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We consider the anomalous Hall �AH� effect in thin disordered ferromagnetic films. Using a microscopic
model of electrons in a random potential of identical impurities including spin-orbit coupling, we develop a
general formulation for strong, finite range impurity scattering. Explicit calculations are done within a short
range but strong impurity scattering to obtain AH conductivities for both the skew scattering and side-jump
mechanisms. We also evaluate quantum corrections due to interactions and weak localization effects. We show
that for arbitrary strength of the impurity scattering, the electron-electron interaction correction to the AH
conductivity vanishes exactly due to general symmetry reasons. On the other hand, we find that our explicit
evaluation of the weak localization corrections within the strong, short-range impurity scattering model can
explain the experimentally observed logarithmic temperature dependences in disordered ferromagnetic Fe
films.
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I. INTRODUCTION

It has been recognized since the 1950s �Ref. 1� that a Hall
effect can exist in ferromagnetic metals even in the absence
of an external magnetic field, hence the name anomalous
Hall effect �AHE�. There are several different mechanisms
that might be responsible for the AHE observed in thin fer-
romagnetic films, namely, the skew scattering2 and side-jump
mechanisms3 as well as Berry phase contributions.4 All such
mechanisms depend on the spin-orbit interaction induced by
the impurities and on the spontaneous magnetization in a
ferromagnet which breaks the time reversal invariance and
therefore gives rise to the AHE. For a disordered ferromag-
netic film, AH conductivity due to the skew scattering and
side-jump mechanisms have been theoretically considered
using a variety of methods within weak, short-range impurity
scattering.5–9 However, a systematic calculation, starting
from a microscopic Hamiltonian, of the longitudinal as well
as the AH conductivities for different mechanisms for strong
impurity scattering has been lacking. Recently, the effects of
strong, short-range impurity scattering on the longitudinal
and Hall conductivities were considered for skew scattering
as well as side-jump mechanisms,10 but quantum corrections,
namely, electron-electron �e-e� interaction corrections11 or
weak localization �WL� effects,12 were not included.

Earlier experiments13 have shown logarithmic tempera-
ture dependences of the longitudinal as well as Hall resis-
tances highlighting the importance of such quantum correc-
tions. However, the results were consistent with, and were
interpreted as, vanishing interaction contributions to the AH
conductivity, obtained theoretically within a weak impurity
scattering model9 and the absence of any weak localization
effects. Recent experiments, on the other hand, clearly show
a nonvanishing contribution to the total quantum correction
to the AH conductivity,14 which can arise in principle either

from an interaction correction due to strong impurity scatter-
ing or from a weak localization effect, or from a combination
of both. It has been commonly believed that weak localiza-
tion effects in ferromagnetic films would be cut off by the
presence of large internal magnetic field among others,
which suggests that the interaction corrections to the AH
conductivity need to be revisited for strong impurity scatter-
ing as a source of difference between the two experiments.

In this paper, we systematically develop a general formu-
lation for the AHE for strong, finite range impurity scatter-
ings starting from a microscopic model of electrons in a ran-
dom potential of impurities including spin-orbit coupling.
This generalizes an earlier work6 which considered weak,
short-range impurity scattering only and did not include
quantum corrections. We show on very general symmetry
grounds that quantum correction to the AH conductivity due
to �e-e� interaction effects vanish exactly, which shows that
the previous weak scattering results9 remain valid for arbi-
trary strengths of the impurity scattering. This forces us to
consider the weak localization effects8 as the only remaining
source of the logarithmic temperature dependence in the
above experiments despite the presence of large internal
magnetic fields and spin-orbit scatterings in these ferromag-
netic films. As we show below, the temperature independent
cutoff of the weak localization effects in strongly disordered
systems can be ineffective at higher temperatures if a tem-
perature dependent contribution dominates the phase relax-
ation rate. It turns out that while the contribution from the
e-e interaction to the phase relaxation rate is indeed too small
for WL effects to be observed, a much larger contribution is
obtained from scattering off spin waves,15 which should al-
low the observation of the WL effects within a reasonable
temperature range. We find that the effects of strong impurity
scatterings on the WL effects can be evaluated to obtain a
very simple result, namely, that the ratio of the WL correc-
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tions to the AH to the longitudinal conductivity can be writ-
ten simply in terms of the eigenvalues of the impurity aver-
aged particle-hole scattering amplitude for zero momentum
transfer. This result, taken together with contributions to the
AH conductivity from both the skew scattering and side-
jump mechanisms calculated within the same microscopic
model, can explain both the earlier as well as the recent
experiments on the disorder and temperature dependences of
the AH conductivities of ultrathin Fe films14 mentioned
above. This last result has been reported without details in
combination with the recent experiment in a short letter.14

The paper is organized in the following way. A micro-
scopic model Hamiltonian is introduced in Sec. II and a gen-
eral formulation in two dimensions for strong, finite range
impurity scatterings is developed in Sec. III. Section IV re-
views the results on the conductivity tensor in the absence of
interactions. In Secs. V and VI, we consider the e-e interac-
tion corrections and the weak localization corrections, re-
spectively, to both longitudinal and AH conductivities within
the general strong, finite range impurity scattering formula-
tion. We then consider the special case of a short range, but
still strong, impurity scattering model in Sec. VII. In Sec.
VIII, we collect all the results and compare them with recent
experiments. Section IX summarizes the paper. For the sake
of completeness, we include models of small and large angle
scatterings in the Appendix.

II. HAMILTONIAN

The single particle Hamiltonian of a conduction electron
in a ferromagnetic disordered metal, including spin-orbit in-
teraction induced by the disorder potential Vdis�r�, is given in
its simplest form by �throughout the paper, we use units with
�=kB=1�

H1 = �−
�2

2m
+ Vdis�r������ − M����

z

− i
�c

2

�4��2 ����� · ��Vdis � ��� , �2.1�

where �c= 2�
mc is the Compton wavelength of the electron and

M is the Zeeman energy splitting caused by the ferromag-
netic polarization. Here, H1 is a 2�2 matrix in spin space
with � ,��= ↑ ,↓ being spin indices and � is the vector of
Pauli matrices. The above model is only a crude approxima-
tion of the band structure of Fe, which has been determined
by several authors �see, e.g., Ref. 16�. We model the energy
band crossing the Fermi surface by a single isotropic band.
As will be discussed below, the quantum corrections to the
conductivity exhibit certain qualitative features, which do
not depend sensitively on the details of the band structure.
The disordered potential in Eq. �2.1� will be modeled as
randomly placed identical impurities, Vdis�r�=� jV�r−R j�.
We will later average over the impurity positions R j.

The matrix elements of H1 in the plane wave �or Bloch
state� representation are given by

�k���	H1	k�
 =� d2re−ik�·rH1e−ik·r

= � k2

2m
− M�
�kk����� + �

j

V�k − k��

�ei�k−k��·Rj + Vso�k���;k�� , �2.2�

where V�k−k�� is the Fourier transform of the single impu-
rity potential and the spin-orbit interaction part is given by

Vso�k���;k��

= − i
�c

2

�4��2�
j

V�k − k��e�i�k−k��·Rj����� · �k � k�� .

�2.3�

Here, we have used

− i� d2r exp�− ik� · r���Vdis � ��exp�− ik · r�

= − i� d2r� d2q

�2��2ei�k−k�−q�·r�− iq�V�q� � �ik�

= − iV�k − k���k � k�� . �2.4�

The many-body Hamiltonian is given in terms of electron
creation and annihilation operators ck�

+ ,ck� as

H = �
k�

��k − M��ck�
+ ck� + �

k�,k���
�

j

V�k − k��

�ei�k−k��·Rj����� − iḡso���� · �k̂ � k̂���ck���
+ ck�,

�2.5�

where we have defined a dimensionless spin-orbit coupling

constant ḡso�
�c

2kF
2

�4��2 , k̂�k / 	k	. Note: An estimate of the spin-

orbit coupling constant ḡso, using a typical Fermi wave num-
ber kF, shows that it is rather small, of order 10−4. However,
in transition metal compounds, the coupling is substantially
enhanced by interband mixing effects,3 so that the renorm-
alized coupling constant gso is of order unity: gso
�csoEso /	Ed, where Eso�0.1 eV is a measure for the atom-
ic spin-orbit energy, 	Ed�0.5 eV is a typical energy split-
ting of d bands, and the constant cso�5. In the following, we
will replace ḡso by the phenomenological spin-dependent pa-
rameter g�.

III. IMPURITY SCATTERING: GENERAL FORMULATION

In this section, we will develop a general formulation for
strong, finite range impurity scattering in two dimensions
using standard field theory techniques at finite temperature.17

For simplicity, we will need to make approximations for
short-range impurity scattering later. However, keeping the
formulation general as long as possible will allow us, e.g., to
check if the anisotropic scattering can have a large impact on
our final results.

The repeated scattering of an electron off a single impu-
rity may be described symbolically in terms of the scattering
amplitude fk�,k��� as
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f = V + VGV + VGVGV + ¯ , �3.1�

where G is the single particle Green’s function

Gk��i
n� = �i
n − �k� − �k��
n��−1, �3.2�

with the single particle self-energy �k��i
n�. Here, 
n

=�T�2n+1� is the fermion Matsubara frequency with T be-
ing the temperature and N� is the density of states at the
Fermi level of spin species �. �We use units of temperature
such that Boltzmann’s constant is equal to unity.� V is the
bare interaction with one impurity at R=0 and includes the
spin-orbit scattering

Vk,k�;� = V�k − k���1 − ig����
z �k̂ � k̂��� , �3.3�

where we have used the fact that V is diagonal in spin space.
In the case of finite range, or even long-range correlated
scattering potentials, we may still use the model of indi-
vidual impurities or scattering centers, but now of finite spa-
tial extension. This is reasonable as long as the scattering
centers do not overlap too much. If they overlap, a more
statistical description in terms of correlators of the impurity
potential should be used. Within our model, the nonlocal
character of scattering is described in terms of the momen-
tum dependence of the Fourier transform of the potential of a
single impurity �assuming only one type of impurity� V�k
−k��, which for an isotropic system depends only on the
angle � between k and k�, V=V���=V�−��. In two dimen-

sions, we may expand V in terms of eigenfunctions 
m�k̂�
=eim�, where � is the polar angle of vector k, k̂=k / 	k	. Add-
ing the skew scattering potential, we may write

Vk,k�� = �
m

Vm�
m�k̂�
m
*�k̂�� , �3.4�

where Vm� is a sum of the normal and skew scattering parts

Vm� = Vm
ns + Vm�

ss . �3.5�

Time reversal invariance and rotation symmetry in the case
of potential scattering impliy

V−m
ns = �Vm

ns�* = Vm
ns. �3.6�

Equation �3.3� then yields

Vm�
ss =

1

2
g�� ��

z �Vm−1
ns − Vm+1

ns � . �3.7�

A. Scattering amplitude

For V diagonal in spin space, the scattering amplitude
fk�,k���=��,��fk,k�� obeys the integral equation

f k,k��
s = Vk,k�� + �

k1

Gk1��i
n�Vk,k1�f k1,k��
s

= Vk,k�� − is�N��Vk,k1�fk1,k��
s 
k1

, �3.8�

where s�sign�
n� and �¯
k1
denotes averaging over the

direction of wave vector k1. Defining the dimensionless po-

tential V̄m���N�Vm� and the dimensionless scattering

amplitude f̄ k�,k�����N�fk�,k��� and expanding f̄ k�,k��

=�mf̄m�
m�k̂�
m
*�k̂��, we find

f̄ m�
s =

V̄m�

1 + isV̄m�

. �3.9�

For notational simplicity, we will always use a bar on a
symbol to represent the corresponding dimensionless quan-
tity.

B. Single particle relaxation rate

The single particle relaxation rate �� is given by the
imaginary part of the self-energy,

1

2��

� − s Im �k��i
n� = − snimp Im�f k�,k�
s � =

nimp

�N�

��,

�3.10�

where �� is a dimensionless parameter characterizing the

scattering strength, ���−s�m Im� f̄m��=�m
V̄m�

2

1+V̄m�
2

, and N� is

the density of states at the Fermi energy of spin species �.

Note that V̄m� are all real.

C. Particle-hole propagator

The particle-hole propagator �kk��q ; i�n , i�n− i�m� is an
important ingredient of vertex corrections of any kind. Here,
k+q /2,k−q /2 are the initial momenta, k�+q /2,k�−q /2 the
final momenta, and �n ,�n−�m are the Matsubara frequencies
of the particle and the hole lines, respectively. In terms of the
particle-hole scattering amplitude tk,k��q ; i�n , i�m�, � satisfies
the following Bethe-Salpeter equation �we have defined di-

mensionless quantities �̄ , t̄ by multiplying both with a factor
�2�N�����:

�̄kk��q;i�n,i�m� = t̄kk��q;i�n,i�m� + �2�N����−1

��
k1

t̄kk1
�q;i�n,i�m�

�Gk1+q/2,��i�n�Gk1−q/2,��i�n − i�m�

��̄k1k��q;i�n,i�m� . �3.11�

The �dimensionless� impurity averaged particle-hole scatter-
ing amplitude t̄ �we consider only the case of equal spin of
particle and hole� is given in terms of the �dimensionless�
scattering amplitudes f̄ by the equation

t̄ kk�
ss��q;i�n,i�m� =

2��nimp

�N�

f̄ k+q/2,�;k�+q/2�
s �i�n�

� f̄ k�−q/2,�;k−q/2,�
s� �i�n − i�m� . �3.12�

We will later need the limit of small q ,q�kF, of this expres-
sion,

t̄ kk�
ss��q;i�n,i�m� = t̄ kk�

ss��q = 0� + 	t̄ kk�
ss��q� . �3.13�

It is useful to represent the operator t̄kk��q=0� in terms of its
eigenvalues �m. Assuming isotropic band structure, the
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eigenfunctions 
m�k̂�=exp�im�� are those of the angular mo-
mentum operator component Lz. The eigenvalue equation is

�t̄kk��q = 0�
m�k̂��
k� = �m
m�k̂� . �3.14�

The operator t̄ kk�
+− �q=0� may be represented as

t̄ kk�
+− �q = 0� = �

m

�m
m�k̂�
m
*�k̂�� ,

t̄kk�
−+ �q = 0� = �t̄k�k

+− �q = 0��*. �3.15�

In general, using the definitions

tk,k��
ss� =

nimp

��N��2 f̄ k,k��
s f̄ k�,k�

s� = �2�N����−1t̄ k,k��
ss� ,

t̄ k,k��
ss� = �

m

t̄ m�
ss�
m�k̂�
m

*�k̂�� , �3.16�

we have

t̄ m�
ss� = ��

−1�
m�

f̄ m��
s f̄ m�−m,�

s� . �3.17�

We will consider 	t̄kk��q� for the special case of strong short-
range impurity scatterings in Sec. VII A.

The energy integral over the product of Green’s functions
in the integral equation for �kk� may be done first, after ex-
panding the G’s in �m and q,

� d�1Gk1+q/2,��i�n�Gk1−q/2,��i�n − i�m�

= 2���1 + i��i�m − q · vk1
� − �2�q · vk1

�2� , �3.18�

with �n�0 and �n−�m�0, where q ·vk=qvF�q̂ · k̂�. Expand-

ing �̄kk� and t̄kk� in terms of eigenfunctions 
m�k̂�, �̄kk�
=�m�̄mm�
m�k̂�
m�

* �k̂�� and using t̃m�
+− ��m, one obtains

�s�=−s�

�̄mm�
ss� = �m�mm� + �m��1 − ��	�n	 + D0q2���̄mm�

ss�

−
i

2
vFq�s��̄m−1,m�

ss� 
1
*�q̂� + �̄m+1,m�

ss� 
1�q̂��

−
1

4
�vFq��2��̄m−2,m�

ss� 
2
*�q̂� + �̄m+2,m�

ss� 
2�q̂��� .

�3.19�

For m=m��0, the solution is

�̄mm =
�m

1 − �m
+ O�q� � �̃m + O�q� , �3.20�

where we have defined �̃m��m / �1−�m�. The �m �and there-

fore �̃m� are complex valued and depend on the spin projec-
tion �. Using conventional notation, we will denote the real
and imaginary parts of �m by �m� and �m� , respectively, and

similarly the real and imaginary parts of �̃m by �̃m� and �̃m� ,
respectively.

The case m=0 needs special consideration because par-

ticle number conservation causes �̄00 to have a pole in the
limit �n ,q→0, here expressed by �0=1. Solving the above

equation for �̄00 in lowest order in q, one finds

�̄00 =
1/�

	�m	 + Dq2 , �3.21�

where the renormalized diffusion constant is defined as

D = D0�1 + �̃1��, D0 =
1

2
vF

2� ,

�̃1� � Re �̃1 =
1

2
��̃1 + �̃−1� . �3.22�

This is found by solving the following equations for small
vFq��s�=−s�:

�̄00
ss� = 1 + �1 − ��	�m	 + D0q2���̄00

ss�

−
i

2
vFq�s��̃−1,0

ss� 
1
*�q̂� + �̄1,0

ss�
1�q̂�� ,

�̄−1,0
ss� = �−1��̄−1,0

ss� −
i

2
vFq�s�̄0,0

ss�
1�q̂�� ,

�̄1,0
ss� = �1��̄1,0

ss� −
i

2
vFq�s�̄0,0

ss�
−1�q̂�� . �3.23�

Substituting �̄±1,0
ss� into the equation for �̄00

ss�, one finds

�̄00
ss��	�m	 + D0q2�1 +

1

2
��̃1 + �̃−1��� =

1

�
. �3.24�

The leading singular dependence on k̂� is obtained from

�̄0,±1
ss� = �1 − ��	�m	 + D0q2���̄0,±1

ss�

−
i

2
vFq�s��̄−1,±1

ss� 
1
*�q̂� + �̄1,±1

ss� 
1�q̂�� ,

�̄−1,1
ss� = −

i

2
�̃−1vFq�s�̄0,1

ss�
1�q̂� ,

�̄1,1
ss� = �̃1 −

i

2
�̃1vFq�s�̄0,1

ss�
1
*�q̂� . �3.25�

The complete particle-hole propagator in the regime
vFq��1 is given by

�̄kk� =
1

�

�k�̃k�

	�m	 + Dq2 + �
m�0

�̃m
m�k̂�
m
*�k̂�� , �3.26�

with
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�k = 1 −
i

2
vFq�s �

m=±1
�̃m
m�k̂�
m*�q̂�

= 1 −
i

2
vF�s �

m=±1
�̃m
m�k̂�q−m �3.27�

and

�̃k = 1 −
i

2
vF�s �

m=±1
�̃m
m

*�k̂�qm. �3.28�

The vertex corrections of the density Tk and current vertices
jk� and j̃k� �for the incoming and outgoing current� are ob-
tained by

Tk�q� � 1 + ��̄kk�
k� = 1 +
1/�

	�m	 + Dq2�k �3.29�

and

jk��q� = vk� + �vk���̄k�k
k�

= vk� + �
m=±1

�̃m
m
*�k̂��vk��
m�k̂��
k�

+ �vk���k�
k�
1/�

	�m	 + Dq2 �̃k,

j̃k��q� = vk� + �vk���̄kk�
k�

= vk� + �
m=±1

�̃m
m�k̂��vk��
m
*�k̂��
k�

+ �vk���̃k
k�
1/�

	�m	 + Dq2�k. �3.30�

Note that j̃k�� �jk��*, as the eigenvalues �̃m are in general
complex valued. Using


−1�k̂�
1
*�k̂�� + 
1�k̂�
−1

* �k̂�� = 2�k̂ · k̂�� ,


−1�k̂�
1
*�k̂�� − 
1�k̂�
−1

* �k̂�� = 2i�k̂ � k̂�� �3.31�

and

�k̂���k̂ · k̂��
 =
1

2
k̂�, �k̂���k̂ � k̂��
 = −

1

2
�ê� � k̂�

�3.32�

and defining jk�� jk��q=0�, j̃k�� j̃k��q=0�, we have

jk� = vF��1 + �̃1��k̂� + �̃1��ê� � k̂�z� ,

j̃k� = vF��1 + �̃1��k̂� − �̃1��ê� � k̂�z� . �3.33�

More explicitly, for �=x ,y, the incoming and outgoing cur-
rent vertices j and j̃ have the forms

jkx = vF��1 + �̃1��k̂x + �̃1�k̂y� =
1

2
vF��1 + �̃1

*�k̂+ + �1 + �̃1�k̂−� ,

jky = vF��1 + �̃1��k̂y − �̃1�k̂x� = − i
1

2
vF��1 + �̃1

*�k̂+ − �1 + �̃1�k̂−� ,

j̃kx = vF��1 + �̃1��k̂x − �̃1�k̂y� =
1

2
vF��1 + �̃1�k̂+ + �1 + �̃1

*�k̂−� ,

j̃ky = vF��1 + �̃1��k̂y + �̃1�k̂x� = − i
1

2
vF��1 + �̃1�k̂+ − �1 + �̃1

*�k̂−� ,

�3.34�

where we have defined k±=kx± iky.

D. Particle-particle propagator

The integral equation for the particle-particle propagator
or Cooperon reads �again multiplying the Cooperon C and
the particle-particle scattering amplitude tp by the factor

2�N��� to define dimensionless Cooperon C̄ and dimension-
less particle-particle scattering amplitude tp�

C̄kk��Q;i�n,i�m� = t̄ kk�
p �Q;i�n,i�m�

+ �2�N����−1�
k1

t̄ kk1

p �Q;i�n,i�m�Gk1,��i�n�

�GQ−k1,��i�n − i�m�C̄k1k��q;i�n,i�m� ,

�3.35�

tk,k��
p,ss� =

nimp

��N��2 f̄ k,k��
s f̄−k,−k�,�

s� = �2�N����−1��
−1 f̄ k,k��

s f̄−k,−k�,�
s� ,

�3.36�

t̄k,k��
p,ss� = 2�N���tk,k��

p,ss� = �
m

t̄m�
p,ss�
m�k̂�
m

*�k̂�� , �3.37�

t̄m�
p,ss� = ��

−1�
m�

f̄m��
s f̄m−m�,�

s� . �3.38�

If rotation invariance or time reversal invariance is broken,

t̄0�
p,ss�=��

−1��
p �1, where ��

p =�m� f̄m��
s f̄−m�,�

s� .
The energy integral over the product of Green’s functions

in the integral equation for Ckk� may be done first, after ex-
panding the G’s in �m and Q,

� d�1Gk1,��i�n�GQ−k1,��i�n − i�m�

= 2���1 + i��i�m − Q · vk1
� − �2�Q · vk1

�2� ,

�3.39�

with �n�0, �n−�m�0, where Q ·vk=QvF�Q̂ · k̂�. Expanding

C̄kk� and t̄kk�
p in terms of eigenfunctions 
m�k̂�, C̄kk�

=�mC̄mm�
m�k̂�
m�
* �k̂�� and denoting t̃m�

p,+−=�m
p , one obtains

�s�=−s�
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C̄mm� = �m
p��mm� + �1 − ��	�n	 + D0Q2��C̄mm�

−
i

2
vFQ��C̄m−1,m�
1

*�Q̂� + C̄m+1,m�
1�Q̂��

−
1

4
�vFQ��2�C̄m−2,m�
2

*�Q̂� + C̄m+2,m�
2�Q̂��� .

�3.40�

The m=m�=0 component of C̄mm� obeys the equation

����
so�−1 + 	�n	 + D0Q2�C̃00

= �−1 −
i

2
vFQ�C̄−1,0
1

*�Q̂� + C̄1,0
1�Q̂�� + O�Q2� ,

�3.41�

where ���
so�−1 is the phase relaxation rate contributed by spin-

orbit interaction processes,

���
so�−1 = �−1���0

p�−1 − 1� . �3.42�

Using

C̄±1,0 = �±1
p �C̄±1,0 −

i

2
vFQ�C̄0,0
±1�q̂�� , �3.43�

the Cooperon is found as

C̄kk� =
1

�

�k
p�̃k�

p

	�m	 + DpQ2 + ��
−1 + �

m�0
�̃m

p 
m�k̂�
m
*�k̂�� ,

�̃m
p =

�m
p

1 − �m
p , �3.44�

with

�k
p = 1 −

i

2
vFQ� �

m=±1
�̃m

p 
m�k̂�
m
*�Q̂�

= 1 − i� �
m=±1

�̃m
p 
m�k̂��Q · vk�
m

*�k̂��
 �3.45�

and

�̃k
p = 1 − i�s �

m=±1
�̃m

p 
m
*�k̂��q · vk�
m�k̂��
 . �3.46�

Here, the diffusion coefficient Dp is in general different from
the one in the p-h channel,

Dp = D0�1 +
1

2
��̃1

p + �̃−1
p �� � D , �3.47�

the difference being proportional to the spin-orbit coupling
g�.

IV. CONDUCTIVITY TENSOR IN THE ABSENCE
OF INTERACTION

As mentioned before, there are three mechanisms contrib-
uting to the anomalous Hall conductivity, namely, the skew

scattering, the side-jump, and the Berry phase mechanisms.
In this section, we will write down the generic formulations
for evaluating these contributions within the diagrammatic
perturbation theory. The contribution to the conductivity ���

will be given in terms of a correlation function L��, defined
as17

��� = e2 �
�→0

lim
1

i�m
L��, �4.1�

where L��=�nL��
dn is a sum of the different relevant diagrams

dn. We will take the current to be along the x direction, so the
longitudinal conductivity will correspond to �=�=x, while
the �anomalous� Hall conductivity will be given by the off-
diagonal part �=x, �=y. Note that �yx=−�xy.

A. Skew scattering contribution

The skew scattering contribution to the conductivity ten-
sor ��� in lowest order in 1 /�F� is given by the bubble
diagram dressed by vertex corrections given by the correla-
tion function

L�� = T�
�n

�
k,�

Gk��i�n�Gk��i�n − i�m�vk� j̃k�
� . �4.2�

The energy integration over GG is nonzero only if the poles
are on opposite sides of the real axis, requiring 0��n��m
�we assume �m�0�, and yields 2�N���, and the summation
on �n gives �m / �2�T�. Substituting j̃k�

� from Eq. �3.34� into
the Kubo formula, the conductivity tensor follows as

���
ss = �

�

1

2
vF

2��N��1 + �̃1� �̃1�

− �̃1� 1 + �̃1�

 . �4.3�

Defining the tensor of diffusion coefficients D��
� as

D��
� =

1

2
vF

2��
tr,

Dxy
� = D��

� ��̃1�/�1 + �̃1��� = − Dyx
� , �4.4�

where

��
tr � ���1 + �̃1�� �4.5�

is the momentum relaxation time, we may write

���
ss = �

�

N�D��
� . �4.6�

From the definition �̃m=�m / �1−�m�, we obtain the following
identities:

1 + �̃1 =
1

1 − �1
, 1 + �̃1� =

1 − �1�

	1 − �1	2
, �̃1� =

�1�

	1 − �1	2
.

�4.7�

B. Side-jump contribution

The side-jump contribution has been first calculated by
Berger.3 It arises because the trajectory of a wave packet
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scattered by an impurity is shifted sidewise due to the spin-
orbit interaction �“side jump”�. This effect may be calculated
in a straightforward way18 by observing that the side jump
leads to an additional term in the particle velocity due to the
spin-orbit interaction. Indeed, the quantum mechanical ve-
locity obtained from the Heisenberg equation of motion for
the position operator has two terms,

v =
d

dt
r = − i�r,H1� =

p

m
+

1

4m2c2 �� � �Vdis� . �4.8�

The Bloch state matrix elements of v are given by

�k�� � 	v	k�
 =
k

m
�kk����� − i

g�

2m�F
�

j

V�k − k��

�ei�k−k��·Rj�����
� �k − k��� . �4.9�

For strong impurity scattering, there are six diagrams that
contribute to the current correlation function, four of type �a�
and two of type �b�, shown in Fig. 1. For example, contribu-
tions from diagrams of Figs. 1�a� and 1�b� give

Lxy
1a = − inimp

g

�F
T�

kk�

V2Gk
+Gk�

+ Gk
−�� �

k − k�

2m
�

x

fk�k
+ j̃ky

,

Lxy
1b = − inimp

g

�F
T�

kk�

V2Gk�
+ Gk1

+ Gk1

− Gk
−�� �

k − k�

2m
�

x

�fk�k1

+ fk1k
− j̃k1y

. �4.10�

These were evaluated within the short-range strong impurity
scattering model in Ref. 10. We will later use the results
reported there.

C. Berry phase contribution

In general, Berry phase contributions can arise when there
is an anomalous velocity term, as in the case of the side-
jump contribution given by Eq. �4.8�. In principle, such
terms can also arise in the presence of a periodic potential
and spin-orbit interaction leading to finite Berry curvatures.4

It has been found that the intrinsic Berry curvature contribu-
tions to the AH conductivity for bulk ferromagnetic metals
can be large in magnitude.19 Analogous contributions for thin
film ferromagnets have not been obtained yet. Such contri-
butions depend on the details of the band structure and are

beyond the scope of the present work. On the other hand, the
focus of the current work is on the disorder and temperature
dependence of the AH conductivity in which the Berry con-
tributions are qualitatively similar to the side-jump contribu-
tions �both arise from an additional velocity term due to
spin-orbit interactions�. Therefore, the effects of Berry con-
tributions can be included in a phenomenological way, while
comparing with experiments, by considering a larger side-
jump contribution to the total AH conductivity.

V. INTERACTION CORRECTIONS TO THE
CONDUCTIVITY

The e-e interaction corrections to the conductivity will be
calculated in first order in the screened Coulomb interaction.
It may therefore be represented as an integral over a kernel
K�q , i
l� multiplied by the screened Coulomb interaction
Vc�q , i
l�,

��I = T�

l

� dq2K�q,i
l�Vc�q,i
l� . �5.1�

Gauge invariance requires that �� should be invariant
against an energy shift of the interaction potential, V�r�
→V�r�+C, which only leads to a constant term in the total
Hamiltonian. In Fourier space, the transformation is V�q�
→V�q�+C��q�, which requires the kernel to vanish in the
limit q→0.20 �Even more general, since V�q� is an electric
potential, a gauge transformation of the above form, but with
arbitrary time dependence C=C�t�, does not change the
physical fields.� We will see below that this gauge invari-
ance, together with an additional mirror symmetry, will im-
pose a strong constraint on the interaction corrections to the
Hall conductivity.

A. Coulomb interaction renormalized by diffusion

The Coulomb interaction Vc�q ,
l� is renormalized by dif-
fusion processes. The bare screened interaction is given by

Vc�q,i
l� = VB�q�/�1 + VB�q���q,i
l�� , �5.2�

where VB�q�=4�e2 /q2 in three dimensions and VB�q�
=2�e2 /q in two dimensions, and the polarization function is
given by12

��q,i
l� =
dn

d�

Dq2

	
l	 + Dq2 . �5.3�

In two dimensions, one therefore finds

Vc�q,i
l� =
2�e2

q

	
l	 + Dq2

	
l	 + Dq2 + DqK2
→ � dn

d�

−1

, �5.4�

in the limit 
l=0, q→0. Note that in a ferromagnet, an ad-
ditional effective electron-electron interaction arises by ex-
change of spin-wave excitations. We do not consider this
interaction here because it is small, of order �J /�F�2, where J
is the exchange energy �see Sec. VI B�.

B. Singular contributions for skew scattering

The diagrams for the correlation functions L�� defined in
Eq. �4.1� can have up to three diffusion poles.21 The gauge

(a) (b)

FIG. 1. Diagrams for side-jump contributions. Solid lines are
impurity averaged Green’s functions. Shaded triangles with dashed
lines represent impurity scattering amplitudes while the dotted line
from a vertex denotes spin-orbit term in the velocity operator. The
shaded vertex represents vertex corrections to the current density
operator.
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invariance argument presented above suggests that the rel-
evant contributions to K�q , i
l� should have a factor of q2,
which cancels one of the diffusion poles. Therefore, only
diagrams with three diffusion poles shown in Fig. 2 contrib-
ute. For example, contribution from diagram �a� of Fig. 2 is
given by

L��
2a = − T�

�n

T�

l

�
k,k�,q

Gk
2��n�Gk−q�� − 
�

�Gk�−q�� − 
�Gk���n�Gk���n − ��

�V�q,
l������������
 − ��

�Tk
+−�q,
�Tk�

−+�− q,− 
��k�k
+− �q,
 − ��

+ ��− ����� − ����� − 
�Tk
−+�q,
�

�Tk�
+−�− q,− 
��kk�

+− �− q,
 + ���vk�vk��. �5.5�

Using only the singular parts

�kk�
+− �q,�� =

�k�q��̃k��q�

	�	 + Dq2 ,

�kk�
−+ �q,
� = �k�k

+− �− q,− 
� �5.6�

and

Tk
+−�q,
� =

�k�q�
	
	 + Dq2 , Tk

−+�q,
� =
�̃k�− q,�
	
	 + Dq2 �5.7�

and defining

Dq�
l,�m� =
V�q,
l�

�	
l	 + Dq2�2�	
l − �m	 + Dq2�
, �5.8�

one gets

L��
2a = �

�

�− 2�iN0�2�2�
q
�T �


l��m

�
l − �m�

��vk��k�q��̃k�q��k�q�
k�vk���̃k��q��k��q��k��q�
k�

+ T �

l�0

	
l	�vk��̃k�− q��k�− q��k
*�q�
k

��vk���k��− q��̃k��− q��k�
* �− q�
k�� 1

2�
Dq�
l,�m� ,

�5.9�

where we have expanded the Green’s functions for small q
and defined the factor

�k � 1 − 2i��q · vk� . �5.10�

Note that �̃k�−q ,−��= �̃k�q ,��. The leading terms in q are
the linear in q terms in the products ��̃�,

�k�±q��̃k�±q��k�q�

= 1 � 2i��q · vk� �
i

2
vF� �

m=±1
��̃m + �̃m

*�
m�k̂�q−m.

�5.11�

The �̃’s combine to �̃m� = �̃−m� , which may be pulled in front of
the m summation. Observe that

vF �
m=±1


m�k̂�q−m = 2�q · vk� . �5.12�

Therefore, quite generally,

�vkx�k�q��̃k�q��k�q�
k = − ivF
2�qx�1 + �̃1�� . �5.13�

C. Corrections to longitudinal conductivity within skew
scattering model

For contributions from diagram �a� of Fig. 2 to the longi-
tudinal conductivity, each of the two angular averages �in
each term� in Eq. �5.9� with �=�=x gives a factor propor-
tional to qx �see Eq. �5.13��, the product yielding qx

2. Diagram
�b� also has the same combination. This yields, for the four
diagrams �a�, �a��, �b�, and �b� �, the total contribution �Lxx

2a

=Lxx
2a�; Lxx

2b=Lxx
2b��,

Lxx
2a+2a�+2b+2b�

=
1

2�
�
�

�2�N��2�2�vF
2��2�1 + �̃1��

2�
q

q2��q,�m� ,

�5.14�

where we have defined

��q,�m� = T �

l�0


l�D�− 
l,�m� − D�− 
l − �m,�m��

= T� �
0�
l��m


l + �

l��m

�m�D�− 
l,�m� .

�5.15�

The sum over q converted to an integral yields

�
q

q2��q,�m� =
1

4�

e2

D2 
��1 + ln


c

2�T

 , �5.16�

where  �2�e2��N� is the screening length.
The exchange interaction correction to the longitudinal

conductivity is then given by

��xx
ex =

e2

�m
Lxx = −

e2

2�2 ln

c

T
, �5.17�

where we used D�=D0��1+ �̃1�� �. Note that the correction
��xx is independent of the scattering strength.

(a) (b)

FIG. 2. Diagrams for interaction corrections. Solid lines are im-
purity averaged Green’s functions, wavy lines denote screened Cou-
lomb interactions, and dashed lines denote diffusion poles. There
are two diagrams of type �a� and two of type �b�.
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D. Corrections to Hall conductivity within skew
scattering model

For �=x, �=y, the two angular averages in Eq. �5.9� are
proportional to qx and qy, respectively, so that the angular q
integral yields zero. This is true for all four diagrams �a�,
�a��, �b�, and b�. Thus, the total correction to the Hall con-
ductivity Lxy within the skew scattering model is zero. Note
that the results are true for arbitrary strength as well as finite
range and anisotropy of the impurity scattering.

Note that the result that the angular average �Eq. �5.13�� is
proportional to qx is a special consequence of the fact that
Eq. �5.9� contains the combination �k�̃k. This particular com-
bination is proportional to q ·vk, as shown in Eq. �5.12�,
which results in Eq. �5.13�. This is true for the class of dia-
grams considered here. This leads to the obvious question if
there are other diagrams where the angular average is over a
different combination of �k’s leading to a nonzero contribu-
tion to Lxy. It turns out that, indeed, there are such terms with
less than three diffusion poles, but that there is a deeper
reason why the total interaction correction to the Hall con-
ductivity must always vanish in the first order in Coulomb
interaction. In this case, the interaction correction has the
form Eq. �5.1� and the kernel must be proportional to q2 as
mentioned before. In addition, we have the following sym-
metry properties for the Hall conductivity with respect to a
sign change of the magnetization �magnetic field� and a mir-
ror reflection from the yz plane x→−x �or from the xz plane
y→−y�, which follow from the invariance of the Hamil-
tonian under a simultaneous transformation B→−B and x
→−x �or y→−y�,

�xy�B� = − �xy�− B� ,

�xy�B;x� = �xy�− B;− x� = − �xy�B;− x� , �5.18�

which means that the Kernel must be proportional to qxqy to
preserve the mirror symmetry. Thus, even though individual
diagrams do contribute, the total sum of all diagrams of a
given class must cancel to yield vanishing contribution to the
Hall conductivity. Note that the above argument remains
valid for the side-jump contributions as well. Therefore, we
have, quite generally,

��xy
I = 0. �5.19�

This generalizes the results of Ref. 9 where this result was
first obtained within a skew scattering model with short-
range and weak impurity scattering.

Note that the above arguments do not imply that the weak
localization correction to the Hall conductivity must also
vanish because the WL contributions do not have the form
Eq. �5.1� and the gauge invariance arguments do not apply.

E. Corrections to conductivity within side-jump model

We have already argued that the e-e interaction correc-
tions to the Hall conductivity due to side-jump scattering
must vanish on very general symmetry grounds. The corre-
sponding corrections to the longitudinal conductivity are of
course finite. However, these contributions are proportional

to the spin-orbit coupling and therefore are much smaller
than the corrections due to normal scattering obtained above.
We will therefore neglect such contributions.

F. Hartree terms

Equation �5.17� should be corrected by including dia-
grams of the Hartree type. This leads to the total interaction
correction in two dimensions,11

��xx
I = −

e2

2�2�1 −
3

4
F̃�
ln


c

T
, �5.20�

where

F̃� = 8�1 + F/2�ln�1 + F/2�/F − 4 �5.21�

and

F =
1

v�q = 0� � d�

2�
v�q = 2kF sin �/2� . �5.22�

As we will discuss later, experiments suggest an approximate
cancellation between the exchange and Hartree terms, which
will imply that the quantity

hxx � �1 −
3

4
F̃
 �5.23�

can be very small.

VI. WEAK LOCALIZATION CORRECTION TO
CONDUCTIVITY

As pointed out before, the weak localization contributions
cannot be written as an integral over a kernel, as in Eq. �5.1�
for the Coulomb interaction. Therefore, although the mirror
symmetry is still preserved, the total contribution to the Hall
conductivity need not be zero.

A. Cooperon contributions

The weak localization correction to the current-current
correlator is obtained from diagrams shown in Fig. 3, with

(a) (b)

(c) (d)

FIG. 3. Diagrams for weak localization corrections. Solid lines
are impurity averaged Green’s functions and broken lines are impu-
rity scattering amplitudes. Shaded cross is the Cooperon and shaded
vertices are vertex corrections to the current density operator. There
are two diagrams of type �b� and four diagrams of type �c�.
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one Cooperon propagator connecting the upper and lower
lines of the conductivity bubble. The frequency arguments of
the upper �particle� line and the lower �hole� line have oppo-
site signs. The current vertices are dressed. For example, the
contribution of diagram �a� of Fig. 3 to the current correla-
tion function is

L��
3a = �

�

T�
�n

�
k,k�,Q

Gk��i�n�Gk��i�n − i�m�Gk���i�n�

�Gk���i�n − i�m�jk�
� j̃k��

� �2�N����−1C̄kk��Q;i�n,i�m� .

�6.1�

Here, the momentum Q=k+k� can be taken to be small, as
for Q→0 the Cooperon is strongly peaked. Consequently,
one may take k��−k in the arguments of the Green’s func-
tions and of the current vertex, i.e., j̃k��

� �− j̃k�
� . Then,

L��
3a = − ��m/2���

�

�4�N���
3�

��2�N����−1�jk�
� j̃k�

� 
k�
Q

C̄k,−k�Q� . �6.2�

The Cooperon contribution is given by

! � �
Q

C̄k,−k�Q� = �
0

Qc QdQ

2�

1/�
	�m	 + DpQ2 + ��

−1

= �4���Dp�−1 ln���/��� , �6.3�

leading to a logarithmic temperature dependence through
���T�. Similarly, contributions from the two diagrams of type
�b� can be evaluated to give

L��
3b = nimp�

�

T�
�n
��

k
�Gk��i�n��2Gk��i�n − i�m��2

�jk�
� j̃k�

� fk,−k��
+ f−k,k��

+
!

= nimp
�m

2�
�
�

�− 2�iN���
2�2�2�N����−1

���N��−2�jk�
� j̃k�

� f̄ k,−k��
+ f̄−k,k��

+ 
k! ,

L��
3b� = nimp

�m

2�
�
�

�2�iN���
2�2�2�N����−1

���N��−2�jk�
� j̃k�

� f̄ k�,−k�
− f̄−k�,k�

− 
k! , �6.4�

so that

L��
3b+3b� = nimp

�m

2�
�
�

�− 2�iN���
2�2�2�N����−1

���N��−2�vF
2���−1

�!�jk�
� j̃k��

� � f̄ k,−k��
+ f̄−k,k��

+ + f̄ k�,−k�
− f̄−k�,k�

− �
k.

�6.5�

In a similar fashion, the total contributions from all diagrams
can then be written as

L��
WL = −

�m

4�2�
�

�D�/D�
p�J�� ln���/��� ,

J�� = J1
�� + J2

�� + 4iJ3
�� − 4J5

��, �6.6�

where

J1
�� =

2

vF�
2 �jk�

� j̃k�
� 
 ,

J2
�� = �vF

2���−1�jk�
� j̃ k��

� � f̄ k,−k��
+ f̄ −k,k��

+ + f̄ k�,−k�
− f̄ −k�,k�

− �
k,

J3
�� = �vF

2���−1�jk�
� j̃ k��

� � f̄ k,−k��
+ f̄ −k1,k��

+ f̄ k1,k�
−

− f̄ −k�,k�
− f̄ k�,−k1�

− f̄ k,k1�
+ �
k,k�,k1

,

J5
�� = �vF

2���−1�jk�
� j̃ k��

� f̄ k,k2�
+ f̄ −k1,k��

+ f̄ k�,−k2�
− f̄ k1,k�

− 
k,k�,k1,k2
.

�6.7�

Here, J1
�� corresponds to the contribution from diagram �a�

of Fig. 3, J2
�� is a sum of contributions from the two dia-

grams of type �b�, J3
�� is a sum of contributions from two

diagrams of type �c� �the other two of type �c� gives J4
��

=J3
���, and J5

�� is a contribution from diagram �d�. In the
above, we have used the relation �nimp /�N��=1 / �2�����.

B. Phase relaxation rate

The Cooperon contribution depends on the phase relax-
ation rate ��

−1, which grows linearly with temperature T. In
general, this may be cut off by spin-flip scattering �s, by
spin-orbit scattering �so, or by a magnetic field characterized
by 
H, all of which are independent of temperature. There-
fore, a logarithmic temperature dependence in the conductiv-
ity requires that the phase relaxation rate satisfies the in-
equality

max�1/�s,1/�so,
H� � 1/�� � 1/�tr. �6.8�

The contribution to �� from e-e interaction is given by

1/�� =
T

�F�tr
ln

�F�tr

2
. �6.9�

This is typically too small to satisfy the above inequality in
thin ferromagnetic films where, in particular, the internal
magnetic field Bin can be estimated to give rise to 
H
=4��F�tr��eBin /m*c� which can be large. A much larger con-
tribution is obtained from scattering off spin waves in such
systems,15 which is given by

1/�� = 4�T
J2

�F	g
, �6.10�

where J is the exchange energy of the s electrons and 	g is
the spin-wave gap. As estimated in Ref. 14, with this contri-
bution to the phase relaxation rate, the inequality �Eq. �6.8��
can be satisfied within experimentally accessible disorder
and temperature ranges where the WL effects can be ob-
served.
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VII. STRONG SHORT-RANGE IMPURITY SCATTERING

The results of the previous section can in principle be
used to obtain the weak localization corrections to both lon-
gitudinal and Hall conductivities. However, the algebra gets
fairly involved without contributing extra insight into the
problem. Since higher angular momentum components are
expected to be smaller, we will consider the dominant con-
tribution that arises from a short-range impurity model and
show in the Appendix how effects of finite range anisotropic
scattering can be included within model calculations. On the
other hand, we will keep the calculations valid for arbitrary
strength of the impurity scattering.

A. Scattering amplitude, relaxation rate, and particle-hole
and particle-particle propagators

These were already obtained for short-range strong impu-
rity scatterings in Ref. 10 and we will simply quote the re-
sults. The scattering amplitude is given by

f̄ k�,k��� =
w̃
�w

− i���
z �k̂ � k̂��

2ũ
�u

− is
n
�w̃ + 2ũ�k̂ · k̂��� .

�7.1�

Here, we defined w̃=w / �1+w� and ũ=u / �1+u�, where w
= ��N�V�2 and u= �g� /2�2w, and all quantities depend on the
spin orientation � �suppressed here and in the following,
except in the final expressions involving spin summation�. In

terms of the angular momentum components of f̄ defined in

Eq. �3.9�, f̄m
s , we have from Eq. �7.1�,

f̄ kk�
s = f̄ 0

s + f̄ 1
s k̂+k̂−� + f̄ −1

s k̂−k̂+�, f̄ 0
s =

w̃
�w

− isw̃ ,

f̄ ±1
s = − isũ ± � ��

z ũ
�u

, f̄ m
s = 0, 	m	 � 1. �7.2�

Using Eq. �7.2�, the single particle relaxation rate given
by Eq. �3.10� becomes

1

2��

=
nimp

�N�

�w̃ + 2ũ� . �7.3�

One observes that 1
2��

is proportional to the Fermi energy, the
average number of impurities per electron, and the dimen-
sionless factor �w̃+2ũ�, expressing the effective scattering
strength per impurity. Eigenvalues of the particle-hole scat-
tering amplitude t̄kk�

+− are obtained to be

�0 = 1, �−m = �m
* ,

�1 = 2w̃ũ�w̃ + 2ũ�−1�1 + is
1
�u

���
z 
 ,

�2 =
ũ2

u
�w̃ + 2ũ�−1�u − 1 + 2is�u���

z � , �7.4�

while for t̄ kk�
++ one obtains �with t̄kk�

ss ��m�m
m�k̂�
m
*�k̂���

�0 = �w̃ + 2ũ�−1� w̃

1 + w
�1 − w − 2is�w� + 2ũ

1 − u

1 + u
� ,

�1 = − 2w̃ũ�w̃ + 2ũ�−1�1 + is
1

�w

 ,

�2 = − ũ�w̃ + 2ũ�−1. �7.5�

It may be shown that 	t̄kk�
�q� defined in Eq. �3.13� gives rise

to small corrections to the diffusion coefficient, of order
�1 /�F��, and hence may be dropped.

Eigenvalues of the particle-particle scattering amplitude
t̄kk�
p,+− are obtained to be

�0
p = �w̃ − 2ũ�1 − 2ũ��/�w̃ + 2ũ� ,

�±1
p = �2w̃ũ ± 2

w̃
�w

ũ
�u

���
z 
��w̃ + 2ũ� ,

�±2
p = ũ/�w̃ + 2ũ� . �7.6�

We observe that �0
p�1 if skew scattering is present, as it

violates time reversal symmetry.
The phase relaxation rate ���

so�−1 defined in Eq. �3.42� is
given by

���
so�−1 = �−14ũ�1 − ũ�/�w̃ − 2ũ�1 − 2ũ�� , �7.7�

which is positive for not too large spin-orbit scattering, u
"w /2 or g�"1.

B. Hall conductivity

The conductivity tensor due to skew scattering was al-
ready evaluated in Sec. IV A for general strong finite range
impurity scattering in terms of the eigenvalues of the
particle-hole propagator �. In particular, it gives

�xy
ss

�xx
ss =

�1�

1 − �1�
. �7.8�

For short-range scattering, Eq. �7.4� gives explicit expres-
sions for the eigenvalues in terms of the scattering potentials.
The side-jump contribution was already evaluated in Ref. 10
and we quote the result,

�xy
sj =

e2

2�
�
�

���
z g�

w̃

w̃ + 2ũ

�1 + �̃1��
1 + u

�7.9�

Using Eq. �7.4�, this yields, in the small u�w�1 limit,

�xy
sj =

e2

2�
�
�

���
z g�

1

1 − �1�
. �7.10�

C. Weak localization correction

Evaluation of J�� defined in Sec. VI �Eqs. �6.6� and �6.7��
in the present short-range �but arbitrary scattering strength�
model gives
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J1
xx = �1 + �̃1��

2 − ��̃1��
2, J1

xy = 2�̃1��1 + �̃1�� ,

J2
xx = ��1�J1

xx − �1�J1
xy�, J2

xy = ��1�J1
xx + �1�J1

xy� ,

J3
xx =

i

2
�2ũ�1�J1

xx − �2ũ + 1��1�J1
xy� ,

J3
xy =

i

2
��2ũ + 1��1�J1

xx + 2ũ�1�J1
xy� ,

J5
xx = −

1

2
��2ũ − 1��1�J1

xx − 2ũ�1�J1
xy� ,

J5
xy = −

1

2
�2ũ�1�J1

xx + �2ũ − 1��1�J1
xy� ,

iJ3
�� − J5

�� = −
1

2
J2

��, J�� = J1
�� − J2

��. �7.11�

We may combine this into the compact expression

Jxx = Re�#�, Jxy = Im�#�, # =
1

1 − �1
. �7.12�

Note that the final result for J�� contains detailed effects
of the potentials only through the eigenvalues �. This sug-
gests that the results may be more general than the short-
range potentials used in the calculations. Also, as we will
show in the Appendix, �1� may approach unity in the limit of
extreme forward scattering.

In any case, for the short-range impurity scattering model
considered above, we then have contributions from weak lo-
calization corrections given by

��xx
WL = −

e2

4�2�
�

�D�/Dp�ln���/��� ,

��xy
WL

��xx
WL =

Im�#�
Re�#�

=
�1�

1 − �1�
. �7.13�

VIII. COMPARISON WITH EXPERIMENTS

Experiments measure the longitudinal and Hall resis-
tances R�� as functions of both sheet resistance and tempera-
ture. In order to compare, we obtain the normalized relative
conductances defined as

	N��� �
1

L00R0

����

���

, �8.1�

where L00�e2 /2�2 and R0=1 /�xx. As shown above, a loga-
rithmic temperature dependence in these quantities can arise
either from interaction corrections or from weak localization
corrections. However, although two separate groups have
seen such logarithmic temperature dependences,13,14 the pref-
actors seem to be more universal for 	N�xx, independent of

sheet resistance R0 or sample preparation for a range of R0,
but clearly disorder and sample dependent for 	N�xy in the
same range of R0. In this section, we collect all our results
above to obtain the total contribution to 	N��� from all pos-
sible mechanisms considered above. As used in the text, su-
perscripts ss and sj will refer to the skew scattering and side
jump mechanisms, and I and WL will refer to the interaction
and weak localization corrections, respectively. While the re-
sults for ���

ss and ��xy
I are valid for finite range strong impu-

rity scatterings, others are evaluated within a short-range
strong impurity scattering model. We have also assumed that
the spin-orbit coupling is weak.

The conductivities due to skew and side jump scatterings
are

�xx
ss = �

�

1

2
vF�

2 N��tr, �xx
sj � �xx

ss ,

�xy
ss = �xx

ss �1�

1 − �1�
, �xy

sj =
e2

2�
�
�

���
z g�

�1 − �1��
	1 − �1	2

. �8.2�

Quantum corrections to the conductivities due to Coulomb
interaction and weak localization effects leading to a loga-
rithmic temperature dependence are

��xx
ss,I = L00hxx ln�T��, ��xx

ss,WL = L00 ln�T�� ,

��xy
ss,I = 0, ��xy

ss,WL = ��xx
ss,WL �1�

1 − �1�
,

��xy
sj,I = 0, ��xx

sj,I � ��xx
ss,I,

����
sj,WL � ��xy

ss,WL. �8.3�

The total conductivities and quantum corrections are simply

�xx = �xx
ss , �xy = �xy

ss + �xy
sj ,

��xx = ��xx
ss,I + ��xx

ss,WL, ��xy = ��xy
WL. �8.4�

Using these results, we obtain

	N�xx =
�xx

ss

L00

��xx
ss,I + ��xx

ss,WL

�xx
ss = �1 + hxx�ln�T�� ,

	N�xy =
�xx

ss

L00

��xy
ss,WL

�xy
ss + �xy

sj =
1

�1 + rxy�
ln�T�� , �8.5�

where hxx defined in Eq. �5.23� is the exchange plus Hartree
interaction contribution to the longitudinal conductivity and
we have defined

rxy �
�xy

sj

�xy
ss �8.6�

as the ratio of side-jump to skew scattering contributions to
the Hall conductivity. Note that rxy is a nonuniversal quan-
tity. As shown in Ref. 14, all current experiments can be
understood if hxx�1 and rxy is sample dependent and is al-
lowed to vary with disorder. In particular, this means that
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while the skew scattering and side-jump mechanisms both
contribute to the AH conductivity, the side-jump contribu-
tions to the longitudinal conductivity as well as to the weak
localization corrections to the conductivity tensor are much
smaller than the corresponding skew scattering contributions
when the spin-orbit coupling is weak.

IX. SUMMARY AND CONCLUSION

We develop a systematic general formulation for the AHE
for strong, finite range impurity scattering starting from a
microscopic model of electrons in a random potential of im-
purities including spin-orbit coupling. In particular, we con-
sider quantum corrections to the AH conductivity, observed
in different experiments on disordered thin ferromagnetic
films with apparently different results. General symmetry ar-
guments presented here show that the e-e interaction correc-
tions must vanish exactly, which then implies that there must
be weak localization corrections in these ferromagnetic films
despite the presence of large internal magnetic fields.

Our evaluations of the WL effects within a short range but
strong impurity scattering lead to the normalized relative
conductances given by Eq. �8.5�, where the spin-orbit cou-
pling has been assumed to be weak. These results are con-
sistent with all experimental observations, where the differ-
ence between different experiments arise due to different
contributions from skew scattering vs side-jump mechanism.

In this paper, we have only briefly mentioned the Berry
phase effects. A systematic study of the Berry phase contri-
butions to the AHE will be reported elsewhere.
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APPENDIX: LONG-RANGE CORRELATED POTENTIALS

For completeness, here we consider models to incorporate
possible effects of small and large angle scattering.

1. Model of small angle scattering

Long-range correlated potentials will scatter electrons
predominantly by a small angle ���. A simple model is
provided by a Gaussian dependence

V�k − k�� = V��� = 4��V0�0
−1e−��/�0�2

, �A1�

where �0��. The angular momentum components of V���
are given by

Vm
ns = �

0

� d�

2�
V��� = V0e−m2�0

2/4. �A2�

In the limit of weak scattering, we have f̄m�= V̄m� and then

�� = �
m

	V̄m�	2 = ��N�V0�2�2�/�0. �A3�

Neglecting skew scattering for the moment, we find

t̄1�
+,− = ��

−1��N�V0�2�
m

e−�0
2/4�m2+�m − 1�2� = e−�0

2/8. �A4�

It follows that 1− t̄1�
+,−��0

2 /8�1 and therefore the diffusion
coefficient is enhanced by a factor

D/D0 = ��0
2/8�−1. �A5�

2. Model of strong backscattering

It is well known that the scattering of conduction elec-
trons in amorphous metals can be anomalous in the sense
that the transport relaxation time is smaller than the single
particle relaxation time. This is due to the fact that the atomic
structure is characterized by finite range order. The pair cor-
relation function shows enhanced peaks corresponding to the
nearest neighbor, next nearest neighbor, etc., shell. In other
words, the system shows crystalline order over a certain usu-
ally short distance. As a consequence, electrons are suffering
Bragg scattering by large angles. The scattering cross section
for large angles is larger than that for small angles. Conse-
quently, the angular average of the cross section ����,
weighted with the factor �1−cos ��, appearing in the expres-
sion for the transport relaxation rate is larger than the uni-
form average in the single particle transport rate. In the case
of polycrystalline material, we expect a similar effect.

The scattering potential V�r� of a crystallite or a small
grain of amorphous metal will show oscillating behavior in
real space reflecting the nearly regular arrangement of atoms,
and its Fourier transform will show a peak at a finite momen-
tum q=2� /a corresponding to the spatial period a, which
will be equal or close to the lattice constant of the crystalline
phase. The width of the peak will be determined by the range
of the short-range order or the size of the crystallites. This is
in contrast to a usual impurity potential whose Fourier trans-
form has a peak at q=0 and a width corresponding to the
range of the potential. In terms of the angular momentum
components Vl of the scattering potential, a peak in V�q�
implies that some of the Vl will be negative. In particular, the
component �1 of the t matrix tkk� determining the transport
relaxation rate will be negative.

Let us consider a simple model of a crystallite of size L.
Its scattering potential seen by a conduction electron of the
matrix �assumed to be isotropic, as appropriate for an amor-
phous system� is something like

V1�x� = V0 cos�2�x/a���L/2 − 	x	�

= V0S1�x� one dimension,

V2�x,y� = V0S1�x�S1�y� two dimensions. �A6�

The Fourier transform of S1�x� is given by
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S1�k� =
L

2

�K cos�K�sin� � −  sin�K�cos� ��
�K2 −  2�

, �A7�

where K=kL /2,  =�L /a. S1�k� increases linearly with k at
small k, has maximum at k�2� /a, and decreases as 1 /k for
large k. We may model this behavior by

V2�k� = V0
kk0

k0
2 − k2 , �A8�

where k0=2� /a. Using the relation of the transferred mo-
mentum k=k f −ki to the scattering angle �, k2=2kF

2�1
−cos ��, where 	k f ,i	=kF, we get

V2��� = V̄
�1 − cos �

$ + cos �
, �A9�

where V̄=V0 / �kF
�2�, $=k0

2 /2kF
2 −1.

The angular momentum components Vl may be calculated
as

Vl = �
0

2� d�

2�
cos�l��V2��� . �A10�

In particular, we find

V0 =
2

�
V̄�$ − 1�−1/2 arctan� 2

$ − 1
� 0,

V1 =
2

�
V̄�−

$

�$ − 1
arctan� 2

$ − 1
+ �2� � 0.

�A11�

In the limit $→1, the ratio of the l=1 and l=0 components
is given by V1 /V0=−$. We may estimate $ by assuming Z
electrons in a unit cell of area a2 resulting in kF

2 =2�Z /a2 and
therefore $=2� /Z−1. For Z�2,5 appropriate for a mixture
of Fe2+ and Fe3+, one finds $�1.5 and then V1 /V0�−0.6. In
the following, we will take the Vl to be given parameters,
which may be negative.

In order to keep the calculation simple, we will neglect all
angular momentum components with 	l	%2. Defining dimen-

sionless quantities V̄l=�N�Vl as before, the dimensionless
scattering amplitudes are given by

f̄0
s = V0/�1 + isV̄0�, f̄±1,�

s = V̄±1,�/�1 + isV̄±1,�� ,

V̄±1,� = V1 ± �u���
z . �A12�

Assuming weak spin-orbit scattering, we may expand in �u,

f̄±1,�
s =

V1

1 + isV̄1

± �1 + isV̄1�2�u���
z . �A13�

The normalization factor �0 entering the expression for the
relaxation rate is obtained as

�0 =
w

1 + w
+ 2

w1

1 + w1
+ O��u� , �A14�

where w=V0
2, w1=V1

2. The eigenvalue �1 of tkk� is found as

�1 =
1

�0
�2V0V1�1 + V0V1�

�1 + w��1 + w1�
+ 2i�u���

z V0
V0�1 − w1� − 2V1

�1 + w��1 + w1�2 � .

�A15�

Analyzing this expression, one finds that the largest negative
values of �1 are reached for weak scattering, V0 ,V1�1,
when

�1 =
2V0

w + w1
�V1 + i�V0 − 2V1��u���

z � . �A16�

The minimum of �1� is obtained if V1 /V0=−1 /�2, where �1�
=−1 /�2.

Let us now consider diagram w2, which is determined by
the parameter J2

��, given by

J2
xx = − �0

−1��1 + �̃1�2� f̄0
+ f̄+1,�

+ + f̄0
− f̄−1,�

− � + c.c.� ,

b1 � f̄0
+ f̄+1,�

+ + f̄0
− f̄−1,�

− �A17�

=
2V0

�1 + w��1 + w1�

��V1�1 − V0V1� − i�u���
z V0�1 − w1� + 2V1

�1 + w1� � . �A18�

In the weak scattering limit, we have

�1 � b1/�0 =
2V0

w + w1
�V1 − i�2V1 + V0��u���

z � , �A19�

which differs from �1 only by the sign of the term V̄0 in the
imaginary part, i.e., �1�=�1�.
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