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We study the low-temperature heat transport in clean two-leg spin-ladder compounds coupled to three-
dimensional phonons. We argue that the very large heat conductivities observed in such systems can be traced
back to the existence of approximate symmetries and corresponding weakly violated conservation laws of the
effective �gapful� low-energy model, namely, pseudomomenta. Depending on the ratios of spin gaps and Debye
energy and on the temperature, the magnetic contribution to the heat conductivity ��mag� can be positive or
negative and can exhibit an activated or antiactivated behavior. In most regimes, �mag is dominated by the
spin-phonon drag: the excitations of the two subsystems have almost the same drift velocity, and this allows for
an estimate of the ratio �mag /�ph of the magnetic and phononic contributions to the heat conductivity.
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I. INTRODUCTION

Recent experiments both on spin-chain1 and ladder
compounds2 showed a surprisingly large magnetic contribu-
tion to the heat conductivity: the heat conductivity in the
direction parallel to the ladder �attributed to magnons and
phonons� largely exceeds the heat conductivity in directions
perpendicular to it �attributed to the phonons alone�. The heat
conductivity of clean gapless spin-1

2 chains coupled to
phonons shows a simple exponential behavior,3 associated
with a single characteristic energy scale resulting from the
high-energy process needed to relax momentum. In contrast,
gaps open up in the spectrum of �two-leg� spin ladders, and
consequently the heat transport involves a complex interplay
between different energy scales, leading to a rich gamut of
possible behaviors. In this paper, we present a theoretical
framework to describe low-temperature heat transport in
such clean gapped quasi-one-dimensional systems when they
are coupled to phonons.

In the absence of disorder, heat transport in quasi-one-
dimensional systems is determined by momentum conserva-
tion �or more precisely by “pseudomomentum”
conservation3–5�. In a clean lattice, momentum transfers are
quantized and therefore the momentum can only decay via
an umklapp process involving a large-momentum high-
energy state. This implies that transport in such systems is
nonuniversal as it depends on both high- and low-energy
features. Therefore, controlled analytic calculations are usu-
ally not possible �the situation is, however, simpler for sys-
tems with a finite magnetization3,4�. Nevertheless, we shall
show that under certain circumstances, such calculations are
possible. Indeed, in many spin systems, the typical spin ve-
locity vs is large compared to the sound velocity of the
acoustic phonons, vp. Therefore, the large-momentum state
with the lowest energy �required for an umklapp process�
will have most of its momentum carried by phonons. This
has two consequences: heat transport is �i� dominated by
spin-phonon scattering and is �ii� determined by high-energy
features of the phonon system but low-energy properties of

the spin system. The latter observation implies that con-
trolled calculations of transport are in principle possible �up
to nonuniversal prefactors describing the electron-phonon
coupling�, using the fact that high-energy properties of the
weakly interacting phonons are often known or can be mea-
sured. The necessary low-energy correlators of the gapped
spin-system can be obtained from an effective field theory
which can be analyzed by semiclassical6 or form-factor7

methods for temperatures T below the gap.
In contrast, in pure systems where phonons are absent

�e.g., cold atom realizations� or when vp�vs, no such con-
trolled calculation is possible as little is known about the
non-universal high-energy properties of strongly interacting
spin systems and one can make only qualitative statements,
e.g., that the heat conductivity is exponentially large but
finite.3 Previous numerical studies of pure ladder systems at
high T indicate that the heat conductivity of spin ladders is
finite8,9 but could not reach temperature of the order of the
gap and below. On the analytical side, few results are avail-
able. The field theoretical treatment of Ref. 10 ignored the
role of umklapp processes, thus leading to ballistic transport
in a clean and pure system. Rozhkov and Chernyshev11 in-
cluded the effect of disorder and phonons in spin chains
within a Boltzmann equation approach but did neither con-
sider spin-phonon drag nor addressed the question of um-
klapp, which becomes essential in a clean system.

In the following, we will first present the general field
theoretical framework on which our calculation is based. We
discuss the various umklapp processes that induce �pseudo�
momentum decay in quanta of size G or G /2, where G is the
reciprocal lattice vector. We shall discuss the role of such
processes in �weakly� violating the conservation laws of the
model, allowing a hydrodynamic description of the system.
We then use the memory-matrix formalism to calculate the
heat conductivity � in the various regimes. The memory-
matrix approach is generally not exact even in the limit of
small couplings but it can be shown12 to give a lower bound
to �, which is saturated in the limit of a large separation of
time scales between slow and fast modes, i.e., if a hydrody-
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namic description is possible, as is the case here. Finally, we
interpret our results in terms of the spin-phonon drag and the
decay rates of various slow modes. The various resulting
behaviors of ��T� are summarized in Fig. 1, where regime I
is consistent with the particular data of Ref. 2 for T below the
spin gap but still larger than a lower scale T*, where the
magnetic heat conductivity displays an activated behavior.

II. LOW-ENERGY EFFECTIVE THEORY

Our starting point is the following Hamiltonian:

H = �
�

Hs��� + Hp + Hs,p, �1�

which describes an array of spin ladders �denoted by s, with
� the ladder index� coupled to acoustic three-dimensional
phonons �p�, via the term Hs,p. For simplicity, we assume
Hp��k,�v� �k �ak,�

† ak,�, where the velocities of the various
branches of acoustic phonons �v�� are approximated by a
characteristic velocity vp, associated with the Debye energy
via �D�vpG /2.

A single spin ladder is described by

Hs = J��
j,�

S�,j · S�,j+1 + J��
j

S1,j · S2,j , �2�

where S�,j is a spin-1
2 operator acting on site j and on leg

�=1,2 of the ladder.
As we are interested in the heat conductivity at low T, it is

useful to consider the effective low-energy theory for Hs �as-
suming a small gap, ��J�� described in terms of four mas-
sive Majorana fermions,13

Hs = H0
s + �

i

gi� dx Oi�x� ,

H0
s =� dx�

a=0

3
iva

2
��L

a�x�L
a − �R

a�x�R
a� + i�−�	a0�a�R

a�L
a . �3�

In the above expression, the operators Oi are all irrelevant
and marginal operators allowed by the symmetry of the

original lattice Hamiltonian 	Eq. �2�
. The three Majorana
fields �a, a=1,2 ,3, describe the low lying magnon triplet
with the velocity va=v1 and �spin� gap �a=�1, while the
remaining Majorana field �0 describes a singlet excitation
with gap �0 and velocity v0: the single-particle excitations
have the dispersion relation 
a�k�=�va

2k2+�a
2. While �0 /�1

�3 for weak J�, this ratio changes for larger J� /J� or when
other microscopic interactions are present—so that we shall
consider it as a free parameter, yet assuming �0��1.

The total heat current, obtained through the continuity
equation of the energy density, is

JE � vp
2Pp + v0

2P0 + v1
2P1, �4�

where Pp, P0, and P1 are the momentum operators of
phonons, singlets, and triplets, respectively, for example,
P1=− i

2�a=1,. . .,3,��dx���R
a �x��R

a +��L
a �x��L

a �. In Eq. �4�, we ne-
glect further contributions from the interactions which turn
out to give only subleading corrections.

The crucial observation on which our following analysis
is based is that the effective low-energy theory of our initial
Hamiltonian conserves the total momentum,

PT = Pp + P0 + P1. �5�

A direct consequence is that—within this low-energy
description—the heat conductivity is infinite.14,15 However,
the continuous translational invariance of Eq. �3� is not a true
symmetry and follows from neglecting umklapp terms whose
inclusion leads to a decay of PT, which now acquires an
exponentially long lifetime at low temperature. This is to be
contrasted to all other decaying modes, whose lifetime be-
haves as power laws of T and allows for a hydrodynamic
description based on the slow modes Pa, a= p ,0 ,1. Including
these umklapp operators is thus the correct way to obtain a
low-energy effective theory suited to the calculation of trans-
port properties.

Three different umklapp terms turn out to be important if
we assume that vp�v0 ,v1,20

HU
p = �

n�3
gp

�n� � dx��xq�n cos�Gx� , �6�

HU
sp = gD

sp� dx��xq�2OD�x�cos�Gx/2�

+ i�
a

ga
sp� dx��xq�2�R

a�L
a cos�Gx� , �7�

with q�x�
� 1
�vp�k�e

ikxx�ak
† +a−k� d3k

�2��3 the displacement field for

acoustic phonons projected along the ladders �ak
† is an abbre-

viation for the sum of contributions from various phonon
modes�. OD
�a=0

3 �a is the continuum limit of the dimeriza-
tion operator �−� j�S1,j +S2,j� · �S1,j+1+S2,j+1�, where each
�a �a=0, . . . ,3� is the Ising spin operator for the quantum
Ising model that is naturally associated with the Majorana �a

theory13 �in our conventions, Ising model “0” is in its quan-
tum disordered phase, while the three other models are or-
dered�. We checked that linear couplings to phonons in Eq.
�7� are subdominant.21
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FIG. 1. Schematic plots of ��T� in three regimes. Depending on
the size of Ep �i.e., the Debye energy� compared to the values of the
spin gaps, one obtains qualitatively different behaviors of the heat
conductivity �shown for T��1�. Note that in regimes, I and II, �mag

is displayed, while in regime III, the total � is displayed ��mag is not
defined in this regime—see text�. The dominating momentum trans-
fer processes within the spin and phonon system, and from those
modes via umklapp scattering to the lattice, are shown schemati-
cally below the horizontal axis. T* is of order �vp /v1�2�1.
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On top of the umklapp terms, it is also important to in-
clude normal processes

HN,k
sp = i�

a

ga
N,k� dx��xq�k�R

a�L
a , �8�

which allow momentum exchange between the spin and pho-
non systems. We do not consider normal operators acting
only in the spin sector or only in the phononic sector, as they
commute separately with the spin and phonon momentum
operators and accordingly do not contribute to leading order
to the heat conductivity.

III. HYDRODYNAMIC APPROACH

To obtain a hydrodynamic description, we first identify a
basis in the space of slow modes, in our case given by Pp,
P0, and P1. Then, we introduce the matrix of static suscep-
tibilities of the slow modes, �ij =

1
LT �Pi�0�Pj�0�� �equal time

correlator� and a matrix of conductivities defined by Kubo
formulas for the Pi’s, �ij =

T
��0

1/Td�ei���T�Pi���Pj�0��, i , j
= p ,0 ,1. The heat conductivity is then given by

� =
1

T
�

i,j=p,0,1
vi

2v j
2�ij 
 �ss + 2�sp + �pp. �9�

Note that besides the spin and phonon heat conductivities
�ss ,�pp, there is also the drag term 2�ps= 2

T�b=0,1vp
2vb

2�bp.
Within the memory-matrix approach,16,17 the matrix of

conductivities �̂��� is expressed as

�̂��,T� = �̂
1

M̂��� − i��̂
�̂ , �10�

where M̂��� is the so-called memory matrix. It can be shown
that to leading order in the coupling constants of the um-
klapp terms gU and of the normal spin-phonon term gN, the
memory matrix is simply given by3–5

Mij �
i

�L
	�ṖiṖj�R��� − �ṖiṖj�R�0�
 , �11�

where �¯�R are the retarded correlation functions evaluated

with respect to the unperturbed Hamiltonian as Ṗi is already
linear in the perturbations.

To evaluate Eq. �11� to leading order, we need various
correlation functions of the decoupled spin-phonon system.
As discussed above and checked below, for vp�vs and low
T, one needs the high-energy correlation function in the pho-
non sector but only the low-energy asymptotics of spin-
correlation functions. To obtain the correct low-energy corr-
elators in the spin sector, it is in general necessary to take
into account the �unitary� scattering of the thermally excited
quasiparticles using generalizations of Sachdev and Young’s
semiclassical arguments6—see the Appendix. For example,
the correlator GD�x , t�= �OD�x , t�OD�0,0�� of the dimeriza-
tion operator, which is related to the Majorana fields in a
highly non linear and nonlocal way, is given by

GD�x,t� = NK0��0

v0

�x2 − v0
2t2�e−�1/2���3x/�1,3t/�1�, �12�

with N a nonuniversal prefactor, ��x̄ , t̄�= x̄ erf�x̄ / t̄���
+ t̄e−x̄2/��t̄2�, K0 the modified Bessel function, �1= �

2Te�1/T, and
�1=v1� �

2�1Te�1/T. It will, however, turn out that the scattering
from other thermally excited quasiparticles described by
GD�x , t� is not important as our problem is dominated by the
spin-phonon scattering.

A generic umklapp memory-matrix entry at zero fre-
quency can be cast in the form q2 Im� tdt�dxeiqxGpGs, with
q=G /2 or G and Gp�s� the appropriate phonon �spin� cor-
relator. At low T�vpq, we evaluate it in the saddle point
approximation, by deforming the contour in the complex
plane. The saddle point lies at one of the phonon propagator
poles, vpt*=sgn�q�x*=−

ivp

2T , well within the spin light cone
where there are no contributions from the spin-spin scatter-
ing. Moreover, the semiclassical approximation for GD is
valid at the saddle point.

The memory matrix can be split into four contributions,

M = MN + Mph + MG/2 + MG, �13�

corresponding to the relaxation processes described by terms
�8�, �6�, and �7�.

Generically, a memory-matrix entry bears an activated
form at low temperature and thus can be specified by an
activation gap and a prefactor. While the prefactor depends
on nonuniversal, high-energy features of the spin system, in
the soft phonon limit vp�vs, only universal features of the
spin system determine the activation gap. This is why we
only give the leading, exponential behavior at low T for the
various memory-matrix entries �with the exception of one
limiting case, see below�. These expressions involve differ-
ent umklapp gaps,

Ep =
vpG

2
, ED =

vpG

4
+

�0

2
�1 − �0

2,

Eb =
vpG

2
+ �b

�1 − �b
2 �14�

where �b=
vp

vb
�1 and b=0,1 labeling the spin singlet and

triplet excitations. These formulas have a simple interpreta-
tion: under the constraints of energy and momentum conser-
vation, they are the lowest energies for processes where the
momentum q=G or G /2 is absorbed by scattering a phonon
from −q /2±O�� /vp� to q /2�O�� /vp� while scattering �Ea�
or creating �ED� a spin excitation. The simple form of the
phonon energy scale appearing in Eq. �14� is a result of our
simplified treatment of the phonon sector—high energy fea-
tures thereof would modify this form but not the fact that it
depends on a single scale Ep��D.

The leading T dependence of the various contributions to
the memory matrix is summarized as follows. The phonon
umklapp 	Eq. �6�
 gives rise to a single nonvanishing entry,
Mpp

ph �e−Ep/T. Entries due to normal processes are Mpp
N =x0

+x1, Mbb
N =−Mpb

N =xb, and xb�e−�b/T. Spin-phonon umklapp
processes with momentum transfer G entries are Mpp

G =y0
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+y1 and −C−1
b Mpb

G =Cb
−2Mbb

G =yb with Cb=
�b

�1−�b
2

2�b

vbG �1 and

yb�e−Eb/T. Finally, the relevant G /2 entries are Mpp
G/2

=−C0
−1Mp0

G/2=C0
−2M00

G/2�e−ED/T.
With all these elements at hand, using Eqs. �9�–�11� and

performing a straightforward matrix inversion yield the heat
conductivity, which displays very different behaviors de-
pending on the relative value of the magnetic gaps and De-
bye energy. In the following, we follow a more physically
transparent approach and present in detail the temperature
dependence of � as well as the physical mechanism explain-
ing it, in different parameter regimes.

IV. RESULTS AND DISCUSSION

For the interpretation of our results detailed below, it is
useful to rewrite the linear-response relation �Pi�=�ijAj,
where Aj is an external field coupling linearly to Pj. Using
Eq. �4�, we can identify it with Aj =v j

2 �Tj

T , where �Tj is a
fictitious temperature gradient coupling only to the sub-
system j. Using Eq. �10�, one obtains

�

�t
�Pi� − �ivi

2�Ti

T
= − �M̂�̂−1�ij�Pj� , �15�

where we used �ij ��i	ij.
This equation has a simple interpretation: it is a rate equa-

tion for the momenta and �−1=M̂�̂−1 can therefore be iden-
tified with the matrix of relaxation rates. The matrix of con-
ductivities can be extracted from the equilibrium solution of
the rate equation.

We will now discuss our results in the three different re-
gimes depicted in Fig. 1, assuming always �1��0 and vs
�vp. To investigate the relation to experiments, it is useful to
define the magnetic contribution to �,

�mag = � − �ph
0 = �ss + 2�ps + 	�pp, �16�

where �ph
0 is the conductivity of a hypothetical system with-

out magnetic degrees of freedom �estimated in experiments
from fits to � perpendicular to the spin ladders�. Note that
there is also a negative contribution from the change of the
phonon conductivity 	�pp=�pp−�ph

0 due to scattering from
spin excitations.

A. Regime I

We first investigate regime I of Fig. 1 where Ep ,T��1
and the momentum relaxation is dominated by the phonon
umklapp �Ep�E1 ,ED�. As �0��1, we can neglect the sin-
glet mode and focus on the 2�2 matrix describing the re-
laxation of phonon and triplet momentum to obtain

�pp = vp
4 �pp

T
=

1

T
�pvp

4�p
U �

T��1

eEp/T, �17�

�ss = v1
4�11

T
=

1

T
�1v1

4�1→p
N � e−�1/T, �18�

�ps = v1
2vp

2 �ps

T
=

�1v1
2

�pvp
2 �pp � e�Ep−�1�/T, �19�

where �i=�ii �to leading order, �̂ is diagonal� and 1 /�p
U

=Mpp
ph /�p�e−Ep/T is the phonon umklapp rate. The “pure

spin heat conductivity” �ss—corresponding to the heat being
carried by magnons—is determined by the exponentially
small number of spin excitations, �1�e−�1/T, and the nonex-
ponential rate of momentum transfer, 1 /�1→p

N =M11
N /�1, from

the spin system to the phonon system. Most interesting is the
drag term �ps, which dominates over �ss. As we can neglect
momentum dissipation within the spin system, even a small
coupling of the spin and phonon systems by normal pro-
cesses induces a “perfect drag:” both subsystems have the
same drift velocity. Therefore, the ratio of heat currents is
given by the ratio of energy densities ��i

e�=vi
2�i,

22 and we
find

�ps = �pp��1
e�/��p

e� , �20�

in complete agreement with our memory-matrix analysis.
In Eq. �17�, only the leading behavior of �pp is shown. To

calculate 	�pp, one has to consider the leading correction
arising from the subdominant mixed spin-phonon umklapp
	Eq. �7�
 described by the rate ��sp

U �−1=�ijMij
G /�p. We obtain

	�pp = −
1

T
�pvp

4 ��p
U�2

�sp
U � − e�2Ep−E1�/T. �21�

This term corresponds to “magnetic friction:” the heat cur-
rent carried by phonons is reduced due to scattering on the
dilute gas of magnons.

The competition between the negative 	�pp and the posi-
tive �ps leads to a complex cross-over behavior of the mag-
netic heat conductivity �mag, see Fig. 1. Below T*= �2Ep

−E1�− �Ep−�1��
�1

2

2 �1 �for �1�1�, the negative 	�pp domi-
nates. For �1�T�T*, the behavior is fixed by the pre-
exponential factors; in this regime, we find

�ps

�	�pp�
=

N
�1
�vpG

�1
�4� T

�1
�−9/2� ḡph

U

ḡsp-ph
U �2

, �22�

where the ḡU’s are the dimensionless microscopic couplings
and N is a numerical constant. Interestingly, the crossover
scale T* corresponds to the temperature where the saddle
point location crosses the thermal wavelength of the mag-
nons.

Under the hypothesis that for T�T* magnetic friction is
dominated by the enhancement of conductivity due to the
addition of heat carriers, namely, the magnons, we can relate
the ratio of the magnetic versus phononic contributions to the
heat conductivity, which is of experimental relevance, to
purely thermodynamical quantities,

�mag

�ph
0 �

v1
2�11

vp
2�pp

. �23�

B. Regime II

Next, we consider regime II of Fig. 1, where �1�Ep
��0. In this regime, formulas �17�, �19�, and �21� for �pp,
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�ps, and 	�pp remain unchanged; however, in contrast to re-
gime I, both �ps and 	�pp are exponentially large. Further-
more, the momentum transfer rate 1 /�p→1 from the phonon
system to the spin system is now larger than the phonon
umklapp rate 1 /�p

U, and therefore the two subsystems equili-
brate before losing momentum via phonon umklapps, yield-
ing

�ss =
1

T
�1v1

4�1→p
N

�p→1
N �p

U � e�Ep−2�1�/T. �24�

�ss is always smaller than �pp, and generically �ss��ps. In
this regime, the same remark as in regime I, regarding the
relative size of the magnetic versus phononic heat conduc-
tivity, applies: if the magnetic friction is subdominant, the
ratio only depends on thermodynamical quantities.

C. Regime III

In regime III, Ep��0, a new scattering channel 	Eq. �7�

dominates where �pseudo�momentum in quanta of G /2 is
transferred to the lattice in a complex process involving sin-
glet, triplet, and phonon modes. The associated umklapp gap
ED�Ep therefore replaces Ep in formulas �17�, �19�, and
�24�. The leading term is the phonon contribution

�pp =
1

T
vp

4�p�D
U � eED/T, �25�

with 1 /�D
U=�ijMij

G/2 /�p the rate of total momentum relax-
ation. As the phonon contribution is strongly reduced by the
presence of the magnetic system, the naive procedure of dis-
entangling the magnon contribution �mag by subtracting the
phonon background 	Eq. �16�
 is not useful in this regime.

D. Comparison to experiments

The experimental data presented in Ref. 2 on cuprate lad-
ders clearly display an activated behavior for �mag, the acti-
vation energy being close to the gap value �which is of the
order of 400 K�. Measurements have been carried on for
temperature ranging from a few tens of Kelvins up to 300 K.
Due to the operative way to determine the magnetic heat
conductivity, namely, by subtracting a “pure phonon” contri-
bution obtained by a low-temperature fit, these data are reli-
able only for not too low temperatures, i.e., T�50 K.

Our theory does not directly apply to these systems as the
low-temperature properties are dominated by disorder. Nev-
ertheless, it is possible to obtain a qualitative understanding
of what happens in a situation where the phonon sector is
disordered. Then, due to the scattering from defects �in com-
bination with normal phonon-phonon processes18�, the pho-
non heat current Je

ph has no longer an exponentially large
lifetime. It is possible to mimic this situation by taking the
limit Ep→0 in our equations. This indicates that these com-
pounds are located deep into regime I, and the corresponding
activation energy for T�T* is then close to the spin gap.
Unfortunately, the temperature T*�4 K turns out to be
much lower than the minimal temperature above which the
spin contribution to the heat conductivity can be determined
reliably in the experiment. Therefore, the characteristic sign

change shown in the first panel of Fig. 1 is not observable in
these samples.

V. CONCLUSION

Our results emphasize the richness of transport phenom-
ena, the actual low T heat conductivity depending in a subtle
way on the different scales present in the system. In particu-
lar, we find that in a clean system, the magnetic contribution
to the conductivity does not display the trivial activated be-
havior with activation energy equal to the spin gap. An ex-
ception is the limit Ep→0, which mimics a situation where
momentum predominantly relaxes via disorder in the phonon
system, as might be the case in the cuprate systems of Ref. 2.
We hope that there will be in the future more measures on
spin-ladder materials allowing to probe the different regimes
discovered by our study.
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APPENDIX: LONG DISTANCE SPIN CORRELATORS

In this appendix, we present the calculation for the low-
temperature dimerization operator correlator, GD�x , t�
= �OD�x , t�OD�0,0��, which relies on the semiclassical ap-
proach developed in Ref. 6. We first recall the results ob-
tained by Sachdev and Young for a single Ising model, and
we then apply these ideas to our system, which consists of
four weakly coupled Ising models.

1. Single Ising model

The central idea of this approach is to exploit the fact that
at low enough temperatures in a gapped system, T��, typi-
cal configurations of the system correspond to a very dilute
gas of quasiparticles, with mean quasiparticle separation of
the order of e�/T, much larger than their thermal de Broglie
wavelength �th= v

��T
. As shown in Ref. 6, a classical treat-

ment of these quasiparticles is legitimate. Only the scattering
rates of two particles �diluteness allows to consider only two-
body collisions� has to be calculated from quantum mechan-
ics. In one dimension, particles with a quadratic dispersion
are perfectly reflected for any repulsive potential in the limit
of small momentum. Therefore, the two-body scattering ma-
trix tends to its so-called superuniversal form, S=−1, irre-
spective of the form the two-body potential. Remarkably,
these ingredients are sufficient to allow for a closed form
evaluation of the Ising operator correlator, both in the or-
dered and disordered phase, with the result

Gord = ���x,t���0,0�� = N2e−��x/�,t/��,

��x̄, t̄� = x̄ erf� x̄

t̄��
� + t̄e−x̄2/��t̄2�, �A1�

with N= ��� the local T=0 magnetization, �=v� �
2�Te�/T, and

�= �
2Te�/T. In the disordered phase, the correlator reads
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Gdis = ���x,t���0,0�� = AK0��

v
�x2 − v2t2�e−��x/�,t/��.

�A2�

We are interested in the correlator of the dimerization
operator OD=�a=0

3 �a. The crudest approximation consists of
neglecting the interaction between the Ising models and
leads to a simple product form, GD=Gdis

0 �a�0Gord
a . Of course,

such an approximation is expected to fail to capture the cor-
rect long time and space limit since it neglects the scattering
between quasiparticles on different Ising models. In reality,
the Ising models are coupled—to lowest order, this coupling
is given by the spin density–spin density coupling
�a,b��R

a�R
b�L

a�L
b—and the scattering is relevant in the sense

that it qualitatively affects the form of GD at large t ,x /v
��−1. We now proceed to take this interaction into account,
in the limit of heavy singlet excitations, �0��1. This is a
priori the relevant physical regime since in actual realiza-
tions of the spin ladder, no indication for the existence of the
singlet branch, at reasonably low energy, has ever been re-
ported to our knowledge.

2. Weakly coupled Ising models

In the semiclassical approximation, field configurations
contributing to the path integral representation of the corre-
lation function are classical ones: quasiparticles follow
straight lines, each given its corresponding Boltzmann
weight. Then, the interaction between two particles is treated
quantum mechanically, the S matrix bearing its superuniver-
sal form �k→0 limit�: particles bounce on each other �hard
core collisions� with a � phase shift �S=−1�. We now repeat
Sachdev and Young’s6 line of reasoning including the inter-
Ising model interaction; this amounts to have the straight
lines representing the propagation of thermally excited states
to “see” each other, i.e., the quasiparticles belonging to dif-
ferent Ising models to scatter, the S matrix being again the
superuniversal one.

For the Ising models a�0 that are in the ordered phase,
quasiparticles are domain walls for the different Ising models
that separate domains with different magnetizations. Each
domain wall carries an index a�0. Each time a domain wall
a�0 crosses the line joining the points �0,0� and �x , t�, the
operator �a�0�a has its ±1 eigenvalue flipped. This allows us
to conclude that its semiclassical correlator reads

��
a�0

�a�x,t��
a�0

�a�0,0�� = N1
6e−��3x/�1,3t/�1�. �A3�

It is the same as the correlator in a single ordered Ising
model, the factor of 3 corresponding to the tripling of the
density of excited states 	the probability that a given excited
state carrying momentum p crosses the line joining �0,0� to
�x , t� is q�=3q=3�x−v1�p�t� /L, with L the system size and

v1�p�=
d
1�p�

dp , where 
1�p�=��1
2+v1

2p2 is the one-magnon dis-
persion relation
.

However, we are rather interested in the correlator of the
dimerization operator which includes both singlet and triplet
fields. The singlet Ising model being in its disordered phase,

the spin �0
�0,z has an overlap with the quasiparticle cre-
ation operator. Using this remark, the semiclassical calcula-
tion can be formulated using the real-space diagrams of Sa-
chdev and Young:6 full lines represent world lines of domain
walls in the ordered models and dashed lines represent the
propagation of excitations of the disordered model. There is
a line joining �x , t� to �0,0� that corresponds to the creation of
a 0 particle at point �x , t� and to its destruction at point �0,0�
�therefore, this line should be dashed on both its extremities�,
and this line has to be a straight line 	the state
OD�x , t�OD�0,0���� has to have a finite overlap with ��� to
contribute to the trace defining the expectation value; there-
fore, the pattern of world lines with and without the straight
line connecting �0,0� and �x , t� has to be the same
—in the
following, we call this a straight line D. Additional rules are
as follows: each time a dashed line crosses D, there is a
scattering event, particles bounce onto each other, and this
contributes an S=−1 factor—note that since we are in one
dimension and because the two scattering particles have the
same dispersion relation, lines coming out of a scattering
event are just continued straight.

To proceed, one has to analyze collisions between dashed
and full lines. A simplification occurs in the case of degen-
erate masses �0=�1. Then, energy-momentum conservation
during the scattering events ensures that lines are also con-
tinued straight �particles just exchange their quantum num-
bers�, and it can be shown that the problem maps onto the
calculation of Pott’s spin correlator in the four-state Pott’s
model in its disordered phase, a problem which has itself
been solved in the low T regime using the semiclassical
approach.19

This fine-tuned degenerate limit is, however, not relevant
to our situation where masses are generically different. If
�0��1, during a scattering event between a domain wall
and a type 0 particle, particles do not just exchange their
momenta and lines are deviated after the crossing. In particu-
lar, if one considers collisions between domain walls and the
line D, and remembering that the pattern of world lines with
and without the line D should be the same, one concludes
that these events just do not give any contribution to the
semiclassical correlator—thus, an additional rule is to forbid
scattering between plain lines and D �see Fig. 2, left panel�.
Note that without D-full line crossing, the dimerization op-
erator is never flipped by any domain wall.

Given all these rules, one has to sum up contributions
over configurations with no crossing between full lines and

D

x

t

(x,t)

(0,0)

(x,t)

(0,0)
D

FIG. 2. Typical configurations contributing to GD for different
masses. Full lines indicate domain walls of the ordered models a
�0, while dashed lines represent propagation of the quasiparticles
of the singlet Ising model. Left: general case. Right: heavy singlet
limit.
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D. In general, this is a tough problem. A simplification oc-
curs in the case where masses are very different and, for our
purpose, when the singlet mass is much greater than the trip-
let mass. Then, it is possible to neglect all contributions with
dashed lines in the thermal background �see Fig. 2, right
panel�; the error is of the order of exp�−	�0−�1� /T
. Enforc-
ing that configurations contributing contain no D-full line
crossing amounts to the replacement of �1−2q��N by �1
−q��N in Eq. �3� of Ref. 6. Performing the average over p, we
get

GD�x,t� = AK0��0

v0

�x2 − v0
2t2�e−�1/2���3x/�1,3t/�1� �A4�

for x , t�0.
We will also need to evaluate correlators involving de-

rivatives of just one Ising spin of the kind
��x�

a�b�a�b�x , t�OD�0,0��. Of course, they are not all inde-
pendent. It suffices for our purpose to compute

GD� = ��0�x �
a�0

�a�x,t�OD�0,0�� , �A5�

which we evaluate using GD� =lim
→0	��a�0�a�x
+
��0�x , t�OD�0,0��−GD�x , t�
 /
. Contributions to the first
term are those with domain walls passing between �x+
 , t�

and �x , t� but not crossing the line D �see Fig. 3�.
The probability of having one single domain wall with

momentum p passing is q
=
��v1�p�t−x� /L �with � the
Heaviside function�, and after calculation, we find

GD� �x,t� = GD�x,t��1�x,t� ,

�1�x,t� = −
3

2
�

p0

� dp

�
e−
1�p�/T, �A6�

where p0 is the root of the equation
�
1�p�

�p =x / t. We note that
��1�x , t��� 3

2�1
−1.
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FIG. 3. Typical configuration contributing to GD� in the heavy
singlet mass limit.
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