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Interrelation between the two-particle and mean-field problems is used to describe the strong pseudogap and
superconducting states in cuprates. We present the strong pseudogap state as an off-diagonal short-range order
�ODSRO� originating from quasistationary states of the pair of repulsing particles with large total momentum
�K pair�. Phase transition from the ODSRO state into the off-diagonal long-range ordered �ODLRO� super-
conducting state is associated with Bose-Einstein condensation of the K pairs. A checkerboard spatial order
observable in the superconducting state in the cuprates is explained by a rise of the K-pair density wave. A
competition between the ODSRO and ODLRO states leads to the phase diagram typical of the cuprates.
Biordered superconducting state of coexisting condensates of Cooper pairs with zero momentum and K pairs
explains some properties of the cuprates observed below Tc: Drude optical conductivity, unconventional iso-
tope effect, and two-gap quasiparticle spectrum with essentially different energy scales.
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I. INTRODUCTION

Most commonly, it is believed that all essential physics of
high-Tc cuprate superconductor, treated as a doped two-
dimensional �2D� antiferromagnetic �AF� insulator with
strong on-site Coulomb repulsion,1 can be understood within
the simplest one-band model of a strong correlated system
such as the Hubbard or t-J model. It seems impossible to
obtain analytic solutions for the ground states of these 2D
models. Therefore, a variational approach based on a choice
of an appropriate trial wave function can be considered as a
natural way to solve the cuprate problem.2 A great many of
the fundamental ideas underlying the physics of the cuprates
were introduced in this way.

Some results, obtained within the resonating valence bond
�RVB� approach,1 can be considered as a ground of the
theory of high-Tc superconductivity. The wave function of
the RVB ground state derived from Gutzwiller projected3

d-wave ground state of the Bardeen-Cooper-Schrieffer
�BCS� model4 eliminates the possibility of double occupancy
of a site �no double-occupancy constraint� and corresponds
to extremely strong on-site correlations.

However, the physics of strong correlated systems is com-
plicated by the fact that several of the low-energy ordered
states have nearby ground-state energies5: d-wave supercon-
ductor �dSC�, staggered flux phase,6 spin and charge density
waves �SDW and CDW, respectively�, and some others.7

Taking account of the competition and coexistence of such
ordered states within extremely simplified models by nu-
merical tools leads to a wide variety of phase diagrams. It is
clear that, among them, one can always find diagrams similar
to those typical of the cuprates.

Various approximations within the on-site Coulomb repul-
sion models often lead to antipodal conclusions concerning
the possibility of the superconducting �SC� state itself.8 The
complete suppression of the double occupancy under
Gutzwiller’s projection promotes a rise of an insulating
rather than a SC order. In this connection, Laughlin8 has
proposed an alternative approach to clarify the problem of
the superconductivity of the cuprates. Instead of a numerical

study of a highly simplified Hamiltonian, he suggested se-
lecting a reasonable ground state in order to determine the
Hamiltonian leading to such a state.

To take into account a realistic on-site repulsion, the
ground state of Laughlin’s gossamer superconductor8 is cho-
sen in the form of an incomplete projected BCS d-wave state
with partially suppressed double occupancy. A Hamiltonian
with such an exact forethought ground state, along with
strong on-site repulsion, should manifest an attractive term
which can lead to the dSC state.8

Gossamer superconductivity of the underdoped com-
pound can be associated with a band of states with relatively
low spectral weight inside a pronounced insulating forbidden
band so that the chemical potential turns out to be pinned
near the middle of this band.8

The repulsion-induced dSC state is highly sensitive to
electron dispersion.9 The simplest tight-binding approxima-
tion taking into account only the nearest neighbors �t model�
seems to be insufficient, therefore, it is necessary to consider
more complicated dispersion with the next-nearest-neighbor
terms �t-t� model�. Numerical study shows9 that the stable
dSC state corresponds to a hopping integral ratio t� / t within
a narrow range near t� / t=−0.3. Just the same value of t� / t is
consistent with the available angle resolved photoemission
spectroscopy �ARPES� data.10

As follows from the SU�2� approach to the RVB
problem,9 it is necessary to consider doublets of fermions
and bosons to realize the spin-charge separation correctly.11

Two minima of the SU�2� boson dispersion are relative to the
points �0, 0� and �� ,�� in the 2D Brillouin zone,11 therefore,
the SC pairing channel corresponding to a large pair momen-
tum should be taken into account along with the Cooper
channel corresponding to zero pair momentum.

Geshkenbein et al.12 have assumed that an enhancement
of the scattering between the saddle points of electron dis-
persion results in the fact that the electron-electron interac-
tion with large momentum transfer can be “less repulsive”
with respect to small transfer. Therefore, in the vicinities of
the saddle points, fermions pair into bosons. Such noncoher-
ent preformed pairs arising near the antinodal arcs of the

PHYSICAL REVIEW B 76, 214506 �2007�

1098-0121/2007/76�21�/214506�11� ©2007 The American Physical Society214506-1

http://dx.doi.org/10.1103/PhysRevB.76.214506


Fermi contour �FC� might exist in the pseudogap state of
underdoped cuprates as a normal Bose liquid.12

The FC outside of the arcs corresponds to unpaired fer-
mions coexisting with the preformed pairs. Bose-Einstein
condensation �BEC� of the preformed pairs with a large mo-
mentum due to their interaction with unpaired particles re-
sults in the SC gap on the whole of the FC. The SC state that
arises in such a way describes reasonably a rather wide �in-
termediate with respect to BCS and BEC limiting cases�
fluctuation region above Tc.

Instabilities in a 2D strong correlated electron system
were investigated within the t-t� model at small t� by
renormalization-group �RG� methods13,14 using a discretiza-
tion of the FC into a finite number of patches. The singularity
in the Cooper channel exhibits a squared logarithmic diver-
gence at low energies. For insulating Peierls channel with
electron-hole pair momentum Q�= �� ,��, the singularity
also exhibits a squared logarithm in the particular case t�
=0 when nested FC has the form of a square coinciding with
the boundary of the magnetic Brillouin zone of the parent
compound. At t��0 and low doping, that is, in the case of a
deviation of the FC from perfect nesting, the divergence is
found weaker with logarithmic enhancement of the order of
ln�t / t�� under the condition that �t��� �t�. The singularities in
the insulating and SC channels corresponding to zero and Q�

pair momenta, respectively, are found to be logarithmic in
the case of small but nonzero �t� / t�. Such a case corresponds
to approximately nested FC disposed close to saddle-point
van Hove singularity. RG approach, involving the nesting
effects,15 gives a possibility to select singular contributions
into pairing channels but corresponding preexponential fac-
tors remains undetermined.

General symmetry consideration, based on Zhang’s SO�5�
theory16,17 or the SU�4� theory by Guidry et al.,18 shows that
one should take into account a closed set of competing or-
dered states to describe key features of correlated electron
system. In this sense, singlet SC pairing channel with large
momentum, incorporating singlet orbital insulating long-
range �possibly, hidden19,20� or short-range �fluctuating be-
tween dSC and staggered flux states21� order, is naturally
connected with the Cooper channel. Thus, there should be
two SC gap parameters related to large and zero pair mo-
menta, respectively.

The SC gap, which determines Tc and corresponds to a
rise of the coherence in the system of electron pairs, can be
directly extracted from experiments on Andreev reflection22

or Josephson tunneling.23 The observation of two SC gaps of
about 10 and 50 meV, respectively, in tunnel experiment24 in
Bi2212 �in particular, a suppression of the lesser gap in high
magnetic field at temperatures 30–50 mK� presents an indi-
rect evidence in favor of two SC energy scales in the cu-
prates.

One more energy scale, observed in ARPES and tunnel
spectra of underdoped cuprates,10,25,26 can be associated with
the strong pseudogap state.27 To describe this state, one can
start from a reasonably chosen one-particle Green function.
Recently, Yang et al.28 developed the RVB phenomenology
of the pseudogap state based on the assumption that this state
can be viewed as a liquid formed by an array of weakly
coupled two-leg Hubbard ladders. The coherent part of the

Green function obtained within the random phase approxi-
mation is consistent with the Luttinger theorem29 and de-
scribes the evolution of the FC �from small pockets to closed
contour� with doping. Similar results follow from both the
spin-charge separation approach30 and the phenomenological
account of short-range insulating order above Tc.

31

In this paper, we develop the concept of Coulomb
pairing,32 based on the ordinary Hamiltonian with screened
Coulomb repulsion, that results in the biordered state origi-
nating from two SC pairing channels, with large and zero
pair momenta. The all-sufficient conditions of repulsion-
induced superconductivity in these two channels are dis-
cussed in Sec. II. Section III deals with the strong pseudogap
state arising from incoherent quasistationary states of pairs
with large momenta that are inherent in the screened Cou-
lomb pairing potential. In Sec. IV, we consider the symmetry
and two-gap spectrum of the biordered state. Finally, some
possible manifestations of the strong pseudogap and bior-
dered SC states are briefly discussed in Sec. V.

II. COMPETING PAIRING CHANNELS

Screening of Coulomb repulsion in three-dimensional iso-
tropic degenerate electron gas results in a momentum-
dependent interaction energy of two electrons,

U�k� = 4�e2/�k2��k�� , �1�

where static permittivity has the form33

��k� = 1 +
k0

2

2k2�1 +
1 − x2

4x
ln�1 + x

1 − x
�� . �2�

Here, x=k /2kF and kF and k0
−1= �4�e2ng�1/2 are the Fermi

momentum and screening length, respectively; n and g are
the electron concentration and density of states on the Fermi
level, respectively.

Kohn singularity at k=2kF leads to electron-electron in-
teraction with damped Friedel oscillation in real space. At a
distance r�kF

−1, this interaction can be written as33

U�r� 	
e2

2�

cos 2kFr

r3 . �3�

Kohn and Luttinger34 have argued that attractive contribution
into screened Coulomb repulsion originating from the Frie-
del oscillation is sufficient to ensure Cooper pairing with
nonzero angular momentum. Because of the weakness of the
Kohn singularity, corresponding SC transition temperature
turns out to be very low.34

In the case of nested FC, the Kohn singularity transforms
into the Peierls one with strong anisotropy of ��k�. There-
fore, effective pairing interaction can be enhanced both in
particle-hole and particle-particle channels. In particular, this
can give rise to CDW or SDW in singlet or triplet insulating
pairing channels, respectively.

Peierls singularity in a particle-hole channel originates
from the fact that momentum transfer turns out to be equal to
nesting vector Q for any particle on a finite part of the FC
�Fig. 1�a��. For the sake of simplicity, in Fig. 1, the FC is
presented as a square corresponding to the t model at half-
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filling. In the case of low doping and under the condition that
�t��� t, the FC is close to this square.13 Note that the FC of
the underdoped cuprate compound has the form of a square
with rounded corners as well. However, such a square is
rotated by 45° with respect to the FC of the t model.10,35 This
rotation of the FC can be treated in terms of electron disper-
sion including, besides t and t�, hopping integral t� between
second neighbors along the Cu–O bond direction �tt�t�
model�,36

��k� = − 2t�cos kx + cos ky� + 2t� cos kx cos ky

+ t��cos 2kx + cos 2ky� . �4�

Here, kx and ky are coordinates of particle momentum k.
Dispersion Eq. �4� maps a set of isolines near the FC into
those observable in underdoped cuprates if t=0.5 eV, t�
=−0.3 eV, and t�=0.2 eV.

In the Cooper channel, Peierls enhancement of the Kohn
singularity emerges appreciably weaker because momenta
before and after scattering �p and p� in Fig. 1�b�, respec-
tively�, giving rise to this enhancement, should be related as
p−p�
Q. Integration over momentum transfer p�−p along
the whole of nested FC smoothes down the Peierls singular-
ity from the Cooper channel. Logarithmic singularity
�ln���0 /� � �, where �0 is an upper-limit cutoff energy� in the
Cooper channel is ensured by a general feature of electron
dispersion, ��−p�=��p�, that holds for any momentum p �sta-

tistical weight of the Cooper pair is proportional to the length
of the entire FC�.

Density of states of a 2D system manifests logarithmic
van Hove singularities originating from saddle-point vicini-
ties with hyperbolic metric. Due to close proximity of the FC
and the isoline connecting saddle points �±� , ±��, effective
coupling constant w turns out to be logarithmically en-
hanced, w→w ln�2tkc

2 / ��−�s��.13 Here, �s is the saddle-point
energy �within the t model, �s=0� and momentum kc is a
scale of the part of the 2D Brillouin zone with hyperbolic
metric.

In the case of SC pairing with large total momentum K
�K channel�, the momenta of the particles composing a pair
with given momentum �K pair�, both being either inside or
outside the FC at T=0, should belong to only a part of the
Brillouin zone �domain of kinematic constraint� rather than
the whole. In a general case, the kinetic energy of the K pair
with relative motion momentum k,

2�K�k� = ��K/2 + k� + ��K/2 − k� − 2� , �5�

vanishes only at some points of the FC inside this domain
�� is the chemical potential�. Therefore, in contrast to the
Cooper pairing when �0�k�=0 on the whole of the FC, inte-
gration over k eliminates the logarithmic singularity in the K
channel. However, if kinetic energies of the two particles,
��K /2+k� and ��K /2−k�, coincide on finite pieces of the FC
�“pair” Fermi contour �PFC��, logarithmic singularity
ln���0� / ���� survives and the K channel can result in the SC
order.32 Mirror nesting condition,

��K/2 + k� = ��K/2 − k� , �6�

determines the locus in the momentum space that logarith-
mically contributes to the K channel. Statistical weight of K
pair, proportional to the length of the PFC, should be less in
comparison with the Cooper channel.

Mirror nesting is a necessary �not all-sufficient� condition
of the SC pairing with large momentum. For example, this
condition is perfectly satisfied within the t model at half-
filling �when �=0� at pair momentum K=Q� �Fig. 1�c��.
However, it is obvious that, in such a case, the domain of
kinematic constraint degenerates into a segment resulting in
zero statistical weight of the paired state. Indeed, Eq. �5� is
identically zero if momenta of the particles composing the K
pair, K /2+k and K /2−k, belong to the FC, whereas Eq. �6�,
which determines a locus in the momentum space, results in
the mutual segment of two squares shifted by �� /2,� /2� and
�−� /2,−� /2� with respect to the FC. Thus, the domain of
kinematic constraint degenerates into this segment and the
PFC consists of two points, �−� /2,� /2� and �� /2,−� /2�.

To obtain finite statistical weight, one can choose incom-
mensurate pair momentum K�Q�. This results in the do-
main of kinematic constraint in the form of a relatively nar-
row strip containing the PFC as shown in Fig. 1�d�. In the
case of the t model and arbitrary pair momentum K along
direction �� ,��, FC mirror nesting condition Eq. �6� impli-
cates sin kx+sin ky =0. Because particle momenta belong to
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FIG. 1. Nested Fermi contour �bold line� in the form of a square
coinciding with the 2D magnetic Brillouin zone of the parent com-
pound with half-filled conduction band �within tight-binding model
with nearest-neighbor interactions�. �a� Electron-hole pairing with
momenta p and p�=p−Q �Q is nesting momentum�. �b� Cooper
pairing with zero total momentum �p and p� are momenta before
and after scattering, respectively�. �c� SC pairing with nesting mo-
mentum �p±=Q /2±k, where k is the momentum of the relative
motion of the pair�. Domain of kinematic constraint is degenerated
into a line coinciding with one of the sides of the square. �d� SC
pairing with an incommensurate total momentum K �p±=K /2±k�.
Domain of kinematic constraint is bounded by the line 1-2-3-4-5-6.
Parts 2-6 and 3-5 of this line are mirror nested pieces of the FC,
resulting in a singular contribution into K-pairing channel.
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the first Brillouin zone, projections kx and ky of the relative-
motion momentum turn out to be restricted by a two-sided
inequality,

− � + K�/2 	 kx,y 	 � − K�/2, �7�

where K�=K�2 /2. Thus, the momenta of the particles com-
posing the K pair belong to two segments of finite length on
the opposite FC sides, 2-6 and 3-5, shown in Fig. 1�d�.

The coefficient of the logarithmic contribution to the K
channel should be proportional to the length of the PFC.
Considering the PFC as two patches connected by a nesting
vector Q� �Fig. 1�d��, one can conclude that this coefficient
has to be logarithmically enhanced by umklapp scattering
inherent in the Peierls channel.13 Patch approximation13 is
relatively good, just as in the case of short PFC. The reason
is that integration over momentum transfer p−p�
Q� can-
not completely eliminate the enhancement of the pairing in-
teraction due to logarithmic singularities of the permittivity.

Another necessary condition of SC pairing under repul-
sion is connected with the existence of an oscillating attrac-
tive contribution into the pairing potential. It should be noted
that an oscillation itself cannot ensure the rise of a bound
state. For example, simple stepwise repulsive potential
U�k�=U0
0 defined in a finite domain of the momentum
space oscillates in real space. However, by analogy with the
problem of a bound state in a one-dimensional asymmetric
potential well,37 such a potential cannot result in a bound
state even under mirror nesting.

One can consider a screened Coulomb potential U�k
−k�� as a kernel of a Hermite integral operator with a com-
plete orthonormal system of eigenfunctions defined within
the domain of kinematic constraint �,

�s�k� = 
s �
k���

U�k − k���s�k�� . �8�

Here, a set of 
s represents the spectrum of a pairing opera-
tor, which can be written in the form of a Hilbert-Schmidt
expansion,

w�k,k�� = �
s

�s�k��s
*�k��


s
. �9�

The necessary �and sufficient, under mirror nesting� condi-
tion of the SC pairing under repulsion is the existence of at
least one negative eigenvalue of the pairing operator.32

In the case of a comparatively small domain of kinematic
constraint, one can replace the screened Coulomb potential
by its expansion in powers of momentum transfer, �=k−k�,
up to the term of the second order,

w��� = U0r0
2�1 − �2r0

2/2� , �10�

where U0 and r0 are the on-site repulsive energy and screen-
ing length, respectively. The simplest repulsive kernel �10�,
defined inside �, has two even ��1�k� and �2�k�� and two
odd ��1��k� and �2��k�� �with respect to inversion k→−k�
eigenfunctions.

Normalized odd eigenfunctions and corresponding eigen-
values, 
1� and 
2�, have the form

�s��k� =
r0

2ks

�K1�
, 
s� =

1

U0K1�
. �11�

Here, s=1 and 2 is the number of coordinate axis along one
of the symmetry axes of the domain of kinematic constraint,

Ks� = r0
4


�

ks
4d2k . �12�

Normalized even eigenfunctions can be written as

�s�k� = as�1 −
K0 ± ��K0 − K1�2 + K2

2K1 − K2
r0

2k2� , �13�

where s=1 and 2 corresponds to the upper and lower signs in
Eq. �13�, as is a normalizing factor,

Kn = r0
2n+2


�

k2nd2k, n = 0,1, and 2, �14�

and, by virtue of the Cauchy-Bunyakovsky inequality, K2

�K0K2−K1
2 is a positive quantity.

Singlet SC order parameter should be determined by only
even eigenfunctions belonging to eigenvalues 
1 and 
2 of
opposite sign:


s =
− 2

U0K2 ��K0 − K1� ± ��K0 − K1�2 + K2� . �15�

Scattering between nested pieces of the FC leads to a
strong anisotropy of the permittivity. Therefore, expansion of
w�k ,k�� in powers of momentum transfer close to nesting
momentum Q is anisotropic as well. The resulting pairing
interaction kernel, analogous to Eq. �10�, preserves its eigen-
value feature 
1
2�0. It should be noted that the nesting
momentum Q�Q�; therefore, Q is the new nesting momen-
tum, inherent in the real FC, which can result in the Peierls
enhancement of the SC pairing.

The matrix of pairing operator Eq. �9� between its eigen-
functions is diagonal, wss�=
s

−1�ss�. The necessary condition
for the existence of a nontrivial solution to the self-
consistency equation with kernel �10� has the form 
1
2
�0. Written in arbitrary basis, it takes the form of the Suhl
inequality,

w11w22 − w12w21 � 0, �16�

introduced as a necessary condition for superconductivity
within a two-band model.38

The effective pairing potential oscillates in real space and,
in agreement with Laughlin’s proposal,8 manifests a repul-
sive core at a small distance �corresponding to incomplete no
double-occupancy constraint� and an attractive contribution
outside of the core. Thus, such a pairing interaction gives rise
not only to a bound state �with negative energy, E�0� but
also to a quasistationary �with E
0� paired state with large
momentum �Fig. 2�.

The singular contribution into the SC order parameter is
determined by a relatively small vicinity of the PFC with
energy scale �0. In this respect, repulsion-induced K pairing
seems to be similar to phonon-mediated pairing arising from
attraction with negative coupling constant V. Rough
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estimation39 of Coulomb repulsion within the phonon-
mediated mechanism of superconductivity leads to the fact
that, to ensure SC pairing, �V� must exceed a threshold value,

�V� 

Uc

1 + gUc ln�EF/�D�
. �17�

Here, EF and Uc are Fermi and average Coulomb energies,
respectively. Phonon-mediated attraction is defined inside a
narrow layer �domain of dynamic constraint with energy
scale of the order of Debye energy �D� enveloping the FC.

A deviation from perfect mirror nesting condition �6� out-
side of the PFC does not eliminate the logarithmic singular-
ity in the K channel. Typical of high-Tc cuprates, nearly
nested FC in the form of a square with rounded corners10,35

results only in a weak suppression of the singularity under
screened Coulomb pairing interaction. The SC gap turns out
to be preserved on the PFC �by analogy with the case of
insulating pairing studied by Losovik and Yudson�.40

If mirror nesting condition Eq. �6� can be satisfied on a
piece of the FC only approximately, there arises a cutoff on
the low limit of integration in the self-consistency equation
which determines the SC order parameter �. This cutoff �
can be treated as a mean square deviation of the FC from
perfect mirror nesting. Then, setting �=�0 when �=0, one
can estimate the order parameter as41

� = ��0��0 − �� �18�

by analogy with the order parameter of the Fulde-Ferrel-
Larkin-Ovchinnikov �FFLO� state.42,43

The Cooper and K channels can be found as approxi-
mately equally enhanced by both the Peierls singularity of
screening and the proximity of the FC to van Hove singular-
ity of the density of states. Therefore, it is the kinematic
constraint that can ensure the preference of the K channel
over the Cooper channel. As a result, the singular contribu-
tion to Peierls enhanced Coulomb K pairing can dominate
the Cooper channel in doped cuprates.

III. STRONG PSEUDOGAP STATE

Taking into account the ground-state instability due to a
rise of pairs, the mean-field approach to the problem of su-
perconductivity excludes fluctuations of paired states from

consideration. Within the mean-field theory,4 the SC gap is
directly relative to the binding energy of a pair resulted from
the two-particle Cooper problem.44 In the case of the K pair-
ing, such a problem admits a more complicated solution as
compared with the attraction-induced pairing.32

The integral equation which determines a wave function
of the relative motion of two interacting particles �holes�
above �below� the FC can be written as

��k� = G�0���;k� �
k���

w�k,k����k�� . �19�

Here, � and k �k�� are the energy and the momentum of the
relative motion before �after� scattering, respectively, and

G�0���;k� = �� − ��k� + i��−1 �20�

is a one-particle Green function corresponding to the free
relative motion of the K pair, �→ +0. In contrast with one-
particle Landau Fermi-liquid Green function, the condition
that �G�0��0,k��−1=0 does not determine a closed FC. In-
deed, within the t model at half-filling, a locus on the entire
FC resulting from this condition, written in equivalent form
�K�k�=0, coincides with finite pieces which present the PFC
shown in Fig. 1�d�.

In the case of mirror nested FC, one can separate a sin-
gular contribution to the Green function originating from a
relatively small �with energy scale �0� part �s of the domain
of kinematic constraint �. The rest of the domain, including
an energy range from �0 up to a cutoff value of about EF,
results in a regular contribution into G�0�. One can consider
this contribution in a way similar to taking account of the
Coulomb repulsion within a phonon-mediated pairing attrac-
tion scenario39 and renormalize kernel Eq. �9� to a kernel,
defined inside �s, without a change of the spectrum.

The one-particle Green function G�� ;k� corresponding to
the relative motion of the K pair of particles �holes� excited
above �below� the FC can be represented in the basis formed
by the eigenfunctions of the renormalized pairing operator
w�k ,k��,

Gss���� = �
k��

�s
*�k�G��;k��s��k� . �21�

Matrix elements �21� are the solutions to the Dyson equation,

�
s�

��ss� − 
s�
−1Gss�

�0�����Gs�s���� = Gss�
�0���� , �22�

in which matrix elements G
ss�
�0���� of the free Green function

�20� are defined similar to Eq. �21�.
The pairing operator with two even eigenfunctions45 re-

sults in a 2�2 matrix �21�. One can resolve Eq. �22� with
respect to Gss���� and then obtain G�� ;k� in the form

G��;k� = D−1����G�0���;k� − B��;k�� , �23�

where

B��;k� = 
1
−1
2

−1B����
s=1

2


s��s�k��2, �24�

i

q

b

0

|ψ|2

w

r

E

E

E

FIG. 2. Repulsive pairing potential, w�r�, and bound state, ���2
�dotted line�, distributions in real space �schematically�. Energies Ei

and Eq correspond to bound and quasistationary states, respectively.
Barrier height Eb corresponds to a break of the pair without tunnel-
ing through the barrier.
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B��� = G11
�0����G22

�0���� − G12
�0����G21

�0���� , �25�

and

D��� = 1 −
G11

�0����

1

−
G22

�0����

2

+
B���

1
2

. �26�

In the case of mirror nested FC, Green function �23�
manifests a pole resulting in a bound state with negative
energy �=Ei determined from equation D���=0, in which
all functions G

ss�
�0���� are real. This pole is related to the in-

stability of the ground state with respect to a rise of pairs.
Within a small vicinity of the pole, Green function �23� can
be represented as

G��;k� =
�G�0���;k� − B��;k��

D��Ei�
1

� − Ei
, �27�

where D�=dD /d�.
At �
0, Green functions �21� are complex; therefore,

equation D���=0 can lead to a complex solution �=Eq

− i�, where Eq and � can be considered as the energy and
decay of the quasistationary state �QSS� of the relative mo-
tion of the K pair, respectively.45 Near this complex pole,
Green function �23� has the form of Eq. �27�, where Ei
should be replaced by Eq− i�.

Wave functions of the relative motion of the K pair cor-
responding to both bound state and QSS, are localized, in
main, in a wide region of the real space outside of the repul-
sive core as shown schematically in Fig. 2.

The K pairs can exist above Tc as long-living QSS due to
a considerable increase of the density of states in a narrow
vicinity of Eq. To overcome the potential barrier before tun-
nel decay, such a noncoherent pair should accumulate an
energy exceeding the barrier height Eb. Thus, the energy
Eq−Ei is sufficient to destroy SC coherence, whereas corre-
sponding pair-break energy should exceed Eb−Ei. A tem-
perature range between the SC transition temperature Tc
�Eq−Ei and a crossover one, Tstr

* �Eb−Ei, can be inter-
preted as a strong pseudogap state observable above Tc in
underdoped cuprates.27 If density-of-states peak at �
Eq
turns out to be smoothed due to � being large enough, the
strong pseudogap state becomes unobservable. In such a
case, the SC transition from coherent into noncoherent state
should be assisted with a break of pairs at energies 
Eb
−Ei, similar to that in the BCS theory.

By analogy with the interrelation between the Cooper
two-particle problem44 and BCS theory,4 the pair-break en-
ergy Eb−Ei due to direct excitation of particles from a bound
state into a continuous spectrum should be transformed into a
momentum-dependent energy gap ��k� in the quasiparticle
spectrum. In the strong pseudogap state, this gap, due to a
noncoherence of QSS, can be presented as �=��c

2+�p
2.

Here, �c�Eq−Ei corresponds to a transition from the coher-
ent bound state into the noncoherent QSS, and �p�Eb−Eq
can be related to a break of the K pair as a result of a tran-
sition between two noncoherent states.

Microscopically, SC gap �c and strong pseudogap �p
emerge with random phases. Therefore, the mean-field value
�p vanishes at any temperature, whereas �c becomes non-

zero below Tc due to Bose condensation of K pairs from QSS
into the bound state and vanishes only above Tc. However,
nonzero mean square strong pseudogap, ��p�2�0, becomes
apparent well above Tc. In this sense, the pseudogap param-
eter �p, corresponding to decay of QSS of K pairs, reminds
us of the RVB spin liquid pseudogap introduced by Yang et
al.28 However, it has a different physical meaning.

Green function G�0��0;k� changes sign on the PFC from
positive to negative through infinity. Therefore, Green func-
tion �23� at �=0 manifests the same feature. It should be
noted that, in the case of Cooper pairing, the Green function
changes sign on the whole of the FC.28 In addition, Green
function G�0;k� changes sign on a zero line determined by
the equation G�0��0;k�=B�0;k�. This line does not coincide
with the PFC.

Green function �23� of the two-particle problem has a
pole corresponding to a bound state of the relative motion of
the pair. Therefore, one can suppose, in line with Yang et
al.,28 a phenomenological BCS-like form of the coherent
contribution to the normal �diagonal� Gor’kov Green func-
tion of the mean-field problem46

G��;k� = zk� u+
2�k�

� − E�k� + i�
+

u−
2�k�

� + E�k� − i�
� , �28�

where E=��K
2 + ���2 and 2u±

2 =1±�K /E are quasiparticle en-
ergy and coherence factors, respectively. In accordance with
Eq. �23�, momentum-dependent quasiparticle weight zk van-
ishes on the line of zeroes and corresponds to a finite value
z�0�z�1� on the PFC. Two terms in Eq. �28� can be re-
ferred to pairs above and below the FC, respectively.

Diagonal Green function �28� describes a nonsupercon-
ducting state with ODSRO that arises both in time and real
space, and corresponds to the existence of noncoherent K
pairs above Tc. The coherence time directly follows from Eq.
�28�: �=�−1. Thus, � is determined by the decay of the QSS
of K pairs. The problem of defining the coherence length
seems to be more complicated because it has need of the
study of the real-space behavior of Green function Eq. �28�.
Below Tc, the ODSRO transforms into the ODLRO intro-
duced by Yang.47 It should be emphasized that ODLRO and
ODSRO can be associated with bound �Ei�0� and quasista-
tionary �Eq
0� states, respectively, arising, under repulsive
pairing, within two-particle problem Eq. �19�.

Excitation with a transition from the bound paired state
into long-living QSS corresponds to quite small but finite
decay �=��� ;k�. The transitions into stationary states above
the barrier energy Eb should be associated with an infinitesi-
mal decay, �→ +0, leading to a conventional Fermi-liquid
behavior of the diagonal Gor’kov function �28� above Tstr

* .
Thus, a rise of QSS results in a non-Fermi-liquid behavior of
the diagonal Green function �23� that can be manifested in a
rather wide temperature range Tc�T�Tstr

* relating to a
strong pseudogap state. This range corresponds to transitions
between bosonlike bound and quasistationary states. There-
fore, Eq. �28� can be considered as a bridge between the BCS
and BEC approaches to the problem of superconductivity, in
accordance with the assumption by Geshkenbein et al.12
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IV. SUPERCONDUCTING STATE
WITH LARGE MOMENTUM

Nearly nested FC of underdoped �up to optimum doping�
cuprate compound in the form of a square with rounded cor-
ners is shown schematically in Fig. 3. If it results in the fact
that the K channel corresponding to an incommensurate mo-
mentum K dominates the Cooper channel, it is a rise of co-
herence in the system of K pairs that determines the SC
transition temperature Tc. Therefore, there is a temperature
range well below Tc in which mean-field SC order parameter
�c�k�, relating to the K channel, can be approximately con-
sidered as governed by the only self-consistent equation,

�c�k� = −
1

2�
k�

w�k,k���c�k��
E�k��

tanh�E�k��
2T

� . �29�

Quasiparticle energy,

E�k� = ��K
2 �k� + ��c�k��2 + ��p�k��2, �30�

aside from �c�k�, includes a strong pseudogap parameter,
�p�k�, associated with QSS that can exist above Tc. Thus,
Eq. �29� reflects the fact that SC order arises from a state
other than the normal Fermi liquid. Therefore, Eq. �29� dif-
fers from the conventional BCS self-consistency equation.
Pseudogap parameter �p�k� is small above optimum doping
and gradually increases with underdoping. This leads to
smoothing of the singularity in Eq. �29� and, as a result, to a
gradual decrease in Tc with underdoping.

One can reduce the summation in Eq. �29� to a small part
�s of the domain of kinematic constraint similar to that in
the two-particle problem considered above. Under repulsive
interaction, a nontrivial solution to Eq. �29� can arise due to
a competition of positive and negative contributions to the
right-hand side of this equation. Such a competition deter-
mines the effective coupling constant and is strongly affected
by electron-hole asymmetry.45 Thus, �c�k�, arising due to
repulsive pairing interaction, should have a line of zeroes
�nodal line �NL�� inside �s.

In the case of phonon-mediated pairing with account of
Coulomb repulsion,39 the NL of the order parameter coin-
cides with the boundary enclosing the domain of dynamic
constraint. In this domain, attraction dominates logarithmi-
cally weakened repulsion in accordance with Eq. �17�. This
NL is disposed everywhere outside of the FC; therefore, mir-
ror nesting of the FC can be considered as the only condition
of the K pairing under attraction.

Peierls enhancement of the pairing interaction results in a
strong anisotropy of the NL disposed close to the FC inside
�s. This corresponds to an increase in the dominant part of
�s that mainly contributes to the logarithmic singularity in
the self-consistency equation and, thus, increases by a mag-
nitude of �c �it is clear that ��c� should be much lesser than
�0�.

Since the SC order parameter arising in the K channel is
essentially momentum dependent, there are three character-
istic lines of zeroes: �1� the PFC on which kinetic energy of
the pair equals zero, 2�K�k�=0; �2� the NL of the order pa-
rameter determined by �c�k�=0; and �3� the curve on which
quasiparticle group velocity changes sign, �kE�k�=0.

These three lines may have common points of intersection
inside �s; therefore, the NL can be disposed both above and
below the PFC. This results in a qualitatively different non-
monotonic momentum dependence of coherence factors
u±

2�k� for two kinds of directions in k space intersecting at
first the PFC and then the NL, and vice versa. Under pairing
repulsion, the scattering across the NL turns out to be domi-
nating in comparison with scattering inside or outside the
NL, in accordance with the Suhl inequality Eq. �16�.

Due to the fact that ��p�2�0 in the strong pseudogap
state, coherence factors in the diagonal Gor’kov function
�28� may overlap each other near the PFC even above Tc. On
the contrary, the BCS coherence factors are stepwise func-
tions without an overlap in the normal Fermi-liquid state.

The SC state that arises below Tc should be described by
both diagonal and off-diagonal �anomalous� Gor’kov func-
tions. Taking into account the fact that mean-field �averaged
over random phases� pseudogap parameter �p vanishes
whereas mean-field SC condensate parameter �c�0 below
Tc, one can introduce an off-diagonal Gor’kov function
F+�� ;k� in a phenomenological way similar to what we used
to obtain the diagonal Gor’kov function �28�. This function
describes the ODLRO state47 and can be written as

F+��;k� = −
zk�c

*

�� − E�k� + i���� + E�k� − i��
. �31�

Factor zk is defined inside each of the crystal equivalent do-
mains of kinematic constraint � j, where j=1, 2, 3, and 4 in
the case of tetragonal symmetry of cuprate planes. Paired
states with large total momenta K j, both coherent and non-
coherent, arise exactly inside these domains. Parameters �cj,
�pj, and � j are identical for any of � j differing only by the
domain of definition of k.

In the whole of the Brillouin zone, the SC order parameter
in the mixed representation can be presented as a superposi-
tion,

K

Q

(π,π)

(0,0)

FIG. 3. Schematic representation of the Fermi contour of under-
doped cuprate superconductor, in accordance with Ref. 35. Nested
�with nesting momentum Q� and mirror nested �corresponding to
total pair momentum K� pieces of the FC are shown by bold lines.
The dotted line shows the magnetic Brillouin zone boundary.
Shaded: dark narrow ovals correspond to vicinities of Peierls sin-
gularity of screening; light half-ovals designate extended saddle-
point vicinities.
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�c�R,k� = �
j=1

4

� j�k�eiKjR�cj�k� , �32�

where R is center-of-mass radius vector, �cj�R ,k� is the or-
der parameter defined inside the jth domain of the kinematic
constraint, and coefficients � j�k� should be chosen in accor-
dance with the symmetry of the order parameter.

As a function of R, the order parameter �32� arising in the
K channel turns out to be spatially modulated similar to the
FFLO state.42,43 Such a modulation with relatively short
wavelength reflects a variation of K-pair density and can be
associated with a pair density wave with a checkerboard or-
der in cuprate planes. Thus, the K pairing leads to a micro-
scopic ground of the pair density wave concept introduced
phenomenologically within the SO�5� theory by Zhang.16,17

The period of a checkerboard structure should be deter-
mined by pair momentum K and the symmetry of the cuprate
plane. Because the pair momentum is, generally speaking,
incommensurate, there are some possibilities to form com-
mensurate structures with various periodicity as follows, for
example, from the SO�5� theory.16,17 In our view, the period
close to 4a turns out to be more probable in the cuprates
because of their special dispersion with mirror nesting of the
Fermi contour at K
� /2a, being only one of the possible
among observable commensurate checkerboard structures.48

Even eigenfunctions of the pairing interaction kernel Eq.
�9� form an intrinsic basis suitable to expand the order pa-
rameter over these functions,32

�c�R,k� = �
s

�s�R��s�k� . �33�

In the simplest case, repulsion-induced SC pairing can be
described by a two-component order parameter, so that two
complex components, �s�R�, s=1 and 2 form the order pa-
rameter structure in the framework of the Ginzburg-Landau
phenomenology. Absolute values and the relative phase of
the components are connected with the relative motion of the
K pair.

As follows from the Ginzburg-Landau equation system
for a two-component order parameter,49 two qualitatively dif-
ferent SC states become admissible. One of them corre-
sponds to a constant value � of the relative phase of the
components that is generic for repulsion-induced supercon-
ductivity. The other state, with the relative phase different
from �, can be related to a change of the phase of the wave
function of the K pair due to a rise of the internal magnetic
field of spontaneous orbital currents. Such currents can be
associated49 with insulating orbital antiferromagnetic order,
for example, in the form of d-density wave �DDW�.20

V. BIORDERED SUPERCONDUCTING STATE

Superposition �32� mixes, in particular, two paired states
with opposite momenta, K and −K. It is clear that particles
composing pairs with these momenta can compose pairs with
zero momentum. In such a way, the Cooper channel is asso-
ciated with the K channel in accordance with symmetry con-
sideration.

In such a case, mean-field order parameters �0�k� and
�c�k� corresponding to the Cooper and K channels, respec-
tively, should be the solution to a self-consistency equation
system. This system degenerates into two independent equa-
tions �each of them determines one of the order parameters�
if one neglects the interconnection of the channels. Then, one
would obtain temperatures, Tc and Tc�, of transitions into the
states with order parameters �c�k� and �0�k�, respectively.
Let us assume that Tc��Tc even in the case when attractive
phonon-mediated pairing contributes to the Cooper channel.
Then, SC transition temperature Tc can be obtained directly
from Eq. �29�.

At Tc��T�Tc, there arises a SC order due to K pairing
with order parameter �c�k� defined in relatively small vicini-
ties of the PFC, where factor zk is close to unity. Inside this
temperature range, Cooper pairing on the whole of the FC
should be induced by K pairing. In this case, the magnitude
of �0�k� has to be small in comparison with the magnitude of
�c�k�.

Thus, biordered SC state arising in such a way should be
described by two order parameters, �c and �0, defined in the
vicinities of the PFC and the entire FC, respectively. As tem-
perature decreases from Tc down to T
Tc�, Cooper ordering
with order parameter �0 exists as induced by the K channel
of SC pairing. In this case, the superfluid density turns out to
be approximately proportional to the PFC length. Opening of
the Cooper channel at T
Tc� leads to a considerable increase
in �0 and, as a result, in the superfluid density which be-
comes proportional to the whole of the FC length at T�Tc�.

In the vicinities of the PFC, two branches �m=1 and 2� of
a strong anisotropic quasiparticle spectrum of the biordered
superconductor can be written in the form

Em�k� = ��K
2 �k� + ��p�k��2 + ��c�k� ± �0�k��2. �34�

Here, we take into account the fact that the kinetic energy of
K pair �5� is equal to the kinetic energy of the Cooper pair,

2�0�k� = ��K/2 + k� + ��− K/2 − k� − 2� . �35�

Two-gap spectrum �34�, with the lesser gap ��c−�0� observ-
able at excitation energies up to the greater gap ��c+�0�,
should be apparent at T�Tc�. Above the greater gap, the
spectral weight transfers from the low- to high-energy branch
of the quasiparticle spectrum.

Diagonal and off-diagonal Gor’kov functions of the bior-
dered SC state preserve their form, Eqs. �28� and �31�, re-
spectively, with the exception of the fact that the SC order
parameter �c has to take into account both SC pairing chan-
nels. Thus, these two channels result in two coexisting
ODLRO states.

Most likely, Cooper channel, including both Coulomb and
phonon-mediated pairings, cannot result in a rise of QSS.
Therefore, the SC gap parameter turns out to be BCS-like
everywhere on the FC with the exception of the PFC on
which the unconventional K channel is opened.

Symmetry of the biordered SC state is determined by Eqs.
�32� and �33�, where �s should be considered as the compo-
nent of the momentum-dependent order parameter arising as
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a result of both Cooper and K pairings. One can approxi-
mately represent the gap parameter in the conventional form

��k� = D�k��cos kx ± cos ky� , �36�

where momentum-dependent magnitude D�k� reflects a
strong anisotropy of the K pairing. The upper �lower� sign in
Eq. �36� corresponds to extended s�d�-wave symmetry of the
order parameter. It should be noted that, in the case of Peierls
enhanced K pairing, the nodal line of the order parameter
��k� passes through the center of the corresponding domain
of the kinematic constraint. This results in the fact that the
order parameter ��k� differs in sign on opposite parts of the
PFC.

VI. CONCLUSION

We believe that biordered superconductivity is generic for
such superconductors as doped cuprate compounds. Uncon-
ventional features of these compounds, especially universal-
ity of their phase diagram �Fig. 4�, can be associated with the
evolution of the FC and pairing interaction with doping.

It is clear that a singular contribution to Coulomb pairing
interaction is sensitive to a doping dependent form of the FC.
Therefore, one can suppose that oscillating real-space pairing
potential w�r� varies with doping in such a way that only
noncoherent QSS of SC pairs arise under extremely low dop-
ing. This corresponds to a strong pseudogap penetrating into
the insulating region of doping below the onset of supercon-
ductivity at x=x*. In the underdoped region x*�x�xopt,
along with QSS, there is a bound state. Both bound state
energy �Ei� and QSS decay � increase with doping so that,
near optimal doping xopt, pair-break energy approximately
coincides with the energy corresponding to the loss of phase
coherence. Thus, in the overdoped regime xopt�x�x*, pair-
ing interaction can result in only a bound state.

As doping increases, the K channel loses a preference
over the Cooper channel; therefore, overdoped SC state can
manifest properties inherent in conventional BCS state.
When doping exceeds xopt, a decrease in Tc down to Tc=0 at
x=x* can also be associated with doping dependence of the

pairing interaction. This interaction becomes more repulsive
at x
xopt as the FC gradually leaves the vicinity of the ex-
tended van Hove saddle point.

A suppression of the phonon-mediated component of the
SC pairing has the same origin. An effective increase in re-
pulsion can result in the fact that inequality �17� can be re-
versed because of not too large ratio EF /�D typical of cu-
prates.

There is rather strong evidence that, in underdoped cu-
prates, the dimensionless ratio 2��0� /Tc considerably exceeds
the universal BCS value of 3.52.50 Here, ��0� is the SC en-
ergy gap extrapolated down to T=0. In underdoped bior-
dered superconductor, this parameter should be determined
by both Cooper and K pairings; therefore, ��0�

=��2+�0
2+�p

2. Taking into account the fact that Tc is deter-
mined by K pairing only and �2, �0

2, and �p
2 are, generally

speaking, of the same order, one can easily conclude that the
ratio 2��0� /Tc may considerably exceed 3.52 �as observed in
Ref. 50, values of 2��0� /Tc�10�. In the overdoped regime,
the strong pseudogap parameter �p→0 and the Cooper
channel dominates K pairing. Therefore, 2��0� /Tc should be
close to 3.52 in accordance with the BCS theory.

Superfluid density �s is determined by condensation of K
pairs within a broad temperature range below Tc down to the
onset of the Cooper channel. Below Tc�, superfluid density
increases considerably. Conversely, off-condensate particle
density decreases. Drude-like behavior of the coherent con-
tribution into optical conductivity �1�����−2, observed be-
low Tc, can be connected with a rather high off-condensate
density �experimental data available51 show that the spectral
weight of the off-condensate particles may exceed the spec-
tral weight of the SC condensate below Tc�. At T�Tc�, the
Drude component of the optical conductivity of the bior-
dered superconductor, �1���, should be suppressed due to
shedding of the off-condensate particles into the condensate
of Cooper pairs.

The two-gap excitation spectrum of biordered supercon-
ductor is consistent with tunnel conductance measurements24

and quasilinear temperature dependence of heat capacity,
cV=��T�T.52 We believe that low-temperature break-junction
tunneling observation24 of a small SC energy gap within the
main SC gap provides an indirect evidence in favor of the
third energy scale besides the first one, observable below Tc
in the superconducting state, and the second one, below T* in
the pseudogap state. Scanning tunneling spectroscopy data,26

evidencing the first and second scales, show that these scales
are almost identical to each other, in full agreement with our
conclusion relating to the nature and energy scales of the SC
coherent and pseudogap quasistationary states of K pairs.

All of the investigated homologous cuprate series demon-
strate universal dependence of Tc on the number of CuO2
layers in the unitary cell, Tc�n�, with maximum at n=3.53

Strong initial increase in Tc�n� cannot be associated with
local real-space pairing interaction. Weak interlayer tunnel-
ing can explain this feature qualitatively by a rather small
effective enhancement of the coupling constant.54 Coulomb
pairing with finite screening length ensures strong correlation
between electrons in the nearest-neighbor layers and results
in a quantitative explanation of Tc�n�, leading to an almost
triple increase of the coupling constant.55

*

*
str

N

c

*
*opt

QSS QSS+BS BST

T

T

T

T

AF

wPG

s PG

SC

x x x x

FL

FIG. 4. Schematic phase diagram of underdoped cuprates. Here,
TN and Tc are phase transition temperatures corresponding to Néel
AF and unconventional SC orders, respectively; Tstr

* is strong
pseudogap �sPG� crossover temperature and T* bounds the region
of weak pseudogap �wPG� state. High doping and high temperature
state corresponds to normal Fermi liquid �FL�. On top, there are
doping ranges in which there is a rise of QSS, QSS together with
BS, and BS.
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Doping dependent isotope effect, observed in cuprate
superconductors,56 is highly sensitive to sample quality and
reflects the contribution of phonon-mediated component to
the SC pairing interaction. Depending on the interrelation
between Coulomb and phonon-mediated contributions,57 the
exponent of the isotope effect on Tc can be close to both
zero, in the case of dominating repulsion, and BCS limit in
the opposite case of dominating phonon-mediated attraction.
Relative isotope shift, negligible above optimum doping, in-
creases with underdoping. We believe that this can be con-
sidered as an indirect evidence in behalf of the fact that, in
the case of low doping, Coulomb correlation effects domi-
nate phonon-mediated contribution to the K channel, which
determines Tc in biordered superconductor.

The isotope effect on the London penetration depth 
L,
absent within the BCS theory, also turns out to be enhanced

with underdoping.58 The penetration length is weakly sensi-
tive to isotope substitution in a wide temperature range well
below Tc. Then, starting from T
Tc�, the isotope shift on 
L
increases gradually at T→0. As 
L

−2��s, such a behavior of
isotope effect on 
L can be associated with temperature and
doping dependence of superfluid density inherent in the bior-
dered SC state.
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