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We study the ground state and the magnetization process of a spin-1 /2 J1-J2 model with a plaquette structure
by using various methods. For small interplaquette interaction, this model is expected to have a spin gap and
we computed the first and the second excitation energies. If the gap of the lowest excitation closes, the
corresponding particle condenses to form magnetic orders. By analyzing the quintet gap and magnetic inter-
actions among the quintet excitations, we find a spin-nematic phase around J1 /J2�−2 due to the strong
frustration and the quantum effect. When high magnetic moment is applied, not the spin-1 excitations but the
spin-2 ones soften and dictate the magnetization process. We apply a mean-field approximation to the effective
Hamiltonian to find three different types of phases �a conventional BEC phase, “striped” supersolid phases, and
a 1 /2 plateau�. Unlike the BEC in spin-dimer systems, this BEC phase is not accompanied by transverse
magnetization. Possible connection to the recently discovered spin-gap compound �CuCl�LaNb2O7 is
discussed.
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I. INTRODUCTION

Magnetic frustration has provided us with many intrigu-
ing topics, e.g., the phenomena of order by disorder, the re-
sidual entropy at absolute zero temperature, disordered spin
liquids, etc.1 There are a variety of models which are known
to exhibit the so-called frustration effects. Among them, the
S=1 /2 J1-J2 model on a square lattice has been extensively
investigated over the past two decades as one of the simplest
models for studying how frustration destroys magnetic or-
ders and stabilizes paramagnetic phases. The model is de-
fined by adding antiferromagnetic interactions on diagonal
bonds to the ordinary Heisenberg antiferromagnet on a
square lattice �see Fig. 1�:

H = J1�
n.n.

Si · S j + J2 �
n.n.n.

Si · S j , �1�

where the summations n.n. and n.n.n. are taken for the
nearest-neighbor and the second-nearest-neighbor �diagonal�
pairs, respectively. In the classical �S↗�� limit, the ground
state is readily obtained by computing Fourier transform J�k�
of the exchange interactions and minimizing it in the k
space:

�1� J1�0, J2�J1 /2. The ground state has Néel antiferro-
magnetic �NAF� order.

�2� J2� �J1� /2. The ground state consists of two interpen-
etrating Néel-ordered square lattices. First quantum correc-
tion fixes the relative angle between the two ordering direc-
tions and selects the so-called collinear antiferromagnetic
�CAF� order.

�3� Otherwise. The ferromagnetic �FM� ground state is
stabilized.

For J2�0, the next-nearest-neighbor �diagonal� interac-
tion gives rise to no frustration and only the case with J2
�0 is nontrivial. The case J1 ,J2�0 has been extensively
studied in the context of spin-gap phases stabilized by the
frustrating interactions. Chandra and Doucot2 investigated
the model in the large-S limit and concluded that a nonmag-

netic �neither NAF nor CAF� phase appeared around the
classical phase boundary J2 /J1=1 /2. The most quantum case
S=1 /2 was studied later both by numerical3,4 and by analyti-
cal methods5,6 �for other literatures, see, for instance, Refs. 7
and 8 and references cited therein�. By now, it is fairly well
established that we have spin-gapped phase�s� in the window
0.4�J2 /J1�0.6 although the nature of the spin-gap phase�s�
is still in controversy.

The case with J1�0, J2�0 has been less investigated,
and recent analyses9,10 suggested that there is another non-
magnetic �probably spin-nematic� phase around the classical
boundary J2 /J1=−1 /2 between CAF and FM. From an ex-
perimental viewpoint, most compounds11,12 found so far cor-
respond to the ordered phase �CAF� of the J1-J2 model.

Recently, Kageyama et al. reported13 a new two-
dimensional Cu-based compound �CuCl�LaNb2O7. In this
compound, two-dimensional sheets consisting of Cu2+ and
Cl− are separated from each other by nonmagnetic
�LaNb2O7� layers and within each sheet, the Cu2+ ions form
a square lattice. The Cl− ions are located at the center of
plaquettes and from a naive Goodenough-Kanamori argu-

J1
J2

λJ1
λJ2

FIG. 1. Two-dimensional square lattice with a plaquette struc-
ture to be considered in this paper. Filled circles denote spin-1 /2s
connected by the usual exchange interactions. Thin lines �both solid
and broken� imply that the interactions are multiplied by the distor-
tion parameter � on these bonds.

PHYSICAL REVIEW B 76, 214428 �2007�

1098-0121/2007/76�21�/214428�17� ©2007 The American Physical Society214428-1

http://dx.doi.org/10.1103/PhysRevB.76.214428


ment, the S=1 /2 J1-J2 model with J1�0 and J2�0 is sug-
gested as the model Hamiltonian for �CuCl�LaNb2O7.

What is remarkable with this compound is that inelastic
neutron scattering experiments13 observed a finite spin gap of
2.3 meV �=26.7 K� above the spin-singlet ground state. Sub-
sequently, high-field magnetization measurements14 were
carried out to show that magnetization monotonically in-
creased between two critical fields Hc1=10.3 T and Hc2
=30.1 T. The data for �i� the Weiss temperature and �ii� the
saturation field Hc2, in principle, determine the coupling con-
stants J1 and J2. Unfortunately, none of the solutions �J1 ,J2�
obtained in this way reproduced the spin-gap behavior.14

Therefore, the usual J1-J2 model does not seem to work.
The second intriguing point concerns the magnetization

process. From the standard scenario,15 the onset of magneti-
zation at H=Hc1 in spin-gapped systems is understood as
Bose-Einstein condensation �BEC, or superfluid onset more
precisely� of the lowest-lying triplet excitation �magnon�,
and the lower critical field Hc1 at T=0 is given by the spin
gap � as Hc1=� / �g	B�. This BEC scenario has been con-
firmed in various spin-gap compounds.16–18

Recent specific-heat and magnetization measurements19

for �CuCl�LaNb2O7 exhibited behavior typical of spin-BEC
transitions and suggested that the magnetization-onset tran-
sition at Hc1 may be described by BEC of a certain kind of
magnetic excitations. However, we immediately find a seri-
ous difficulty when we try to understand this within the stan-
dard BEC scenario; the lower critical field Hc1=18.4 T ex-
pected from the observed spin gap �=2.3 meV at the zero
field �where the experimental value g=2.17 is used� in the
standard scenario is much larger than the observed value14

Hc1=10.3 T. One possible explanation for this discrepancy
may be that a lower-lying triplet excitation which is respon-
sible for the BEC was not observed in the neutron scattering
experiments because of selection rules. However, this seems
unlikely since powder samples were used and, usually, one
can hardly expect a perfect extinction of a certain triplet
excitation in such powder samples. Neither susceptibility
measurements13 nor NMR data20 indicate such a hidden trip-
let excitation.

An alternative and a more appealing scenario would be
that the BEC occurs not in a single-particle channel but in a
multiparticle channel. That is, what condenses to support a
spin superfluid is a bound state of magnon excitations. The
possibility of multimagnon condensation has been proposed
theoretically21,22 in the context of a kinetic quintet bound
state in the Shastry-Sutherland model �see Ref. 23 and refer-
ences cited therein�. In fact, gapped quintet excitations which
come down as the external field is increased were observed
in the ESR experiments24 carried out for SrCu2�BO3�2,
whereas small Dzyaloshinskii-Moriya interactions hindered a
quintet BEC from being observed in that compound �see also
Ref. 25�.

One of the simplest J1-J2-like models which realize the
above scenario and have a finite spin gap would be the S
=1 /2 J1-J2 model with a plaquette structure �see Fig. 1�. A
similar model �J1 ,J2�0� has been investigated to develop a
plaquette series expansion.5 In this paper, we mainly focus
on the region J1�0, J2�0, where the quintet excitation is

expected to play an important role in low-energy physics.
The organization of the present paper is as follows. In

Sec. II, we briefly recapitulate the problem of a single
plaquette mainly to establish the notations. The coupling
among plaquettes will be taken into account in Sec. III by
two different methods: �i� a plaquette extension of the bond-
operator mean-field theory26 and �ii� a perturbation expan-
sion with respect to the interplaquette couplings. We find
gapped triplets and quintet for small enough interplaquette
couplings in both methods.

For larger values of interplaquette couplings, one of the
gapped excitations softens and the form of the effective in-
teractions among the soft excitations determines the resulting
magnetic phases. By using the gaps obtained in the pertur-
bation expansion, we determine the semiquantitative phase
diagram in Sec. IV �see Figs. 10 and 12�.

The effect of high magnetic field will be considered in
Sec. V. For high enough field compared with the spin gaps,
we can approximate the low-energy sector by using only the
singlet and the lowest excited state. For J1�0, we may ex-
pect that the quintet touches the singlet ground state first and
a multiparticle BEC occurs. On general grounds, a single-
particle �magnon� BEC phase is expected to have finite trans-
verse magnetization. Actually, in the BEC phase of TlCuCl3,
the transverse magnetization has been observed in the
experiment.16 In the case of a multiparticle BEC, however,
the transverse magnetization does not appear. To investigate
the magnetization process, we shall keep only the singlet and
the quintet to derive a hardcore boson model as the effective
Hamiltonian valid in high enough magnetic field. A mean-
field approximation32 will be applied to the resulting effec-
tive Hamiltonian to draw a full magnetization curve. Inter-
esting phases �a 1 /2 plateau and supersolids� will be
discussed. According to the value of the parameters, we shall
roughly classify the magnetization curve in Fig. 15.

A summary of the main results and the discussion on the
connection to the spin-gap compound �CuCl�LaNb2O7 will
be given in Secs. VI and VII, respectively. The equations
omitted in the text will be summarized in the appendixes.

II. PLAQUETTE STRUCTURE

We consider a spin-1 /2 J1-J2 model with a plaquette
structure where the interactions among spin-1 /2s are explic-
itly tetramerized �see Fig. 1�. The model is made up of four-
spin units �plaquettes� and the four sites constituting a single
plaquette are connected by the nearest-neighbor �J1� and the
second-nearest-neighbor �J2� interactions, as is shown in Fig.
2. The interplaquette interactions �both the nearest neighbor
and the diagonal� which connect those units are multiplied
by a distortion constant � �0
�
1�. This parameter may be
thought of as modeling the distortion of the underlying lat-
tice in a simple way. In the case of �=1, this model reduces
to the homogeneous J1-J2 model, while when �=0, the
plaquettes are decoupled from each other.

A. Single plaquette

Let us begin by analyzing a single isolated plaquette,
which corresponds to the case �=0. The eigenstates of a
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single plaquette can be easily obtained as follows. First we
note that a plaquette Hamiltonian can be rewritten as

H = J1�S1 · S2 + S2 · S3 + S3 · S4 + S4 · S1�

+ J2�S1 · S3 + S2 · S4�

=
J1

2
S2 +

1

2
�J2 − J1��Sa

2 + Sb
2� −

3

2
J2, �2�

where Sa=S1+S3, Sb=S2+S4, and S=Sa+Sb. Therefore, all
the 24 eigenstates are classified by the three quantum num-
bers as �Sa ,Sb ;S�. The eigenvalues E�Sa ,Sb ,S� are given by

E�0,0,0� = 0, �3a�

E�1,1,0� = 2J2 − 2J1, �3b�

E�1,0,1� = E�0,1,1� = J2, �3c�

E�1,1,1� = − J1 + 2J2, �3d�

E�1,1,2� = J1 + 2J2. �3e�

Here the constant − 3
2J2 has been dropped just for simplicity.

The energy of these states is shown in Fig. 3. For −1
�J1 /J2�0, the spin-singlet state �0, 0; 0� is the ground state,
the triplets �1, 0; 1�, �0, 1; 1� are the first excited states, and
the quintet �1, 1; 2� is the second excited state. For −2
�J1 /J2�−1, the singlet �0, 0; 0� is the ground state, the
quintet �1, 1; 2� is the first excited state, and triplets �1, 0; 1�,
�0, 1; 1� are the second excited state.

The singlet �0, 0; 0� is written as

�s� 	 �0,0;0� = 1
2 ��↑↓� − �↓↑����↑↓� − �↓↑�� . �4�

In what follows, the single-spin states in ket will be shown in
the order of 1, 3, 2, 4, i.e., �s1 ,s3 ,s2 ,s4� in Fig. 2. For later
convenience, we name the two triplets �1,0;1� and �0,1;1� as
�pi� and �qi� �i=x ,y ,z�, respectively. The explicit expressions
of the two triplets are given as

�px� = −
1

2
��↑↑� − �↓↓����↑↓� − �↓↑�� , �5a�

�py� =
i

2
��↑↑� + �↓↓����↑↓� − �↓↑�� , �5b�

�pz� =
1

2
��↑↓� + �↓↑����↑↓� − �↓↑�� , �5c�

�qx� = −
1

2
��↑↓� − �↓↑����↑↑� − �↓↓�� , �6a�

�qy� =
i

2
��↑↓� − �↓↑����↑↑� + �↓↓�� , �6b�

�qz� =
1

2
��↑↓� − �↓↑����↑↓� + �↓↑�� . �6c�

To label the quintet �1,1;2� states, we use the eigenvalues
of Sz, i.e., �1,1 ;S=2,Sz�, whose expressions are given ex-
plicitly as

�1,1;2,2� = �↑↑↑↑� , �7a�

�1,1;2,1� = 1
2 
�↑↑���↑↓� + �↓↑�� + ��↑↓� + �↓↑���↑↑�� ,

�7b�

�1,1;2,0� = 1
�6


��↑↓� + �↓↑����↑↓� + �↓↑�� + �↑↑↓↓� + �↓↓↑↑�� ,

�7c�

�1,1;2,− 1� = 1
2 
�↓↓���↑↓� + �↓↑�� + ��↑↓� + �↓↑���↓↓�� ,

�7d�

�1,1;2,− 2� = �↓↓↓↓� . �7e�

III. EFFECT OF INTERPLAQUETTE INTERACTION

For �=0 and J1 /J2�−2, all plaquettes are in the singlet
state �0,0;0�. Finite interplaquette interactions � induce vari-
ous tunneling processes among plaquettes to change both the
ground state and the excitations over it. For finite �, we
calculate the excitation energy by two different approaches.
One is the bond-operator mean-field theory �MFT�,26,33

which gives the excitation energy of the triplets �pi�, �qi�.
Another is the second-order perturbation theory in �, and it
gives the energy of the quintet �1,1;2� as well as that of �pi�
and �qi�. For sufficiently small �, both approximations yield

J1
J2

1 2

34

FIG. 2. Single plaquette. Dots represent spin 1 /2s, and the solid
and the dashed lines respectively represent Heisenberg interaction
with the couplings J1 and J2 between S=1 /2 spins.
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FIG. 3. �Color online� The energy of the triplets �1,0;1�, �0,1;1�
and the quintet �1,1;2�. We take the units of energy as J2, and the
energy is plotted as a function of J1 /J2.
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finite energy gaps for these excitations and when one of these
gaps closes, the corresponding �bosonic� excitation con-
denses to form a magnetically ordered state. The energy of
triplet excitations can be observed by inelastic neutron scat-
tering experiments. Both approximations may not be reliable
for large � and small �J1 /J2�.

A. Bond-operator mean-field theory

Let us begin with the bond-operator MFT.26,33 For −2
�J1 /J2�0 and �=0, �0,0 ;0� is the ground state and the
degenerate triplets �1,0;1�, �0,1;1� are the first or the second
excited state �see Fig. 3�. Therefore, we may truncate the
Hilbert space and consider a subspace spanned by the singlet
�0,0;0� and the triplets �pi�, �qi�. This approximation is reli-
able for estimating the excitation energy of the triplets, un-
less �1,1;2� condenses. In this subspace, nonzero matrix ele-
ments of S1,2,3,4 are


s�S1
��p�� =

1

2

��, 
p��S1

��p�� =
i

2
����, �8a�


s�S2
��q�� =

1

2

��, 
q��S2

��q�� =
i

2
����, �8b�


s�S3
��p�� = −

1

2

��, 
p��S3

��p�� =
i

2
����, �8c�


s�S4
��q�� = −

1

2

��, 
q��S4

��q�� =
i

2
����, �8d�

where � ,�=x ,y ,z. Using boson operators s , p� ,q���
=x ,y ,z� satisfying the standard commutation relations,
�s ,s†�=1, �p� , p�

†�=
��, �q� ,q�
†�=
��, �s , p��=0, etc., the lo-

cal spin operator S1,2,3,4 can be written as

S1
� =

1

2
�s†p� + sp�

†� −
i

2
����p�

† p�, �9a�

S3
� = −

1

2
�s†p� + sp�

†� −
i

2
����p�

† p�, �9b�

S2
� =

1

2
�s†q� + sq�

†� −
i

2
����q�

†q�, �9c�

S4
� = −

1

2
�s†q� + sq�

†� −
i

2
����q�

†q�, �9d�

where the summation over repeated indices is implied. Since
the restriction that each plaquette has exactly one particle
leads to the local constraint s†s+���p�

† p�+q�
†q��=1, we in-

troduce the Lagrange multiplier 	i and add a term

	i�si
†si + �

�

�p�,i
† p�,i + q�,i

† q�,i� − 1� �10�

to each plaquette Hamiltonian. We may assume that 	i for
each plaquette takes the same value 	 for all plaquettes be-
cause of the translation invariance.

Next, we replace s by its expectation value 
s�= s̄, since
the s boson condenses in the ground state. Moreover, since
the triplet is dilute when the energy gap is positive, we may
ignore the terms consisting of three or four triplet operators.
In this way, we obtain the mean-field Hamiltonian Hbo con-
sisting only of bilinear terms in p and q. The mean-field
parameters �	 , s̄� are determined by requiring the expecta-
tion values of the derivatives of Hbo with respect to the
mean-field �MF� ground state to vanish:

� �Hbo

�	
�

MF
= 0, � �Hbo

�s̄
�

MF

= 0 �11�

or, equivalently, by finding the extrema of the mean-field
ground-state energy EGS

MF:

�EGS
MF

�	
= 0,

�EGS
MF

�s̄
= 0. �12�

In particular, EGS
MF must be minimum for s̄.

In this approximation, the interplaquette interactions asso-
ciated with the site n reads

�Hx̂�n = J1�S2 · Sa + S3 · Sb� + J2�S3 · Sa + S2 · Sb�

=
J1

4
s̄2
�q� + q�

†�n�p� + p�
†�n+x̂ + �p� + p�

†�n�q� + q�
†�n+x̂�

−
J2

4
s̄2
�p� + p�

†�n�p� + p�
†�n+x̂

+ �q� + q�
†�n�q� + q�

†�n+x̂� , �13a�

�Hŷ�n = J1�S3 · Sd + S4 · Sc� + J2�S3 · Sc + S4 · Sd�

= −
J1

4
s̄2
�q� + q�

†�n�p� + p�
†�n+ŷ

+ �p� + p�
†�n�q� + q�

†�n+ŷ�

−
J2

4
s̄2
�p� + p�

†�n�p� + p�
†�n+ŷ

+ �q� + q�
†�n�q� + q�

†�n+ŷ� , �13b�

�Hx̂+ŷ�n = J2S3 · Sg = −
J2

4
s̄2�p� + p�

†�n�p� + p�
†�n+x̂+ŷ ,

�13c�

�Hx̂−ŷ�n = J2S2 · S f = −
J2

4
s̄2�q� + q�

†�n�q� + q�
†�n+x̂−ŷ ,

�13d�

where the site labels 1,…,4 and a , . . . ,g are defined in Fig. 4.
Summing up all four interactions and doing Fourier trans-

formation, the total Hamiltonian Hbo reads
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Hbo = �
k
�J2�pk

†�pk
� + qk

†�qk
��

−
J2

4
s̄2f+�k��pk

†�pk
� + pk

�pk
†� + pk

�p−k
� + pk

†�p−k
†��

−
J2

4
s̄2f−�k��qk

†�qk
� + qk

�qk
†� + qk

�q−k
� + qk

†�q−k
†��

+
J1

2
s̄2�cos kx − cos ky��pk

†�qk
� + pk

�q−k
� + H.c.�

− 	�s̄2 + pk
†�pk

� + qk
†�qk

� − 1�� , �14�

where we have defined

f±�k� 	 cos kx + cos ky + cos�kx ± ky� . �15�

If we introduce a vector vk= �pk ,qk , p−k
† ,q−k

† �T, the MF
Hamiltonian Hbo can be written compactly as

Hbo = �
k

vk
†�A�k�vk

� − Np
3�J2 − 	� + 	�s̄2 − 1�� , �16�

where Np denotes the total number of plaquettes and the
kernel A�k� is given as

A�k� =�
abo�k� bbo�k� cbo�k� dbo�k�
bbo�k� ebo�k� bbo�k� dbo�k�
cbo�k� bbo�k� abo�k� bbo�k�
bbo�k� dbo�k� bbo�k� ebo�k�

� , �17�

abo�k� =
J2

2
−

J2

4
s̄2f+�k� −

	

2
, �18a�

bbo�k� = −
J1

4
s̄2�cos kx − cos ky� , �18b�

cbo�k� = −
J2

4
f+�k� , �18c�

dbo�k� = −
J2

4
f−�k� , �18d�

ebo�k� =
J2

2
−

J2

4
s̄2f−�k� −

	

2
. �18e�

Using a 4�4 real matrix Lk �see Appendix A for the details�,
we can diagonalize A�k� by the Bogoliubov transformation:

Lkvk = vk� ,

vk� = �pk�,qk�,p−k
†� ,q−k

†��T. �19�

As is shown in Appendix A, Hbo then reduces to

Hbo = �
k


�1�k�pk�
†�pk�

� + �2�k�qk�
†�qk�

�� + EGS
MF, �20�

where the mean-field ground-state energy is given as

EGS
MF = �

k
�3

2
„�1�k� + �2�k�… − 3�J2 − 	� − 	�s̄2 − 1�� ,

�21a�

„�1�k�,�2�k�… = „��+,−��k�,��+,+��k�… , �21b�

��±,±� = ±
1

2
�a2 − c2 − d2 + e2 ± 
�− a2 + c2 + d2 − e2�2

+ 4�a − d��c − e��− 4b2 + ac + cd + ae + de��1/2�1/2.

�21c�

In Eq. �21c�, the order of signs � coincides on both sides.
Since �1,2�0, condensation of the triplets p and q occurs
when the equality holds at some k. Otherwise, there is no
condensation, and 
pk�

��= 
qk�
��=0. Therefore, rotational

symmetry exist and there is no magnetic order. In this case,
�1,2 are the excitation energy of triplets.

We looked for the solutions �	 , s̄� to the set of equations
in Eq. �12� numerically. For example, we found �	 , s̄�=
�−0.09,0.96� for the set of parameters �=0.3, J1 /J2=−0.8.
The dispersion relation of the excitation energy �1�k�
=��+,−��k� is shown in Fig. 5.

If the excitation becomes soft, �=0, at some k, the sys-
tem is in a magnetically ordered phase. From the known
results,9,10 we expect that ordered phase appears for � suffi-
ciently close to 1. To determine the phase boundary between
the paramagnetic phase and magnetically ordered ones, we
searched the �� ,J1 /J2� plane for the points where the mean-
field gap vanishes. Unfortunately, we found that the gap did
not close in the relevant parameter region 0���1,−2
�J1 /J2�0, and that the disordered singlet phase persisted;
the gap vanished only for larger � ��1�. This unacceptable
result may be attributed to the fact that the bond-operator
mean-field theory probably overestimates the stability of the
plaquette phase.

J1

λJ1

λJ2

f (4)

b(4)

a(1)

g(1)d(2)c(1)

1 2

4 3

FIG. 4. Interplaquette interactions associated with the plaquette
n �shown by a thick line�.
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B. Second-order perturbation

In this section, we compute the energy gap of triplets
�1,0;1�, �0,1;1� and the quintet �1,1;2� by the second-order
perturbation theory in the distortion parameter �. The naive
expansion in � is ill behaved in the vicinity of the point
J1 /J2=−2 and we have to use another perturbation scheme
for that region.

1. Excitation energies of triplets

Let us consider the states where only one triplet exists and
all the other plaquettes are in the singlet �0,0;0� state. If the
coupling constant of interplaquette interaction �=0, these
states are Np-fold degenerate, where Np is the number of
plaquettes. For finite �, the second-order perturbation in-
duces hopping of the triplet to the nearest or next nearest
neighbors and lifts the degeneracy.

Rotational symmetry forbids the hopping which changes
the spin label i �=x ,y ,z� or the magnetic quantum number.
On the other hand, the transitions between two different trip-
lets pi and qi of the same label i occur. For example, the
hopping amplitude of pi�qi� to the nearest-neighbor plaquette
is given by

−
�

4
J2 −

�2

8
J2. �22�

The degeneracy is partially resolved by the hopping of pi�qi�.
The transition between pi and qi will be considered later. In
the second-order perturbation, the processes that the triplet
returns to the original site is also allowed. Including this
effect, the energy change of pi�k� particle is given by a�k� in
Eq. �D1�. Similarly, that of qi�k� is given by b�k� in Eq.
�D2�.

Next, we consider the transition between pi�k� and qi�k�.
The transition amplitude is given by

c�k� 	 � J1

2
� +

J1
2

4J2
�2��cos kx − cos ky� . �23�

Therefore, for each i= �x ,y ,z�, eigenstates t+ , t− satisfiy

�a�k� c�k�
c�k� b�k�

��t±
�1�

t±
�2� � = E�k��t±

�1�

t±
�2� � . �24�

The expressions of a�k� ,b�k� ,c�k� are given in Appendix D.
After this procedure, the degeneracy with respect both to the
position and to the species pi and qi is resolved. An energy
shift in the ground state also exists. Taking all these into
account, we obtain the energy of the triplets:

Et
±�k� = 1

2 �a�k� + b�k� ± �
„a�k� − b�k�…2 + 4c�k�2� − �Es,

�25�

where �Es denotes the energy shift of the bare ground state
where all plaquettes are occupied by the singlet �0,0;0� and is
given by Eq. �D4�. The dispersion relation of the lower
branch Et

− is shown in Fig. 6
The lower branch Et

− takes its minimum at the � point
k=0, and Et

−�k=0� gives spin gap �t. The second-order ex-
pression of �t is given in Eq. �D5�. The expression tells us
that �t has a pole at J1=−2J2 and that the standard perturba-
tion breaks down near the pole. To remedy this, we introduce
another perturbation parameter 
=J1− �−2J2� and carry out a
double expansion in both � and 
. Then, we obtain the en-
ergy gap in a modified method Et,mod

− �0� given in Eq. �D6�.
This improved energy gap is expressed to give a better ap-
proximation around J1=−2J2.

2. Excitation energy of quintet

Next, we consider states containing only one quintet in a
background of the singlet plaquettes. As before, the degen-
eracy with respect to the position of the quintet plaquette is
resolved by hopping. Up to the second order in �, the hop-
ping to nearest neighbor is given by

�2J1
2 + J2

2

8J1
�26�

and the hopping to next nearest neighbor does not occur.
Taking into account the processes that the quintet returns to
the original site and the energy shift of the ground state, the
excitation energy of quintet is given by Eq�k� in Eq. �D7�.
The dispersion relation is shown in Fig. 7.

Since the quintet dispersion Eq�k� takes its minimum at
k=0, the quintet gap is given by

0
0.5

1
1.5

2

kx�Π
0

0.5

1

1.5

2

ky�Π
0.4
0.6
0.8

1
1.2
Ω1

0
0.5

1
1.5kx�Π

FIG. 5. �Color online� The dispersion relation of the excitation
energy of the triplet p� in Eq. �20�, which has the lower energy of
the two triplets, for the parameters �=0.3, J1=−0.8, J2=1.
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FIG. 6. �Color online� The dispersion relation of the excitation
energy Et

−�k� of the triplet at �=0.3, J1=−0.8, J2=1.
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�q 	 Eq�k = 0� = J1 + 2J2 −
�2�6J1

3 − 23J1J2 + 10J2
3�

8J1�2J1 − J2�
.

�27�

We note that there is the pole at J1=0 and the approximation
becomes poor for J1�0.

IV. GROUND-STATE PHASES

If the interplaquette coupling � is increased, one of the
energy gaps of the triplets �Eqs. �D5� and �D6�� and the
quintet �Eq. �D7�� becomes 0 at a certain critical value of �.
When it happens, the corresponding particle condenses and a
phase transition occurs from the gapped spin-singlet phase to
superfluid phases with magnetic long-range order. Therefore,
we can classify the phases according to what kind of par-
ticles condense and what kind of magnetic orders are stabi-
lized by a given set of interactions among them. In Figs. 8
and 9, we plot the value of � at which the smallest energy
gap becomes 0. If we assume that no further condensation
occurs in the other kinds of particles once the triplets or the
quintet condenses, the phase diagram in Fig. 10 is obtained.
When we mapped out the phase diagram in Fig. 10, we used
two different expressions �Eqs. �D6� and �D5�� for the energy
gap of the lowest triplet in the vicinity of J1 /J2=−2 and
away from it �J1 /J2�0�, respectively. We also neglected the

quintet around J1 /J2=0 since the collapse of the quintet gap
there �see Fig. 8� can be attributed to the existence of a pole
and is just an artifact of the perturbative approximation. Note
that the phase boundary between the two regions covered by
Eqs. �D5� and �D6� is only schematic.

Now, let us discuss the nature of the ordered phases ap-
pearing after the condensation. In the region shown as
“CAF” �highlighted in red� in Fig. 10, condensation occurs
to the singlet and the triplets. Then, we may expect

�
s�� � 0, �
p�k = 0���2 � 0, �
q�k = 0���2 � 0, �28�

which, combined with Eq. �9d�, implies


S1� = − 
S3� � 0, �29a�


S2� = − 
S4� � 0, �29b�

provided that ����
p�
†�
p��=0 and ����
q�

†�
q��=0. Note that
all the plaquettes are in the same state, since the energy of
the triplet takes its minimum at the � point k=0 �see Fig. 6�.
When the combination �p+q� of the two bosons condenses,
the relation 
S1�= 
S2� holds and the ground state has the

0
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ky�Π
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1.15
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1.25

Eq�k�

0
0.5

1
1.5kx�Π

FIG. 7. �Color online� The dispersion relation of the excitation
energy Eq�k� of quintet at �=0.3,J1=−0.8,J2=1.
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-2 -1.5 -1 -0.5 0

λ

J1/J2

triplet
quintet

FIG. 8. �Color online� The value of � at which the energy gaps
�t and �q close. The energy gap of the triplets �t is given in Eq.
�D5�, which is not reliable near J1 /J2=−2 because of the pole there,
and that of the quintet �q is in Eq. �27�, which is not reliable near
J1 /J2=0.
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0.2
0.3
0.4
0.5
0.6
0.7
0.8
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quintet

FIG. 9. �Color online� Plot of the value of � when the energy
gaps are equal to 0. We use �t,mod �Eq. �D6�� for the triplets, which
is reliable even in the vicinity of J1 /J2=−2. The curve for the
quintet is the same as in Fig. 8. We only plot the region −2
�J1 /J2�−1.5.

FIG. 10. �Color online� The schematic phase diagram of the
ground state determined by the particle whose excitation gap closes
first. In the green region, the quintet and the singlet condense, in the
red the triplet and the singlet, and in the blue the singlet. In the
region marked by blue, the energy gap exists. The phase shown by
red may be considered as CAF state. The nature of the green phase,
where the quintet condensation occurs, is closely investigated using
an effective Hamiltonian Hqu �Eq. �32��.
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transversely aligned �i.e., �0,��� collinear antiferromagnetic
order. In the case where �p−q� condenses, on the other hand,
we have 
S1�=−
S2� instead and the system is in the collin-
ear antiferromagnetic ground state in the longitudinal
��� ,0�� direction. This is consistent with the known results.9

Now, we move on to a more interesting case. In the green
region in Fig. 10, frustration is strong �J2�−2J1� and non-
trivial order may be expected. In fact, Shannon et al.9,10 ana-
lyzed the uniform ��=1� model by numerical exact diago-
nalizations up to clusters of 36 spins and found a spin-
nematic phase with d-wave �or B1� symmetry for −2.5
�J1 /J2�−1.43�−1.67. In the state with the nematic order,
the expectation value of the rank-1 tensor vanishes, 
Si�=0,
while we have a finite expectation value of the following
traceless rank-2 tensor:

Qij
�� 	

Si
�Sj

� + Si
�Sj

�

2
−

Si · S j

3

��, �30�

where � ,�= �x ,y ,z� and i , j label the lattice sites.
As is shown in Fig. 10, the singlet and the quintet con-

dense in the region of interest. This is analogous to the spinor
Bose-Einstein condensation of spin-2 particles �here, par-
ticles are defined not on the lattice sites but on the
plaquettes�. We consider a single plaquette �see Fig. 2� and,
as before, denote the singlet and the quintet, respectively, by
�s� and �1,1 ;2 ,Sz�. To investigate what kind of magnetic
order is stabilized in the condensate, let us introduce the
following mean-field ansatz for the ground state:

�
�r�,
�r�� = �
r�plaq

�cos �r�s�r

+ sin �r �
Sz=−2

2

�r�Sz��1,1;2,Sz�r� , �31�

where the product is over all plaquettes and the complex
numbers �r�Sz� satisfy �Sz

��r�Sz��2=1. Then, since the rank-1
tensor cannot give rise to transitions between the spin-0
states and the spin-2 ones by the Wigner-Eckart theorem,27

we have 
s �Si
� �s�= 
s �Qij

�� �s�=0, 
s �Si
� �1,1 ;2 ,Sz�=0, and,

consequently, 

�r� , 
�r� �Si � 
�r� , 
�r��=0. If we introduce
the cyclic operator C which translates the state as 1→2
→3→4→1, we obtain C�s�=−�s� ,C �1,1 ;2 ,Sz�
= �1,1 ;2 ,Sz� from Eqs. �4� and �7a�–�7e�. Therefore, the
spin-nematic tensor Qij

�� defined on the bond �i , j� satisfies

s�Q12

���1,1 ;2 ,Sz�= 
s�C†CQ12
��C†C�1,1 ;2 ,Sz�=

−
s�Q23
���1,1 ;2 ,Sz�= 
s�Q34

���1,1 ;2 ,Sz�=−
s�Q41
���1,1 ;2 ,Sz�.

This implies that the spinor condensate �
�r� , 
�r�� of our
quintet boson has the same �d-wave� symmetry as the spin-
nematic state discussed in Ref. 10.

However, this is not the end of the story, since the local
spin operator with S�1 assumes several different states
�e.g., polarized, nematic, etc.� and it is not obvious if


�r� , 
�r��Qij

���
�r� , 
�r���0 or not for our J1-J2 model. To
determine the actual value of 

�r� , 
�r��Qij

���
�r� , 
�r��, we
need the explicit mean-field solution for a given set of
�J1 ,J2 ,��. Since, we are considering the situation where the

gap between the singlet ground state and the quintet excita-
tion is vanishingly small, it would be legitimate to keep only
the singlet �0,0,0� and the quintet for each plaquette to write
down the effective Hamiltonian.

The form of the effective Hamiltonian is determined by
using the second-order perturbation theory and it contains
the kinetic part describing the hopping of the quintet par-
ticles and the magnetic part which concerns the interactions
among them. Since within a mean-field treatment, the spinor
part �r�Sz� is determined by the magnetic interactions, it suf-
fices to consider only the magnetic part of the effective
Hamiltonian:

Hqu = �

i,j�


Jqu1�S̃i
q · S̃ j

q� + Kqu1�S̃i
q · S̃ j

q�2�

+ �

i�,j��


Jqu2�S̃i�
q · S̃ j�

q � + Kqu2�S̃i�
q · S̃ j�

q �2�

+ �

i�,j�,k��

�Lqu1
�S̃i�
q · S̃ j�

q ��S̃i�
q · S̃k�

q �

+ �S̃i�
q · S̃k�

q ��S̃i�
q · S̃ j�

q ��

+ Lqu2
�S̃i�
q

� S̃ j�
q � · �S̃i�

q
� S̃k�

q �

+ �S̃i�
q

� S̃k�
q � · �S̃i�

q
� S̃ j�

q ��� , �32�

where S̃q denotes the S=2 spin operator, and the symbols

i , j� and 
i� , j�� mean the nearest-neighbor and the next-
nearest-neighbor pairs, respectively. For different types of
three-plaquette clusters 
i� , j� ,k��, we assign different three-
body �i.e., three-plaquette� interactions Lqu1,2

�n� �n=1, . . . ,6� in
Eq. �32�. The correspondence between six types of clusters
and the strength of the three-plaquette interaction Lqu1,2

�n� is
shown in Fig. 11. The full expressions of Jqu1,2, Kqu1,2, and
Lqu1,2

�n� are given in Appendix D. Note that our effective
Hamiltonian in its full form contains the kinetic term and
charge interactions as well as magnetic ones, Hqu. In this
sense, our effective model is a generalization of the Bose-
Hubbard Hamiltonian for F=2 cold atoms in optical
lattices29–31 and the determination of the full phase diagram
and the identification of various phases found in systems of

FIG. 11. Clusters involved in the three-points interaction in Eq.
�32�. The plaquette corresponding to i� is always located on the
center of the clusters. We identify all clusters obtained from a given
one by rotation by � /2,� ,3� /2, and reflection.
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cold atoms in our magnetic system would be interesting in its
own right.

We investigate this Hamiltonian by means of a mean-field
theory by assuming an r-independent uniform 
� ,�� for sim-
plicity. Since the parametrization of the spin-2 states is cum-
bersome, we adopt the method used by Bacry28 and Barnett
et al.29 First, we note that arbitrary �normalized� spin-S states
are parametrized by a set of 2S unit vectors except for obvi-
ous gauge redundancy. Using rotational symmetry, we can
further reduce the number of free parameters needed to ex-
press arbitrary spin-2 states to 2�4−3=5 �see Appendix B�.
We numerically minimized the mean-field energy with re-
spect to these five parameters. The result is shown in Fig. 12.

At �=1, the system is in the ferromagnetic state for
J1 /J2�−2.33 and is in the spin-nematic state for −2.33
�J1 /J2 ��−1.91�. This result slightly differs from the nu-
merical results,9,10 −2.5�J1 /J2�−1.43�−1.67. However,
this is not surprising since our results are based on a mean-
field treatment of the magnetic Hamiltonian Hqu obtained by
perturbation expansion in �. Our result may be improved by
taking a larger number of the sublattice since Jqu2�0 and
there are various three-site interactions Lqu1 and Lqu2.

V. MAGNETIZATION PROCESS

Having mapped out the phase diagram in the absence of
external magnetic field, we consider next the magnetization
process of the plaquette model by mapping the original
model onto a hardcore boson model or an equivalent S
=1 /2 pseudospin model. Tachiki and Yamada32 applied this
method to obtain the magnetization curve of the spin-dimer
model, which consists of pairs of S=1 /2 spins. The coupling
to the external magnetic field is incorporated into the Hamil-
tonian by adding the Zeeman term g	Bh ·�iSi. For conve-
nience, we set g	B=1 and assume that h is pointing in the z
direction: h= �0,0 ,h�.

Although the original treatment in Ref. 32 is for a coupled
dimer system, we can readily generalize the method to our
plaquette system as follows. We denote the plaquette states
by �Sa ,Sb ;S ,Sz�, where S ,Sa ,Sb are defined in Eq. �2�. From
Eqs. �3a�–�3e�, the energies of a single plaquette satisfy

E�1,1,2� � 2E�1,0,1�,2E�0,1,1� �33�

for −2�J1 /J2�0. As is shown in Fig. 13, with increasing
the magnetic field, the quintet level �1,1 ;2 ,−2� comes down
to �0,0;0� faster than the lowest triplet levels �1,0 ;1−1� and
�0,1 ;1 ,−1�.

Therefore, in order to describe the low-energy physics in
the presence of strong magnetic field �h�J1 /2+J2�, we may
keep only the two lowest-lying states �0,0;0� and �1,1 ;2 ,
−2� for each plaquette and restrict ourselves to the subspace
spanned by them. In what follows, we regard the singlet
�0,0;0� and the quintet �1,1 ;2 ,−2�, respectively, as the up
and the down state of a pseudo-spin-1 /2. That is,

�0,0;0� = �1

0
�, �1,1;2,− 2� = �0

1
� . �34�

Then, the resulting effective Hamiltonian is written in terms
of the Pauli matrices �S=1 /2 spins� defined on each strongly
coupled plaquette.

Note that the approximation to treat only the subspace
spanned by �0,0;0� and �1,1 ;2 ,−2� probably breaks down for
h�0 where all the components �Sz=−2, . . . ,2� of the quintet
come into play. Also, the validity of the approximation may
be questionable for sufficiently large � where the singlet-
triplet gap may be much smaller than the singlet-quintet gap,
since the triplet states �1,0;1� and �0,1;1� are important there
�see Fig. 10�.

If we simply project the original S=1 /2 Hamiltonian to
the restricted subspace as in Eqs. �8a�–�8d�, no spin-flipping
term �or hopping term in terms of hardcore bosons� appears.
This is because the projection is equivalent to the ordinary
first-order perturbation theory and no transition between the
singlet and the quintet occurs in the first-order processes.
Therefore, we need to take into account the second-order
processes to obtain the meaningful effective Hamiltonian.
The amplitude that a quintet state �spin “down”� �1,1 ;2 ,
−2� hops to the adjacent plaquette is given by

FIG. 12. �Color online� The schematic phase diagram obtained
in a similar manner to that in Fig. 10. We zoom up the region
around J1 /J2=−2 in Fig. 10. In the two regions on the left �green
�q+s ,1� and yellow �q+s ,2��, the quintet and the singlet condense
and we determined the resulting magnetic orders by a mean-field
approximation to the magnetic Hamiltonian Hqu. In the green re-
gion, the quintet and the singlet condense, and the spin-nematic
phase appears. In the red �t+s�, on the other hand, conventional
ferromagnetic order is stabilized. The red and the blue �s� region are
the same as Fig. 10.

FIG. 13. �Color online� The energy of eigenstates of a single
plaquette as a function of magnetic field h.
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t 	 �2J1
2 + J2

2

8J1
. �35�

The hopping to the next nearest neighbor does not occur at
this order of approximation. The energy gap between the
state where there exists only one static down spin ��1,1 ;2 ,
−2�� in a background of the “up” spins �singlet �0,0;0�
plaquettes� and the one where all plaquettes are up is given
by −	 in Eq. �D13a�. The interaction between the two adja-
cent up spins ��1,1 ;2 ,−2�� is given by Jeff1 in Eq. �D13b�
and that between the next-nearest-neighbor pair is given by
Jeff2 in Eq. �D13c�. We note that this approximation becomes
poor near the pole of Jeff1,2 and t at J1 /J2=0. On top of them,
we have several “three-site” processes and putting them all
together, we obtain the effective Hamiltonian

Heff = �J1 + 2J2 − 	 − 2h��
i

�i
−�i

+

+ �

i,j�


t��i
+� j

− + �i
−� j

+� + Jeff 1��i
−�i

+��� j
−� j

+��

+ �

i�,j��

Jeff 2��i�
−

�i�
+ ��� j�

−
� j�

+ �

+ �

i�,j�,k��

Leff��i�
+

�i�
− ��� j�

−
� j�

+ ���k�
−

�k�
+ � , �36�

where � denote the Pauli matrices and �+= 1
2 ��x+ i�y�, �−

= 1
2 ��x− i�y�. The symbols 
i , j� and 
i� , j�� mean that the

summation is taken over the nearest-neighbor and the next-
nearest-neighbor plaquettes, respectively. As in Section IV,
there are six types of Leff for different bond configurations

i� , j� ,k�� �see Fig. 11�. We label the different three-plaquette
interactions by Leff

�n��n=1–6� and the corresponding bond
configurations are shown in Fig. 11. The concrete expres-
sions of Jeff and Leff are given in Appendix D. We note that
the transverse components �+ and �− can be translated to the
creation, a, and the annihilation, a†, operators of a hardcore
boson, respectively.

We analyze the Hamiltonian in Eq. �36� within a mean-
field approximation. Since Jeff1,2, which have the first-order
contributions in �, are dominant for small �, we may assume
two different two-sublattice structures: �i� “checkerboard”
and �ii� “stripe,” shown in Fig. 14 in the calculation.

By using the relations

�−�+ = 1
2 �1 − �z� , �37a�

�i
−� j

+ + �i
+� j

− = 1
2 ��i

x� j
x + �i

y� j
y� , �37b�

we can rewrite Eq. �36� in terms of �i �i=x ,y ,z�. Since we
are interested in the ground-state energy at T=0, we can
simply replace the operators in Eq. �36� by their expectation
values on each site, e.g., �
i,j��i

z� j
z→�
i,j�
�z�
�z�� for the

checkerboard case. For convenience, we introduce the fol-
lowing two-component vector:

� 	 �
�x�

�y�

� . �38�

Since there is rotational symmetry in the x-y plane, the
mean-field energy is parametrized by 
�z�, 
�z��, �	���, ��
	���, and the angle � between � and ��. The Hamiltonian in
Eq. �36� reduces to

Eeff = Np��−
�J1 + 2J2 − 	 − 2h�

2
− �� �
�z� + 
�z���

2

+ �1
�z�
�z�� + �2
�
�z�2 + 
�z��2�

2

+ ��1��� cos � + �2
��2 + ��2�

2
�

+ �1
�
�z�
�z��2 + 
�z�2
�z���

2
+ �2

�
�z�3 + 
�z��3�
2

� ,

�39�

where Np denotes the total number of plaquettes and
� ,� ,� ,� are given in Appendix D both for the case of
checkerboard and for the striped case. Correspondingly, the
total magnetization is given simply as

M =
1

2Np
�

i�plaq
�1 − �i

z� . �40�

In both cases, �1,2�0 and Eeff is minimized for �=0. Since
any spin-1 /2 states satisfy the following relation among the
expectation values �see Eq. �C5��:


�z�2 + �2 = 1, �41�

the transverse magnetization � can be expressed in terms of
the longitudinal one 
�z�. Hence, two variational parameters

�z� and 
�z�� in Eeff remain. From the definition in Eq. �34�,
the expectation values 
�z�=1 and 
�z�=−1 respectively cor-
respond to the singlet state and the fully polarized �or satu-
rated� state.

The critical field h=Hc1 which marks the onset of magne-
tization is given by ��Eeff /�
�z��
�z�=1=0 after substituting

�z��= 
�z�, i.e.,

2Hc1 = J1 + 2J2 − 	 + 4t . �42�

The right-hand side is exactly the same as Eq. �27�.
Once spin gap closes at h=Hc1, the quintet particle

�1,1 ;2 ,−2� condenses, i.e., 
�z��1. If 
�z�� ±1, ��0 and
there exists a finite expectation value of 
�−�. In the hardcore

FIG. 14. Two-sublattice structures assumed in the calculation:
�i� striped �left� and �ii� checkerboard �right� cases. Circles �whether
filled or open� denote the strongly coupled plaquettes shown by
thick lines in Fig. 1.
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boson language discussed below �Eq. �36��, �− can be
viewed as the boson annihilation operator a and its finite
expectation value 
a��0 implies that Bose-Einstein conden-
sation of the quintet particle occurs. In particular, if �
�z� �
� �
�z��� and ���� in BEC phase, the state is in the so-called
supersolid phase.34 For convenience, we shall call the BEC
phase satisfying 
�z�= 
�z�� a normal BEC.

It should be noted that even when ��0, the transverse
magnetization 
S±� vanishes, unlike the BEC in the spin-
dimer model.16 In fact, since the creation operator a† of the
quintet particle can be written in terms of the original spin
operators as

a† = 1
2 �QB1

xx − QB1

yy� + iQB1

xy = 1
2 �S1

+S2
+ − S2

+S3
+ + S3

+S4
+ − S4

+S1
+� ,

QB1

ab 	 Q12
ab − Q23

ab + Q34
ab − Q41

ab, �43�

the existence of the condensate 
�+��0 �or ��0� implies
that we have a finite expectation value of the following spin-
nematic operator:


 1
2 �QB1

xx − QB1

yy� ± iQB1

xy� . �44�

The form in Eq. �43� of the quintet creation operator sug-
gests that we should think of the plaquette quintet �1,1;2,2� as
a tightly bound magnon pair �or magnon molecule�.

The critical field Hc2 where the saturation occurs is given
by ��Eeff /�
�z��
�z�=−1=0 after substituting 
�z��= 
�z�, i.e.,

2Hc2 = J1 + 2J2 − 	 − 4t + 4Jeff 1 + 4Jeff 2 − 2Leff
�1� − 8Leff

�3�

− 8Leff
�4� − 2Leff

�6�. �45�

We minimized Eeff numerically and we found that the energy
in the stripe case was always equal to or smaller than that in
the checkerboard case. We show various types of magnetiza-
tion curves obtained in this way in Fig. 16. In Fig. 15, we
also classified the parameter regions �in the �J1 /J2 ,�� plane�
according to the qualitative behavior of the magnetization

curve. There appears �i� the normal BEC phase, �ii� the
striped 1 /2 plateau, and �iii� the striped supersolid phase. At
the 1 /2 plateau, the pseudospins � are ordered in a collinear
manner, 
�z�=1 and 
�z��=−1 �see Fig. 14�.

The magnetization curve in the BEC and the supersolid
phase is convex down because of three-point interaction � in
Eq. �39� which breaks the particle-hole symmetry. The
striped supersolid phase always appears around the 1 /2 pla-
teau and the width of the supersolid phase appearing on the
left of the 1 /2 plateau is broader than that on the right due to
the convex down character. The equivalent Hamiltonian in
Eq. �36� without the three-point interactions has been inves-
tigated by using the mean-field theory35 and Monte Carlo
simulations.35,36 They found that the striped supersolid phase
around the 1 /2 plateau is stable.36 Therefore, our result that
the supersolid phase exists may be correct beyond the mean-
field approximation, since the three-point interaction in Eq.
�36� is weak. There are other models accompanied by the
supersolid phase, e.g., spin-dimer XXZ model,37 spin-1 /2
XXZ model on the triangular lattice,38 etc.

VI. COMPARISON WITH THE EXPERIMENTAL DATA OF
„CuCl…LaNb2O7

In this section, we compare our results with the experi-
mental data obtained for �CuCl�LaNb2O7. Since we have
three parameters J1, J2, and �, three experimental inputs, in
principle, determine the set of coupling constants. Then, we
use those values of coupling constants to compare the mag-
netization curve of our model with the experimental one.14

We use the triplet gap Et
−�k=0�=26.7 K observed in in-

elastic neutron scattering,13 the lower critical field Hc1
=10.3 T �or 15.0 K if g=2.17 is used�, which marks the
onset of magnetization, and the saturation field14 Hc2
=30.1 T �43.7 K� as the experimental input.

The triplet gap has been calculated in Sec. III and is given
by Eq. �D5� or �D6�. In Sec. V, we have obtained the critical
field Hc1 �Eq. �42�� and Hc2 �Eq. �45��. We compare these
results with the experimental ones to determine two ex-
change couplings J1, J2 and the distortion parameter �. The
result is

J1 = − 140 K, J2 = 87 K, � = 0.46, �46�

where we have used Eq. �D6� for the excitation energy of the
triplet. The magnetization curve for the ratio J1 /J2=−1.6 and
the distortion �=0.46 obtained above is shown in Fig. 17
�see Fig. 15�. This curve is similar to that obtained in the
high-field magnetization measurement14 except for the little
convex down character.

However, a remark is in order here. Recent NMR
experiments20 suggest the displacement patterns of Cl−

which yield different magnetic interactions from what have
been assumed here. In particular, the system does not have
any explicitly tetramerized structure �see Fig. 1�, although
�CuCl�LaNb2O7 has period 2 both in the a and the b direc-
tion. Therefore, our results should not be taken literally. In-
stead, our plaquette model should be thought of as one of the
simplest Hamiltonians realizing the BEC of magnon bound

FIG. 15. �Color online� Schematic classification of the magne-
tization curve. �i� In the green region, the curve is smooth and the
system is always in the normal BEC phase. �ii� In the red region,
the magnetization curve has a 1 /2 plateau. Except at the plateau,
the system is in the normal BEC phase. �iii� The region where we
have additional supersolid phases around the 1 /2 plateau is high-
lighted in blue. �iv� In the region colored by yellow, magnetization
jumps to saturation and the magnetization process is steplike. The
concrete expression of curves is shown in Fig. 16. The phase
boundary is only schematic.
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states which is applicable to a much wider class of systems
including our simple J1-J2 model.

VII. CONCLUSION

Motivated by the recent discovery of a new two-
dimensional spin-gap compound �CuCl�LaNb2O7, we have
studied the spin-1 /2 J1-J2 model with a plaquette structure.
For the small interplaquette interactions, i.e., for small �,
there exists a finite spin gap over the spin-singlet ground
state.

We have computed the excitation energy of the triplets
and the quintet in Sec. III in two different methods. If the gap
of the lowest excitation closes, the corresponding particle
condenses and a phase transition occurs from a paramagnetic
phase to magnetically ordered phases. For the case of ferro-
magnetic J1 considered here, we have two possibilities. For
relatively small �J1� /J2, the triplet particles �p and q� con-
dense and, generically, we may expect CAF to appear after
the condensation �see Fig. 10�.

For larger values of �J1� /J2, however, the quintet excita-
tion matters and we may have various phases. In the situation
of relevance, we have either a usual ferromagnetic phase or a
less conventional spin-nematic phase. One of these phases is
selected by magnetic interaction among the quintet particles.
We have derived an effective Hamiltonian governing the
magnetic part by using the second-order perturbation and

mapped out the magnetic phase diagram �see Fig. 12�. A
mean-field calculation predicted a finite window of the spin-
nematic phase �green region in Fig. 12�, in agreement with
recent numerical results10 obtained for �=1. From the prop-
erties of the condensing particle, we found the nematic order
for −2.33�J1 /J2�−1.91 in the homogeneous ��=1� J1-J2

model in Sec. IV. We remark that our effective Hamiltonian
is closely related to that for F=2 cold atoms in optical
lattices.29–31

We have studied the magnetization process in Sec. V. In
the region of interest, magnetization is carried by spin-2 par-
ticles, which should be identified with a tightly bound mag-
non pair �magnon molecule�, and we have constructed an
effective hardcore boson �or pseudo-spin-1 /2� model for
these spin-2 particles. By using a mean-field ansatz, we have
determined the ground state of the above effective Hamil-
tonian as a function of the external field h. We have found
three different phases: �i� the normal BEC phase, �ii� the
striped supersolid phase, and �iii� the striped 1 /2 plateau. In
the normal BEC phase, the transverse magnetization 
S±�
vanishes, unlike the conventional BEC in the spin-dimer
model.16

We have compared the results obtained for our J1-J2
model with the experimental data of �CuCl�LaNb2O7 in Sec.
VI. Although we have found that our model could qualita-
tively explain the magnon gap in the inelastic neutron scat-
tering experiments13 and the magnetization curve,14 the
structure suggested by NMR measurements20 is inconsistent
with our tetramerized J1-J2 model and this agreement should
not be taken literally. Nevertheless, we hope that our “mo-
lecular spin-BEC” scenario based on a simple J1-J2 model
will capture the basic physics which underlies the magnetism
of the compound �CuCl�LaNb2O7.
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APPENDIX A: DIAGONALIZATION OF HAMILTONIAN
BY BOGOLIUBOV TRANSFORMATION

For convenience, we briefly summarize the method of Bo-
goliubov transformation. We want to diagonalize

H = �
k

vk
†A�k�vk, �A1�

where

vk = �pk, qk, p−k
† , q−k

† �T, �A2a�

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

M

h/J2

λ=0.2
λ=0.4
λ=0.5

FIG. 16. �Color online� Magnetization curve for various values
of the distortion parameter �. The frustration parameter is fixed to
J1 /J2=−1.4. The colors of the curves correspond to those used in
Fig. 15 �except for yellow�. The blue curve has supersolid phase
around the 1 /2 plateau and the phase transition between the normal
BEC and the supersolid phase is of second order. All curves in BEC
and supersolid phase are convex down because of the three point
interaction � in Eq. �39�.

5 10 15 20 25 30
h �T�
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M

FIG. 17. Magnetization curve obtained from Eq. �39� by using
the parameter set in Eq. �46�.
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A�k� =�
a�k� b�k� c�k� d�k�
b�k� e�k� b�k� d�k�
c�k� b�k� a�k� b�k�
b�k� d�k� b�k� e�k�

� . �A2b�

Now p ,q are boson operators, and A�k�=A�−k�. We intro-
duce the Bogoliubov transformation

Lkvk = vk�, vk� = �pk�, qk�, p−k�
†, q−k�

†�T, �A3�

where L is a 4�4 real matrix, and

L11
* �k� = L33�− k�, L12

* �k� = L34�− k� ,

L13
* �k� = L31�− k�, L14

* �k� = L32�− k� ,

¯ , �A4�

�p�,p�†� = �L1	v	,L1�v�
†� = L11

2 + L12
2 − L13

2 − L14
2 = 1,

�p�,q�†� = L11L21 + L12L22 − L13L23 − L14L24 = 0,

�p�†,p�� = L31
2 + L32

2 − L33
2 − L34

2 = − 1,

¯ , �A5�

where the summation over repeated indices is implied. By
using

g =�
1 0 0 0

0 1 0 0

0 0 − 1 0

0 0 0 − 1
� �A6�

and

�i = �� = 1 for i = 1,2

� = − 1 for i = 3,4,
� �A7�

the condition in Eq. �A5� can be rewritten as

li · l j = g	�li
	lj

� = �i
ij, L =�
l1
T

l2
T

l3
T

l4
T
� . �A8�

where l is a four-dimensional column vector and the summa-
tion over i is not taken in Eq. �A8�. g	� can be considered as
a metric. The condition in Eq. �A4� can be rewritten as

l�3,4��− k� = �r�1,2�
d* �k�

r�1,2�
u* �k� � , �A9�

where li= �ri
uT ,ri

dT�T and r is a two-dimensional column vec-

tor. We denote A in Eq. �A2b� as A	� and Ã	gA as A�
	

=g	�A��. Then, with regard to eigenvectors satisfying A�
	ua

�

=aua
	, A�

	ub
�=bub

	, we obtain

g	�ua
	ub

� = ua	ub
	 =

1

a
ua	A�

	ub
�,

=
1

b
ua	A�

	ub
�, �A10�

since A	� is symmetric. Therefore, if a�b, ua	ub
	=0, i.e.,

eigenvectors of a different eigenvalue are orthogonal to each
other. We define

L� = �l1� l2� l3� l4��
T, �A11�

where li� �i=1–4� are eigenvectors of A�
	, and

l�1,2��2 = 1, l�3,4��2 = − 1. �A12�

Then, L�gL�T=g. Therefore,

L�TgL�g = I , �A13�

where I is an identity matrix. Now we can write

A = �A1 A2

A2 A1
� , �A14�

where A1,2 are 2�2 matrix, and A�k�=A�−k�. Therefore, we
can take li� �i=1–4� satisfying Eq. �A9�. Defining  i as the
eigenvalue of li� �i=1–4� leads to

 1 = −  3,  2 = −  4 �A15�

From Eq. �A13�, Eq. �A1� reduces to

v†Av = v†g2Av = v�†L�gÃL�Tv�

= v�†L�g� 1l1�  2l2�  3l3�  4l4��v�

= v�†�
 1 0 0 0

0  2 0 0

0 0 −  3 0

0 0 0 −  4

�v�, �A16�

where v�=gL�gv, Ã=gA, and k is omitted. Comparing to Eq.
�A3�, we obtain

L = gL�g . �A17�

This L satisfies Eqs. �A8� and �A9�. The eigenvalues of Ã
�see Eq. �A2b�� are given by

 �±,±� = ± �a2 − c2 − d2 + e2

± 
�− a2 + c2 + d2 − e2�2

+ 4�a − d��c − e��− 4b2 + ac + cd + ae + de��1/2�1/2.

�A18�

We note that  1,2 are the eigenvalues of the eigenvectors
whose norm is positive and  3,4 are the eigenvalues of the
eigenvectors whose norm is negative, and Eq. �A15� is sat-
isfied. Moreover, using the boson’s commutation relation, H
reduces to
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H = �
k


�1�k�pk�
†pk� + �2�k�qk�

†qk�� + EG, �A19a�

EG = �
k


�1�k� + �2�k��
2

, �A19b�

where �1,2=2 1,2.

APPENDIX B: HOW TO PARAMETRIZE GENERAL SPIN-
S STATES

In this section, we briefly summarize the method of pa-
rametrizing arbitrary spin-2 states used in a mean-field cal-
culation of Sec. IV. The method is based on a geometrical
representation of the spin-S states used by Bacry28 and Bar-
nett et al.29 Since our model has rotational symmetry, the
mean-field energy has a trivial degeneracy with respect to the
global rotation of the spin states. To mod out this degeneracy
and find only essentially different solutions, this geometric
method is quite efficient.

First, we introduce the maximally polarized spin-S state

�spin coherent state� ��̂� which is pointing in the direction of

�̂ = �cos � sin �,sin � sin �,cos �� ,

i.e., �S ·�̂���̂�=S��̂�. If we introduce the Schwinger boson
operators â+ �â−� which destroys a spin parallel �antiparallel�
to the z direction, the operator which creates a spin parallel

to the  ̂ direction is given by

v̂† = uâ+
† + vâ−

† , �B1�

where

u = e−i�!/2�e−i��/2� cos
�

2
, v = e−i�!/2�ei��/2� sin

�

2
�B2�

and ! is an arbitrary gauge function. By using v̂†, the coher-

ent state ��̂� can be written simply as

��̂� =
1

��2S�!
�v̂†�2S�0� = v2S�

p=0

2S

�
2SCp�u

v
�p

�S:Sz = p − S� ,

�B3�

where the combinatorial symbol 2SCp is defined by 2SCp
	�2S�! / (�2S− p�!p!).

Next, we introduce a complex number "= �u /v�*

=ei� cot �
2 and the corresponding unnormalized ket �"�:

�"� 	 �
p=0

2S

�
2SCp�"*�p�S:p − S� . �B4�

We note that the vector  ̂ rotates on the unit sphere S2 when

the SU�2� rotation operator D̂ acts on �"�. We denote an
arbitrary spin-S state by �A�=�p=0

2S Ap�S : p−S�. Then, it is con-
venient to introduce the following “wave function” which is
in a one-to-one �except for an unphysical overall phase fac-
tor� correspondence with �A� under the condition ��A�2=1:

Ps�"� 	 
"�A� = �
p=0

2S

�
2SCpAp"p = A2S�

i=1

2S

�" − �i� , �B5�

where �i are the 2S roots of Ps�"�=0 and are parametrized as

�i=ei�i cot
�i

2 . If the degree deg of the above polynomial is
smaller than 2S, �2S−deg� roots of PS�"� are at the infinity
��i=0 or the north pole�. Since the stereographic projection
uniquely maps a set of 2S complex roots 
�i� onto a set of 2S
points on a two-dimensional sphere S2, we can parametrize
arbitrary spin-S states by specifying 2S points on a sphere.

If A2S=0, the limit A2S→0, � j =O�1 /A2S� for any j must
be taken �� j→0�. In the case of spin 2, Ai�=Ai /A2S is given
in terms of four complex numbers 
�i� by

A0� = �1�2�3�4,

A1� = −
�1�2�3 + �1�2�4 + �1�3�4 + �2�3�4

2
,

A2� =
�1�2 + �1�3 + �1�4 + �2�3 + �2�4 + �3�4

�6
,

A3� = −
�1 + �2 + �3 + �4

2
,

A4� = 1, �B6�

and, hence, the coefficients 
Ai� read

Ai =
ei�

� �
i�=0

4

�Ai�
� �2

Ai� �i = 0, . . . ,4� , �B7�

where � is the phase of A4. Therefore, as has been described
above, arbitrary spin-2 states are parametrized by a set of
four unit vectors and an overall phase factor. The rotational
symmetry enables us to further reduce the number of free
parameters by fixing �1 and �2 as

�1 = 1, �2 = ei�2, �3 = ei�3 cot
�3

2
, �4 = ei�4 cot

�4

2
.

�B8�

Equations �B6�–�B8� express arbitrary �except for global ro-
tation� spin-2 states in terms of five free parameters.

APPENDIX C: RELATION AMONG THE EXPECTATION
VALUES OF SPIN-S OPERATORS

There exists a simple relation among the expectation val-
ues of spin-S operators. By spin-S operators, here, we mean
all independent �traceless� polynomials made up of the usual
spin-S operators S. The spin-1 case has been considered by
Chen and Levy39 in the context of spin-nematic order. An
arbitrary spin-S ket is written as
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z =�
z1

z2

]

z2S+1

� , �C1�

where �i
2S+1�zi�2=1. It is convenient to consider the Lie group

SU�2S+1� which naturally acts on the above
�2S+1�-dimensional space. Let us denote the generators
Ta�a=1, . . . , �2S+1�2−1� of SU�2S+1� and normalize them
as

Tr�TaTb� = 1
2
ab. �C2�

Then, they satisfy

�
a

Tij
a Tkl

a =
1

2
�
il
 jk −

1

2S + 1

ij
kl�

��i, j,k,l = 1, . . . ,2S + 1� . �C3�

Using this relation, we obtain

�
a


Ta�2 = �zi
†Tij

a zj��zk
†Tkl

a zl�

=
1

2
�zi

†zjzj
†zi −

1

2S + 1
�zi

†zi��zk
†zk��

=
S

2S + 1
, �C4�

where the summation over repeated indices is implied. In
spin-1 /2 �SU�2�� case, Ta can be written as 1

2�a, where � is
the Pauli matrix. Therefore, this relation can be written as

�
i=x,y,z


�i�2 = 1, �C5�

APPENDIX D: EXPRESSIONS OF OMITTED
EQUATIONS

1. Section III B

The elements of the second-order hopping matrix �Eq.
�24�� are given by

a�k� 	 − �
J2

2
f+�k� − �2J2

4
f+�k� + �2�− 4J1

5 + 3J1
4J2 + 24J1

3J2
2 − 25J1

2J2
3 + 28J1J2

4 − 28J2
5

8J2�J1 − 2J2��J1 − J2��J1 + 2J2�
−

J2

4
� , �D1�

b�k� 	 − �
J2

2
f−�k� − �2J2

4
f−�k� + �2�− 4J1

5 + 3J1
4J2 + 24J1

3J2
2 − 25J1

2J2
3 + 28J1J2

4 − 28J2
5

8J2�J1 − 2J2��J1 − J2��J1 + 2J2�
−

J2

4
� . �D2�

f±�k� 	 cos kx + cos ky + cos�kx ± ky� . �D3�

The second-order energy shift for the singlet ground state is
calculated as �see Eq. �25��

�Es 	 −
3�2�2J1

2 + 3J2
2�

8J2
. �D4�

The excitation gap of triplets from the second-order pertur-
bation is given by

�t 	 Et
−�k = 0� = J2 − �

3

2
J2

+ �22J1
5 − 3J2J1

4 + J2
2J1

3 − 2J2
3J1

2 + 24J2
4J1 − 24J2

5

8J2�J2 − J1��2J2 − J1��J1 + 2J2�
.

�D5�

The modified excitation gap of triplets which is free from the
pole J1=2J2 is given by

�t,mod 	 Et,mod
− �k = 0� = J2 − �

3

2
J2 + �225J1

2 − 65J2
2

144J2
.

�D6�

The excitation energy of quintet from the second-order per-
turbation is given by

Eq�k� = J1 + 2J2 + �2�− 14J1
3 + 4J2J1

2 + 15J2
2J1 − 6J2

3

8J1�2J1 − J2�

+
�J1

2 + J2
2�

4J1
�cos kx + cos ky�� . �D7�

2. Section IV

The parameters of the effective Hamiltonian in Eq. �32�
where the quintet condenses are given by

Jqu1 =
1

8
��J1 + J2�

−
�2�59J1

4 + 78J2J1
3 + 60J2

2J1
2 + 26J2

3J1 + J2
4�

576J1�3J1
2 + 4J2J1 + J2

2�
,

�D8�
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Jqu2 =
�J2

16
−

�2J2
2�133J1

2 + 76J2J1 + 7J2
2�

2304J1�3J1
2 + 4J2J1 + J2

2�
, �D9�

Kqu1 = − �249J1
4 + 174J2J1

3 + 120J2
2J1

2 + 10J2
3J1 − J2

4

2304J1�3J1
2 + 4J2J1 + J2

2�
,

Kqu2 = − �2 11J2
4 + 68J1J2

3 + 137J1
2J2

2

9216J1�3J1
2 + 4J2J1 + J2

2�
, �D10�

Lqu1
�1� =

�2�J1 + J2�
576

, Lqu1
�2� = 0, Lqu1

�3� =
�2J2

1152
,

Lqu1
�4� = −

�2J2

1152
, Lqu1

�5� =
�2J2

2

4608J1
, Lqu1

�6� = −
�2J2

2�J2 − 3J1�
4608J1�J1 + J2�

,

�D11�

Lqu2
�i� = − 2Lqu1

�i� for i = 1, . . . ,6. �D12�

3. Section V

The parameters of the effective Hamiltonian Heff in Eq.
�36� in the magnetization process are given in a series in �
by

− 	 	
�2�− 14J1

3 + 4J2J1
2 + 15J2

2J1 − 6J2
3�

8J1�2J1 − J2�
, �D13a�

Jeff 1 	 �
J1 + J2

2
+ �2 �6J1

4 + 11J2J1
3 + 2J2

2J1
2 − 13J2

3J1 + 4J2
4�

16J1�2J1 − J2�J2
,

�D13b�

Jeff 2 	 �
J2

4
+ �2J2�6J1

2 − 13J2J1 + 4J2
2�

32J1�2J1 − J2�
. �D13c�

On top of them, we have three-body �or three-plaquette� in-
teractions:

Leff
�1� = �2 �J1 + J2�2

4J2
, Leff

�2� = 0, Leff
�3� =

�2

8
�J1 + J2�,

Leff
�4� = −

�2

8
�J1 + J2�, Leff

�5� = 0, Leff
�6� = �2J2

8
.

�D13d�

The parameters necessary for the mean-field energy in Eq.
�39� in the external magnetic field depend on the sublattice
structures assumed in the calculation and are given as fol-
lows.

�1� In the case of checkerboard sublattice:

� = Jeff 1 + Jeff 2 + 1
4Leff

�1� + Leff
�3� + Leff

�4� + 1
4Leff

�6�,

�1 = 1
2 �Jeff 1 − Leff

�1��,

�2 = 1
4 �2Jeff 2 + Leff

�1� − 4Leff
�3� − 4Leff

�4� − Leff
�6�� ,

�1 = t, �2 = 0, �1 = 1
4Leff

�1� + Leff
�3� + Leff

�4�, �2 = 1
4Leff

�6�.

�D14�

�2� In the case of striped sublattice:

� = Jeff 1 + Jeff 2 + 1
4Leff

�1� + Leff
�3� + Leff

�4� + 1
4Leff

�6�,

�1 = 1
4 �Jeff 1 + 2Jeff 2 − Leff

�1� − 4Leff
�3� − 4Leff

�4� − 2Leff
�6��,

�2 = 1
4 �Jeff 1 + Leff

�6�� ,

�1 =
t

2
, �2 =

t

2
, �1 =

1

8
�Leff

�1� + 8Leff
�3� + 8Leff

�4� + 2Leff
�6��,

�2 =
1

8
Leff

�1�. �D15�
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