicities, wherein � and � advance by different multiples
of 2�. In this latter case, the junction voltages have rational
ratios.

Equations �2.3� and �2.4� can be viewed as describing the
motion of a particle on the two-dimensional �−� plane. The
solutions are described by trajectories which cannot inter-
sect. Since the “force” functions are periodic in � and �,
periodic solutions can be constructed that repeat �mod 2��
after m periods in � and n periods in �. The trajectories are
conveniently classified by plotting how the system point

evolves on the �̇− �̇ plane: periodic trajectories give a simple
orbit, while aperiodic trajectories are space filling. The peri-
odic trajectories describe the internal order that leads to the
fractional Shapiro steps.

Another way to interpret the internal order is to introduce
the concept of a vortex. The presence of a vortex can be
detected by first adding or subtracting 2� from the three
phase differences �−�f , �f −�, and �−� so that they are all
within the range �−� ,�� and then adding them up. In the
absence of a vortex, they sum to 2�f; if they sum to 2��f
−1�, there is a vortex present. In a larger planar array of
Josephson junctions, the vortex is a topological singularity of
the phase field. Then, we can interpret the event where
cos��−2�f� passes through the value −1 as the entry of a
vortex into the system. For the triangular circuit, the configu-
ration with a vortex present is energetically unstable, and so
the vortex immediately leaves through one of the sides. This
can occur in a nonperiodic fashion or according to a pattern
of finite period. The latter case gives rise to the fractional
Shapiro steps.

A useful diagnostic for the presence of these collective
modes is the Josephson energy
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EJosephson = − cos�� + �f� − cos�� − �f� − cos�� − �� .

�2.3�

The Josephson energy averaged over a trajectory is close to
zero for chaotic trajectories but less than zero for the en-
trained cases. Thus, it is very sensitive to these internal
resonances.19 In an array of interacting oscillators, such an
order parameter represents the fraction of the locked
oscillators.20

Using Eqs. �2.1� and �2.2�, we can write the coupled equa-
tions for the � and � junctions, respectively, as

�̇ =
3 − 


6
Iext −

2

3
sin�� + �f� −

1

3
sin�� − �f� +

1

3
sin�� − �� ,

�2.4�

�̇ =
3 + 


6
Iext −

1

3
sin�� + �f� −

2

3
sin�� − �f� −

1

3
sin�� − �� .

�2.5�

In some cases, it is useful to make a change of variables
to �=�+� and �=�−�. Then, Eqs. �2.4� and �2.5� become

3
d�

dt
+ 2 sin��� + 2 sin�� − 2�f

2
�cos� �

2
� = 
Iext,

�2.6�

d�

dt
+ 2 sin� �

2
�cos�� − 2�f

2
� = Iext. �2.7�

For most values of the parameters, this model exhibits both
integer and fractional Shapiro steps. For example, the
choices Iext= Idc+ Iac sin �t with �=1, Iac=0.5, f =0, and 

=1 gives Fig. 2.

To construct this figure, we integrated21 Eqs. �2.3� and

�2.4� for many values of Idc. The average value of �̇ is pro-
portional to the dc part of the voltage across this junction

according to the Josephson equation �V�=� /2e��̇�. As the
figure shows, for certain ranges of Idc, the voltage is constant
and proportional to �� /2e. The proportionality constant can
take on both integer and fractional values.

III. SPECIAL SOLUTIONS AND THEIR STABILITIES

We begin our analysis by considering some special cases
in the absence of an ac input current.

For the case f =0, 
=0, symmetry leads to the solution
�=�; this solution decouples Eqs. �2.3� and �2.4�. In order to
check the stability of this solution, we assume a small per-
turbation around �=0 in Eq. �2.5� and linearize it to obtain

3�̇ = − ��2 + cos��/2�� , �3.1�

which shows that the solution is stable regardless of the form
of �. This means that the initial conditions for � are not
important; the different orbits through � and � rapidly con-
verge to a common stable orbit.

There is a corresponding special solution for other values
of f: when 
Iext=2 sin 2�f , �=�+2�f �i.e., �=2�f�. For
this special choice, the two symmetry-breaking factors can-
cel each other’s effects, and � and � both satisfy the same
“single junction” equation. Linearizing Eq. �2.6�, we have

3�̇ = − 2�� − 2�f��2 cos�2�f� + cos��/2�� . �3.2�

A strong stability condition regardless of � is f 1 /6; this
makes the transients decay without any oscillations. A
weaker stability condition is that the time integral of the
terms in the brackets over a period be positive. Our numeri-
cal results show that this type of stability exists for f up to
1 /5. We will return to this special case in the presence of an
ac signal in Sec. VI.

The most unsymmetrical case 
=1 is more interesting.
Now, � and � are in series and carry the same current. So,
we can consider the � junction as a nonlinear load which
couples the serial junctions. The numerical studies indicate
that phase locking occurs, so that �=� and �=2�+�f . This
leads to a decoupling of Eqs. �2.3� and �2.4�,13

�̇ =
1

3
Iext −

1

3
sin��� −

1

3
sin�2� − 2�f� , �3.3�

and similarly for �. For f =0, we can study the stability of
this solution by introducing a perturbation such that �=�
+�. This leads to the linearized equation

�̇ = − � cos � , �3.4�

which integrates to

��t� = exp	− 
t

cos ����d�� . �3.5�

The coefficient of � in Eq. �3.4� is an oscillating function;
yet, as Eq. �3.5� indicates, if the time integral of this oscil-
lating functions is positive, we still have a kind of stability. It
can be shown that the right-hand side of Eq. �3.3� has its
minimum for a positive value of cos��� and its maximum for
a negative value of cos���, suggesting that the time average
of cos��� should be positive; our numerical solutions also
show that the integral is always positive, but that with in-
creasing Idc it becomes small. Hence, for very large dc input
currents, it takes a large time for perturbations to decay and
the solution approaches neutral stability. For large dc inputs,
the � junction behaves as a linear resistor, and our result is
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FIG. 2. �Color online� The average voltage drops across � and �
junctions, with f =0, �=1, and the ac signal Iac amplitude a=0.5,
for the unsymmetric case 
=1.
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consistent with the neutral stability of serial arrays with re-
sistive loads.14

We checked serial arrays with more than two junctions in
series, having a single junction as the load. The results
showed instability for even more moderate dc inputs.

It is important for our later discussions to remark on the
stability of the solutions when an ac input is added. Our
general assumption is that the stability conditions are pre-
served, at least for small amplitudes of the ac drive. For the
third case discussed above, this would mean that we still deal
with Eq. �3.3�. Indeed, if we solve this equation instead of
the two coupled equations, we get identical results to those
shown in Fig. 2 �which has 
=1 pertaining to this case�.

We note in passing that Eq. �3.3�, in the special case
where f =0, undergoes a saddle-node bifurcation at Iext= Idc
�1.76 �that is, for sin��0�+sin�2�0�, where cos��0�= �33
−1� /8�; for larger currents, � is no longer constant in time.15

This equation also comes up in the study of S/F/S Josephson
junctions.16,17

IV. INTERNAL RESONANCES IN THE ABSENCE OF ac
CURRENT

The two extremes for 
 resulted in two special solutions
that led to qualitatively different behaviors for the array.
When the current division is symmetric, � and � have the
same time dependence as a single junction. So, we expect to
see the integer Shapiro steps only in this case. At the other
extreme, 
=1, we get a nonsinusoidal equation of state
which is known to lead to fractional Shapiro steps.11,18

Assuming that ��̇� and ��̇� exist, we can define

��t� = b��t� + �h�t� , �4.1�

where b is a constant that depends on Idc. The function h�t� is
not necessarily bounded �for example, it could perform a
random walk�, but in the case of greatest interest, it will be
periodic. In these latter cases, the parameter b is rational. The
mechanism that leads to this entrainment of the phases was
discussed above.

Figure 3 shows the value of b and the Josephson energy
as a function of Idc, for 
=0.9 and f =0. For Idc1.8, the
system is in a steady state. Above this value, � and � rotate.
For Idc2.03, they rotate at the same rate, so that b=1. At
higher values for Idc, the rotation rates are different; some
steps are visible in the graph of b, where the evolution is

periodic. The dependence of ��̇� and ��̇� on Idc is similar to
what is shown in Fig. 4. Figure 3�b� shows that the Joseph-
son energy is negative when � and � are entrained �at the
steps in Fig. 3�a��, but zero otherwise.

In Fig. 3, many smaller steps are present besides 3 /2 and
4 /3 which are visible in larger scales.

V. JUNCTION � IN ROTATING STATE

Figure 4 shows the time average voltages across the � and
� junctions as a function of Idc for 
=0.9, as determined
from a numerical solution of Eqs. �2.3� and �2.4� when an ac

with amplitude a=0.5 and frequency �=1 �in the normalized
units� has been added.

For small currents, � and � assume time-independent val-
ues; there is no voltage across the junctions. As the current
increases, there is a transition from the zero voltage state to
the state in which � and � are rotating at the same rate, so
that the voltages across � and � are the same �that is, the

time averages ��̇� and ��̇� are equal� so b=1 and as can be
seen no fractional steps exist in the characteristics. Further
increase of current brings about a separation of voltages for
the � and � junctions and sends the � junction to a rotating
state.

This qualitative change in the behavior of the system
means that the junctions are no longer rotating with the same
angular frequency. The parameter b is no longer fixed at
unity and thus can change smoothly with Idc. However, it can
also become fixed at other values.

An interesting feature of Fig. 4 is that for some consider-

able ranges of Iext, both ��̇� and ��̇� are on a step. The step

where ��̇�=1 �near Iext=2.3� is the integer Shapiro step and
occurs because the rotation frequency of the � junction
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0
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FIG. 3. �a� The average ratio of phases b and �b� the Josephson
energy of the array, for 
=0.9 and f =0 in the absence of the ac
signal. The signature for mutual entrainment due to the internal
degrees of freedom is manifested as the steps on the ratio and mini-
mums in energy.
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FIG. 4. �Color� IV characteristic for � and � junctions with 

=0.9, �=1, and a=0.5 in the normalized units and f =0.
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matches the external ac frequency. The simultaneous locking
of ��̇� at the value 2

3 is notable. This shows that the b ratio
which was stable in the absence of ac drive �stability mean-
ing with respect to Idc� appears again and makes a fractional
step in the characteristics of � junction. The integer step can
be considered as the response of � junction to the ac input,
whereas the corresponding fractional step for � reveals the
internal order which has been existing before imposing ac.
The occurrence of a stable fractional step around Idc=2.6 is
more interesting. Here, none of the junctions is on an integer
step and the ratio b=5 /3 is obtained.

By varying the frequency of ac, it is possible to pick out
the other steps in the b plot. For example, in Fig. 5, we
exhibit the characteristic for �=0.8. By comparison with
Fig. 3, the b=4 /3 step �near Iext=2.1� and the b=3 /2 step
�near Iext=2.45� are now visible. Their presence can be ex-
plained by the argument in the previous paragraph since one
of the junctions in each case is on an integer step.

In Fig. 6, we have plotted the characteristics of the �
junction in the presence of ac drive for different values of 
.

It can be seen that the transition from ��̇�= ��̇�=0 to ��̇�
= ��̇��0 is not so sensitive to the asymmetry in current di-

vision. However, this asymmetry does facilitate the transition

to ��̇�� ��̇� where � is in the rotating state. This shows why
in the cases studied in Secs. IV and V we took 
 close to
unity. The signature of the latter transition is that the curves
are noisy when the junction � begins to rotate. For the values
of 
 near zero, this transition occurs for larger values of Idc
which are beyond the range of our study.

The case of 
�1 and identical junctions can be mim-
icked for 
=1 by allowing � to have a higher critical
current.22 However, 
 serves as a better control parameter
experimentally.

VI. JUNCTION � IN OSCILLATING STATE

Fractional Shapiro steps can occur rather generally when-
ever the dynamics of �, �, and � is nontrivial. Consider, for
example, the case 
=0: in the absence of a magnetic field,
this gives a totally symmetric circuit. In this case, � and �
phase lock so that �=0, and then each acts like a single
junction, for which there are only integer steps. For nonzero
f , however, fractional steps do occur at 
=0; half-integer
steps are quite prominent. Unlike the situation above, b=1
for all values of f and Idc, so the previous arguments about
the origin of fractional steps do not work here. We intend to
explain all these points in this section.

Let us reconsider Eqs. �2.6� and �2.7� with 
=0. With
minor rearrangement, these read

3
d�

dt
+ 2 sin��/2��2 cos��/2� + cos �f cos��/2��

= 2 cos��

2
�cos� �

2
�sin �f , �6.1�

d�

dt
+ 2 sin� �

2
�cos��

2
− �f� = Iext. �6.2�

When the dc part of Iext is greater than unity, �=�+� will be
in a rotating state, no matter what � does. When 
=0, � is
uncoupled from � only in the special case f =0 �where �=0 is
the stable solution, even in the presence of an ac input�.
When f is not zero, � cannot be stationary, except in the
trivial case below the critical current. Regarding f and the
oscillatory part of � to be small, Eq. �6.2� can be looked
upon as a single junction equation, with the average value of
cos�� /2−�f� playing the role of the critical current. The
oscillating factor cos��� that appears on the right-hand side
of Eq. �6.1� will cause oscillations in �. The amplitude of
this driving term is proportional to sin �f; the numerical re-
sults support the expectation that the oscillations of � have
amplitude that scales with sin �f .

As another feature of these equations, the frequency of
oscillations of � is determined by cos���. These oscillations
again feed back into Eq. �6.2� since cos�� /2−�f� has the
role of critical current in this equation. In short, the equation
is both externally and parametrically driven.23 Now, the ex-
istence of higher harmonics in the spectrum of � can be
brought out by inserting the nonsinusoidal terms in the equa-
tion describing �, which results in the fractional steps, as can
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FIG. 5. �Color online� The IV characteristic for � and � junc-
tions with the parameters similar to those of Fig. 4 except for �
=0.8 here.
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be seen in Fig. 7. Note that this feedback between Eqs. �6.1�
and �6.2� is broken whenever f =0. The strength of the feed-
back increases with f monotonically.24

We note in passing that, in this case of 
=0, since the
oscillations in � keep a small amplitude, the triangular
plaquette acts as an inductive superconducting quantum in-
terference device, which is known to exhibit fractional Sha-
piro steps.25,26 Also, when 
=0, the system is mathemati-
cally similar to the square plaquette studied by Sohn and
Octavio,11 in which there are two degrees of freedom.

VII. CONCLUSION

In conclusion, we have studied the intricate interplay of
the Josephson junctions on a single triangular plaquette. This
coupling brings about a mutual entrainment of the junctions
for certain ranges of the dc current; mutual entrainment
means synchronization in the absence of an ac master drive.

In the simpler case, the array is made asymmetric by un-
equal current division. The ratio of the average voltages
across the junctions maintains constant fractional values for
certain ranges of Idc. This signals the presence of mutual
entrainment—an internal rhythm or “internal clock.”27 When
the ac signal is added on, this internal rhythm can lock onto
the external frequency, bringing about the fractional Shapiro
steps.

The fractional Shapiro steps serve as a probe for the in-
ternal rhythm amongst the components of a system. By con-
trast, the integer Shapiro steps signal an effectively one com-
ponent system.

In the intriguing case of the symmetric current division,
once the magnetic field is present, but with no master drive,
the base junction oscillates and maintains a zero average
voltage. This comes about as the other two junctions rotate
with the same average rate, and each draws from the same
set of harmonic components. It is this harmonic content that
results in the fractional Shapiro steps once the ac signal is
included.

The occurrence of fractional Shapiro steps is the normal
case for the triangular array. Suppression of them requires
special circumstances, such as symmetry of the circuit �

=0 and f =0�. Breaking the symmetry usually leads to frac-
tional steps. However, we note that the two kinds of asym-
metry can effectively cancel each other out, as in the case of
the second special solution mentioned in Sec. III: when

Iext=2 sin 2�f , the junction equations reduce to a one-
dimensional system and fractional steps do not appear. The
magnetic and geometric asymmetries have canceled each
other out.
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