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The modulational instability of coherently excited spin waves is studied in an atomic spin chain of spinor
Bose-Einstein condensates �BECs� confined in an optical lattice. We examine the dependence of the stability on
the long-range nonlinear interaction of spin waves excited at different lattice sites. The long-range nonlinear
spin coupling in the optical lattice is due to light-induced and static magnetic dipole-dipole interaction between
atoms. We compare the spin wave dynamics in an atomic spin chain of spinor BECs formed in an optical lattice
with that in a Heisenberg-like spin chain in solid-state physics. This reveals the important differences of the
spin chain with long-range spin coupling from that with the short-range one.
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I. INTRODUCTION

The experimental observations of spin domains, quantum
tunneling across the spin domains, and spin exchange dy-
namics have led to rapidly growing interest in dynamical
properties of Bose-Einstein condensates �BECs� with spin
degrees of freedom in the optical trap.1–4 Among them, the
modulational instability �MI� of spinor BECs in a single op-
tical trap has attracted much attention as MI is an indispens-
able mechanism for understanding a diversity of dynamic
processes in the Bose condensed systems such as pattern
formation, domain walls, nonlinear spin excitations, quantum
phase transition, etc.1,5–9 Meanwhile, the dynamical proper-
ties of spinor BECs in the optical lattices have also been the
attracting topics in the blossoming area of ultracold atoms. A
number of phenomena including the spin mixing, spin tex-
tures, spontaneous magnetization, spin waves, macroscopical
spin tunneling have been studied.5,6,10,11 On the other hand,
the spinor BECs in the optical lattices provide a unique tool
to study the analog of spin quantum dynamics of Bose sys-
tems to that of electrons in condensed matter physics.12–16 In
this paper, we develop a study on the MI of extended non-
linear spin waves of spinor BECs in the optical lattice. From
the condensed matter physics, we have learnt that the MI of
extended nonlinear spin waves in solid-state systems of spin
chains has been an important process affecting the spin-
related properties of magnetic materials.15–20 In the solid-
state spin systems, the MI of extended nonlinear spin waves
mainly originates from the Heisenberg-like short-range ex-
change interaction between electrons. The theoretical models
and treatment are limited to only the approximation of
nearest-neighbor interaction. All long-range interactions are
neglected. In our knowledge, the MI of extended nonlinear
spin waves in lattice spin systems, where the long-range in-
teraction between different spin sites is dominant, has not yet
been explored so far.

In our previous work, we have shown that one-
dimensional optical lattice can be used to confine spinor
BECs to form a coherent atomic spin chain.10,11,21 In this
case, the spinor BECs behave like spin magnets and can

interact with each other through both the light-induced
dipole-dipole interaction and the static magnetic dipole-
dipole interaction. As a result, an analogy of atomic chains of
spinor BECs can be made to the spin chains in the solid-state
magnetic systems. However, a key difference of the atomic
spin chain from solid-state one is that we are facing a com-
pletely new spin system in atomic physics where the long-
range interactions play a dominant role in the spin dynamics.
This paper is organized as follows. In Sec. II, we establish a
physical model to describe the coherent atomic spin chain
containing spinor BECs which are confined in an optical
lattice and subject to the long-range dipole-dipole interac-
tion. In Sec. III, we start from an atomic spin chain where the
excitations of nonlinear coherent spin waves �NCSWs�
exist.10 In this case, using the Holstein-Primakoff transfor-
mation and the method of linear stability analysis,7,8,15 we
study the MI of the extended NCSWs with the long-range
site-to-site spin coupling through the dipole-dipole interac-
tion. The explicit expressions of the stability criteria for the
extended NCSWs are established in general. For detailed
study, we focus on the NCSW modes near the Brillouin zone
boundary with the long wavelength modulational instability.
In order to determine the role of long-range site-to-site spin
coupling in the spin dynamics in the optical lattice, we com-
pare the behaviors of the spin wave MI for the different cases
of the nearest-neighbor �NN� approximation, the next-
nearest-neighbor �NNN� approximation, and the long-range
spin coupling, respectively. In Sec. IV, we carry out the de-
tailed numerical simulations for the MI of the extended NC-
SWs in the time evolution. The conclusions are given in Sec.
V.

II. HAMILTONIAN OF SPINOR BOSE-EINSTEIN
CONDENSATE IN THE OPTICAL LATTICE

We consider a one-dimensional optical lattice formed by
two �-polarized laser beams counterpropagating along the y
axis. The two lattice laser beams are detuned far from atomic
resonance, and the condensate confined in the lattice is ap-
proximately in its electronic ground state. We assume that
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the lattice potential is deep enough so that the condensate is
divided into a set of separated small condensates located at
each lattice sites.10 For F=1 spinor condensates, the indi-
vidual condensates consist of atoms with three Zeeman mag-
netic sublevels; hence, they behave as collective spin mag-
nets in the presence of external magnetic fields. Such spin
magnets form a one-dimensional �1D� coherent atomic spin
chain along the optical lattice. Under the tight-binding ap-
proximation and ignoring both the nonresonant and spin-
independent constant terms, the F=1 spinor BEC in the op-
tical lattices can be described in terms of the following spin
Hamiltonian:10

H = �
i
��a�Ŝi

2 − �BŜi · B − �
j�i

Jij
z Ŝi

zŜj
z − �

j�i

Jij�Ŝi
−Ŝj

+ + Ŝi
+Ŝj

−�� ,

�1�

where Ŝi is the ith collective spin operator, with components

Ŝi
�±,z�. The first term in the Hamiltonian results from the spin-

dependent interatomic collisions at a given lattice site, with
�a�= �1 /2��a�d3r	�i�r�	4. The B is an external magnetic field
oriented along the z axis, leading to the second term of Zee-
man energy. The parameter �B=−�BgF is the gyromagnetic
ratio with gF being the Landé g factor and �B the Bohr
magneton. The external magnetic field B is strong enough to
polarize the ground-state spin orientations of the atomic
chain along the quantization axis z.11 The last two terms
describe the site-to-site spin coupling induced by both the
static magnetic dipole-dipole interaction and the light-
induced dipole-dipole interactions. The coupling coefficients
have the following forms:10

Jij
z =

�0�B
2

16��2 
 dr
 dr�
	r�	2 − 3y�2

	r�	5
	�i�r�	2	� j�r − r��	2,

�2�

Jij =
U0

144�2kL
3 
 dr
 dr�fc�r��exp� r�

2 + 	r�−r�� 	2

WL
2 �

�cos�kLy�cos
kL�y − y���e+1 · W�r�� · e−1	�i�r�	2

�	� j�r − r��	2 +
1

2
Jij

z , �3�

where a cutoff function fc�r�=exp�−r /Lc� has been intro-
duced to describe the effective interaction range of the light-
induced dipole-dipole interaction, with Lc being the coher-
ence length associated with different decoherence
mechanisms such as the collective spontaneous emission and
collective absorption of N atoms.22 The wave number kL

=2� /�L, the transverse coordinate r�=�x2+z2, and WL the
width of the lattice laser beams. The e±1,0 are unit vectors in
the spherical harmonic basis. The tensor W�r� describes the
spatial profile of the light-induced dipole-dipole interaction
and has the form W�r�= 3

4 
�11−3r̂r̂�
sin��� /�2+cos��� /�3�
− �11− r̂r̂�cos��� /��, where 11 is the unit tensor, r̂=r / 	r	, and
�=kL	r	. The depth of optical lattice potential is defined as
U0=�			2 /6
, with 	 being the Rabi frequency. From Eqs.
�2� and �3�, we see that the light-induced dipole-dipole inter-

action in the presently designed optical lattice leads to the
spin coupling only in the transverse direction �the direction
perpendicular to the magnetic field�. In this sense, the atomic
spin chain formed in the optical lattice is anisotropic when
the light-induced dipole-dipole interaction exists. On the
contrary, the spin coupling induced only by static magnetic
dipole-dipole interaction is isotropic.

In this paper, we consider only the ferromagnetic
condensates.11 In the ground state of the ferromagnetic spin
chain of atomic Bose condensates described by Hamiltonian
�1�, the spins of atoms at each lattice site align up along the
direction of the applied magnetic field �the quantized z axis�.
As a result, the Hamiltonian �1� can be bosonized in terms of
the well-known Holstein-Primakoff transformation for the
spin operator23

Ŝ+ = ��2S − a†a�a, Ŝ− = a†��2S − a†a�, Ŝz = �S − a†a� ,

�4�

where a and a† are the boson annihilation and creation op-
erators which describe the spin deviation from the quantum z
axis. Physically, the spin deviation corresponds to the exci-
tations of spin waves. For a strong applied magnetic field
considered in this paper, the spin deviation due to excitations
is relatively weak. Hence, we neglect the fourth-order terms
in the expansion of �2S−a†a, and the Hamiltonian �1� can be
transformed to

Hs = �a�NS�S + 1� − �BBzNS + �BBz�
i

ai
†ai − �

i
�
j�i

Jij
z �S2

− Saj
†aj − Sai

†ai + ai
†aiaj

†aj� − 2�
i

�
j�i

JijS�ai
†aj + aiaj

†�

+
1

2�
i

�
j�i

Jij�ai
†ai

†aiaj + ai
†aj

†ajaj + aiaj
†aj

†aj + ai
†aiaiaj

†�

+ ¯ . �5�

The Hamiltonian �5� describes the excitations of nonlinear
spin waves in the ferromagnetic spin chain of atomic spinor
BECs. Here, we are interested in the coherent excitations of
spin in the system: A cluster of spin at each lattice site un-
dergoes a large excursion as compared with the rest of the
spins, and a physically acceptable candidate for quantum
states of such large-amplitude collective modes may be co-
herent states.24 Under the spin-coherent state representation,
using the time-dependent variation principle, we can trans-
form the equation of motion of operator al into the equation
of motion of probability amplitude �l, where �l= ��l	al	�l� is
the probability amplitude describing the NCSW excited at
the lattice site l,

i
��l

�t
= �BBz�l + �

j

2Jlj
z S�l − �

j

2Jlj
z � j

†� j�l − �
j

4JljS� j

+ �
j

Jlj�2�l
†�l� j + � j

†� j� j + � j
†�l�l� . �6�
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III. MODULATIONAL INSTABILITY OF NONLINEAR
SPIN WAVES IN ATOMIC SPIN CHAIN

A. Modulational instability criterion

Equation �6� governs the nonlinear dynamics of coher-
ently excited spin waves in an optical lattice. For an atomic
spin chain formed in an optical lattice, a big advantage over
the solid-state spin chain to study nonlinear spin dynamics is
that all the physical parameters �Jij� are controllable through
the external lattice laser beams. For the investigation of the
MI of spin waves presented here, we examine the stability of
an extended spin excitation, described as a plane wave, in the
presence of sufficiently small perturbations. First, we look at
the time evolution of a perturbed coherent spin wave of the
form

�l�t� = 
�0 + bl�t��exp i
�l�t� + 
l�t�� = 
�0 + bl

+ i�0
l�exp i
�l� , �7�

where �0 is a constant amplitude of a plane spin wave and its
phase �l�t��ql−�0t, and q is the wave number of the coher-
ent spin waves. The amplitude and phase perturbations bl and

l are real and much smaller than those of the spin wave in
the magnitude. The frequency �0 of spin wave obeying the
nonlinear dispersion relation is

�0 = �BBz + �
j

2Jlj
z S − �

j

2Jlj
z �0

2 − �
j

4JljS cos�qj − ql�

+ �
j

4Jlj�0
2 cos�qj − ql� . �8�

Since 	bl�t�	��0 and 	
l�t�	��l�t�, taking into account
Eq. �8�, we obtain the following linear coupled equations of
bl and 
l from Eq. �6�:

�bl

�t
= �

j

4SJlj�0�
l − 
 j�cos�qj − ql� − �
j

4SJljbj

�sin�qj − ql� + �
j


2Jlj�0
3 cos�qj − ql��
 j − 
l�

+ 4Jlj�0
2bj sin�qj − ql�� , �9�

− �0
�
l

�t
= − �

j

4Jlj
z �0

2bj − �
j

4SJlj
�bj − bl�cos�qj − ql�

− 
 j�0 sin�qj − ql�� + �
j

Jlj
− 4�0
3
 j sin�qj − ql�

+ �6bj + 2bl��0
2 cos�qj − ql�� . �10�

The properties of the eigensolutions of Eqs. �9� and �10�
determine the stability of the extended spin excitations. One
exponentially growing amplitude of perturbation with time t
in the eigensolutions is the signature of the MI. This can be
identified by working out the eigenvalues of Eqs. �9� and
�10�. For the purpose, we assume


l = 
 exp i�Ql + 	t� + c.c.,

bl = b exp i�Ql + 	t� + c.c., �11�

where Q and 	 are the wave number and frequency of the
modulation wave, respectively. Substituting Eqs. �11� into
Eqs. �9� and �10�, we obtain two coupled linear equations,

�	 − M11 M12

M21 	 − M22
�� b

�0

� = 0, �12�

where

M11 = M22 = �
j

�4Jlj�0
2 − 4SJlj�sin�Qj − Ql�sin�qj − ql� ,

�13�

M12 = i�
j


2Jlj�0
2 − 4SJlj�cos�qj − ql�
cos�Qj − Ql� − 1� ,

�14�

M21 = i�
j

�
4Jlj
z �0

2 + 4SJlj cos�qj − ql� − 6Jlj�0
2

�cos�qj − ql��cos�Qj − Ql� − �2Jlj�0
2 + 4SJlj�

�cos�qj − ql�� . �15�

The condition that Eq. �12� has a nontrivial solution re-
quires its determinant vanishing. This gives the eigenvalues

	 = M11 ± �M12M21. �16�

When the eigenvalue 	 is imaginary �M12M21�0�, the
perturbation bl will grow exponentially, and the excited non-
linear spin waves exhibit the MI. As a result, from the value
of 	, we can determine the stable and unstable regions for
different modulations. It is obvious that the MI regions de-
pend not only on the wave number of the extended spin wave
q and that of the perturbation wave Q but also on the non-
linear spin coupling coefficients Jlj and Jlj

z . Once the proper-
ties of the nonlinear spin coupling are determined, the MI of
the spin waves in the optical lattice will be identified through
the criteria M12M21�0. In order to quantitatively and ana-
lytically identify the MI regions, here we focus our discus-
sions on the NCSW modes near the Brillouin zone boundary
with the long wavelength modulational instability �Q�1�.
This is also the case usually adopted in the experiments for
solid-state spin systems.

From Eqs. �13�–�16�, we have learnt that the nonlinear
spin coupling described by the coefficients Jlj and Jlj

z plays
an important role in the nonlinear dynamics of spin waves.
Being different from the spin chains in the solid-state sys-
tems, the properties of the spin coupling in the lattice atomic
spin chain of spinor BECs can be controlled by tuning the
lattice laser beams and the shape of the condensate at each
lattice site. Such a character makes the lattice atomic spin
chain an ideal tool to study a diversity of spin-related phe-
nomena. To have a look at the properties of spin coupling,
we examine the dependence of the spin coupling coefficients
Jlj and Jlj

z on the lattice laser parameters and the shape of the
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condensate including the laser detuning, the laser intensity,
and the transverse width of the condensate. The laser detun-
ing 
 classifies the optical lattice into two categories: red-
detuned optical lattice �
�0� and blue-detuned one
�
�0�. For a blue-detuned lattice, the condensed atoms are
trapped at the standing-wave nodes where the laser intensity
is approximately zero 
cos�kLy��0�. As a result, the light-
induced dipole-dipole interaction can be neglected. In this
case, the spin coupling is governed only by the coefficient Jlj

z

caused from the static magnetic dipole-dipole interaction. On
the contrary, for a red-detuned lattice, the condensed atoms
are trapped at the maxima of the intensity of the standing-
wave laser and the spin coupling is dominantly determined
by the light-induced dipole-dipole interaction. In particular,
the spin coupling is anisotropic in this case. For given laser
parameters, the spin coupling coefficients, varying with the
lattice sites and the transverse width of the condensate, are
worked out and displayed in Fig. 1. In the calculation, we
consider as an example the F=1 electronic ground state
�3S1/2� of 87Rb, which has the Landé factor gF=−1 /2 and the
gyromagnetic ratio �B=−�B /2. In general, the magnetic
dipole-dipole interaction depends on the kind of atoms used.
For instance, for chromium condensates,25 which has a larger
gyromagnetic ratio �B=2�B, one expects a stronger magnetic
dipole-dipole interaction. However, in red-detuned lattices,
by controlling the laser parameters, we may always make the
light-induced dipole-dipole interaction dominate over the
static magnetic dipole-dipole interaction.

For a 1D optical lattice in our case, we have assumed that
along the lattice direction �the y direction�, the spatial size of
the condensate is much less than the lattice wavelength �L
for the tight-binding confinement, and the condensate has a
Gaussian shape with a width w in the transverse x-z plane.
From Fig. 1, it is clear that the spin coupling coefficients are
sensitive to the variation of the transverse width w of the
condensate for both static magnetic and light-induced dipole-
dipole interactions. For the static magnetic dipole-dipole in-
teraction shown in Fig. 1�a�, the wider the condensate is in
the transverse direction, the more important the long-range
effect becomes in the spin coupling. The spin coupling in-
duced by light-induced dipole-dipole interaction, in general,

exhibits the similar long-range behavior to that by the static
magnetic one. However, there is a difference that the light-
induced spin coupling has a preference to the particular
transverse width of the condensate w�1�L, as is shown in
Fig. 1�b�. Physically, this is due to the rapid oscillation of
light-induced dipole radiation in space with the light wave-
length �L. So far, we have a general understanding on the
properties of spin coupling in the optical lattice. Now, it is
time to examine the nonlinear dynamics of the spin waves.
For the purpose of comparison, we consider three cases be-
low: the NN approximation, the NNN approximation, and
the long-range spin coupling, respectively.

B. Nearest-neighbor approximation

Although the spin dynamics in the lattice atomic spin
chain is physically governed by the long-range spin cou-
pling, it is certainly helpful to look at the nonlinear dynamics
of spin waves under the near-neighbor approximations. First,
we consider the nearest-neighbor �NN� approximation where
the on-site spin is assumed to only couple to the spins at its
two neighbor sites, and the longer range coupling is artifi-
cially cut off. Using the NN approximation in Eqs. �13�–�15�,
we have

M12M21 � − �2�0
2 − 4S�J01

2 �cos Q − 1�

�cos q��4S − 6�0
2�cos q cos Q − �2�0

2 + 4S�cos q

+ 4�0
2J01

z

J01
cos Q� . �17�

From the criteria for the spin wave MI, M12M21�0, and the
condition 2S��0

2, we obtain the condition for the spin wave
MI,

��4S − 6�0
2�cos q cos Q − �2�0

2 + 4S�cos q

+ 4�0
2J01

z

J01
cos Q�cos q � 0. �18�

For the long wavelength modulation Q�1, Eq. �18� can be
simplified to

��1 − 2 cos q�cos q � 0, �19�

where �1=J01
z /J01 stands for the relative strength of the lon-

gitudinal spin coupling to the transverse one at the NN site.
Equation �19� indicates that the long wavelength MI in the
NN approximation is governed by the competition between
the longitudinal spin coupling due to static magnetic dipole-
dipole interaction and the transverse one due to light-induced
dipole-dipole interaction.

For a blue-detuned optical lattice, the condensates are
trapped at the standing-wave nodes where the laser intensity
is approximately zero. As a result, the light-induced dipole-
dipole interaction can be neglected. Then, we have an isotro-
pic spin coupling due to the static magnetic dipole-dipole
interaction. This leads to �1=2. Equation �19� becomes

1 10 20 30 40 50
0
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1

Lattice site j

J 0jz
/J

01z
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L

w=2.0λ
L

(a) (b)

FIG. 1. The static magnetic and the light-induced spin coupling
coefficients in the optical lattice as a function of the lattice site
index j for different transverse widths of the condensate. The laser
parameters are taken as �L=1 �m and �			2 /
2=105. The gyro-
magnetic ratio is chosen as �B=−�B /2 of electronic ground state of
87Rb.
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�1 − cos q�cos q � 0. �20�

From Eq. �20�, we can easily find that, when the wave num-
ber q of NCSW lies in the region �� /2,3� /2� including the
boundary of Brillouin zone �q=��, M12M21�0. This means,
in this region, the NCSWs with only NN spin coupling are
always stable for long wavelength modulation. Beyond this
region, the MI of NCSWs occurs.

However, for a red-detuned optical lattice, the condensate
atoms are trapped at the maxima of the standing-wave light
intensity and the light-induced dipole-dipole interaction is
dominant over the static magnetic dipole-dipole interaction.
In such an anisotropic lattice, the competition between the
longitudinal and transverse spin couplings leads to �1�1. As
a result, the condition M12M21�0 is always satisfied for ar-
bitrary spin wave number q. Hence, we conclude that in a
red-detuned optical lattice, the NCSWs with only NN spin
coupling are always stable under long wavelength modula-
tion.

C. Next-nearest-neighbor approximation

Before going to study the long-range effect, in this sec-
tion, we look at a case slightly beyond the NN approxima-
tion: the next-nearest-neighbor �NNN� approximation. In the
NNN approximation, the on-site spin is coupled to the spins
at its four near-neighbor sites. Again, under the long wave-
length modulation Q�1 and the condition �0

2�2S, we ob-
tain the following MI condition:

�cos q + 4A2 cos 2q��2 cos q + 2A2 cos 2q − �1 − A2�2� � 0,

�21�

where A2=J02 /J01 is the relative strength of transverse spin
coupling at different sites, and the relative strength of the
longitudinal to transverse spin coupling at the NN and NNN
site is � j =J0j

z /J0j �j=1,2�.
For a blue-detuned optical lattice, we have �1=�2=2.

Equation �21� simply becomes

cos q + 4A2 cos 2q � 0. �22�

The occurrence of the MI depends on the spin wave number
q and the relative transverse spin coupling strength A2. A
typical case is to look at the spin wave modes near the Bril-
louin zone boundary �q=��. This leads to the simple MI
criteria

1 − 4A2 � 0. �23�

In other word, when the relative transverse spin coupling
strength A2�0.25, M12M21�0, the MI of NCSWs would
appear near the Brillouin zone boundary. Evidently, this re-
sult is totally different from that in the NN approximation.
Similar case was discussed in Ref. 26, where they studied a
one-dimensional ferromagnetic chain of N spins with the iso-
tropic exchange interactions. Here, for the blue-detuned op-
tical lattice, our case is just isotropic. This result indicates
that the long-range spin coupling will completely change the
dynamic of the NCSWs.

For a red-detuned optical lattice, we have �1 ,�2�1, and
the MI condition is simplified as

�cos q + 4A2 cos 2q��cos q + A2 cos 2q� � 0. �24�

Similarly, for the spin wave modes near the Brillouin zone
boundary �q=��, Eq. �24� produces the result

�1 − 4A2��1 − A2� � 0, �25�

and now the MI criteria become

0.25 � A2 � 1. �26�

We see that in the NNN approximation, the MI of NCSWs
near the Brillouin zone boundary �q=�� for both the blue-
detuned optical lattice and the red-detuned one has the simi-
lar properties except that the MI criteria request an upper
bound for the relative transverse spin coupling strength A2 in
the red-detuned case. Again, we find that the NNN spin cou-
pling changes the nature of the MI of the NCSWs in the case
with the NN approximation.

D. Long-range interaction

Now, we come to study the effects of the long-range spin
coupling on the nonlinear spin wave dynamics by including
the spin coupling at all sites through the whole optical lattice.
First, for a qualitative analysis, we consider the MI of the
NCSWs near the Brillouin zone boundary �q=��. This leads
to

M21M12 = 8J01
2 S2�

j

Aj�− 1� j
cos�Qj� − 1��
j

Aj�
2� j�
2

+ 2�− 1� j − 3�2�− 1� j�cos�Qj� − ��2 + 2��− 1� j� ,

�27�

where we have set �0=��S, and Aj =J0j /J01�j=1,2 ,3 , . . . �
stand for the transverse coupling strength between the jth
site spin and the on-site spin. � j =J0j

z /J0j�j=1,2 ,3 , . . . � de-
scribe the ratio of the longitudinal and the transverse spin
couplings.

For a blue-detuned optical lattice, the condition �1=�2
= ¯ =� j =2 is satisfied, and under long wavelength modula-
tion �Q�1�, we have the MI criterion

fB�w� = �
j

�− 1� j+1j2Aj = 1 − 4A2 + 9A3 − 16A4 + ¯ � 0.

�28�

The summation in Eq. �28� contains different terms describ-
ing the long-range spin coupling for long wavelength modu-
lation. It is very interesting that starting from the studied
on-site spin �here we take as j=0�, the terms from the even
sites have a sign opposite to that from the odd sites in Eq.
�28�. The MI of the NCSW modes near the Brillouin zone
boundary depends on the competition between the contribu-
tion of the even sites and that of the odd sites. When the
contribution of the even sites is dominant, the NCSW modes
are unstable; otherwise, they are stable.

In Fig. 2, the dependence of the MI of the NCSW modes
near the Brillouin zone boundary on the transverse width of
the BECs in a blue-detuned optical lattice is compared for
the NNN approximation and the long-range spin coupling.

MODULATIONAL INSTABILITY OF NONLINEAR SPIN… PHYSICAL REVIEW B 76, 214408 �2007�

214408-5



We find that in the NNN approximation, the stability requires
a narrower range of transverse width than that in the long-
range spin coupling. This can be easily understood. From
Fig. 1�a�, for the blue-detuned optical lattice, one can see that
the relative strength of the transverse spin coupling due to
static magnetic interaction, Aj =J0j /J01=J0j

z /J01
z , rapidly in-

creases with the increase of the transverse width w. In the
NNN approximation, the stability determined by Eq. �23�
exists only for narrow transverse width w due to the rapidly
rising spin coupling strength A2 with w 
see Fig. 1�a��. How-
ever, for the long-range spin coupling, the stability depends
on the competition of the spin coupling from all sites through
the lattice. In particular, the contribution from the odd sites
always cancels out that from the even sites. As a result, a
larger range of transverse width w can be allowed for the
stability in the long-range case. Although there is such a
difference between the NNN approximation and the long-
range spin coupling, from Fig. 2, we also see that the NNN
approximation is reasonably good to describe the tendency
of the MI of the NCSWs in a blue-detuned optical lattice
where the spin coupling is isotropic.

For a red-detuned optical lattice, the situation changes
dramatically due to the anisotropy of the spin coupling de-
scribed by the relations �1 ,�2 , . . . ,� j �1. From Eq. �27�,
this leads to the MI criteria at the Brillouin zone boundary
under the long wavelength modulation,

fR�w� = �
j

�− 1� j+1j2Aj�
j

�− 1� j+1Aj

= �1 − 4A2 + 9A3 − 16A4 + ¯ ��1 − A2 + A3 − A4 + ¯ �

� 0. �29�

Being different from the case of a blue-detuned optical lat-
tice, an additional modulation �1−A2+A3−A4+ ¯ � appears
in the MI criteria due to the anisotropy of spin coupling in a
red-detuned optical lattice. Again, in Fig. 3, we compare the
dependence of the MI of the NCSW modes near the Brillouin
zone boundary on the transverse width of the BECs for the
NNN approximation and the long-range case. We find that
the NNN approximation is completely invalid to describe the
spin dynamics in a red-detuned optical lattice where the

long-range anisotropic spin coupling exists. In particular, we
see that the NNN approximation predicts a stable region in
the range of transverse width of BECs around the light wave-
length �L, but the case with the long-range spin coupling
exhibits instability in this region. This is also consistent with
calculation of the relative spin coupling strength given in
Fig. 1�b�, where the coefficients Aj =J0j /J01 rise up when the
transverse width of the BECs w�1�L due to the light-
induced dipole-dipole interaction.

Finally, we look at the general case by numerically work-
ing out the MI region in terms of Eq. �13�–�16�. The MI
regions of nonlinear spin wave in �Q ,q� plane are shown in
Figs. 4 and 5, which correspond to the blue-detuned and the
red-detuned optical lattice, respectively. In these figures, the
black zone marks the unstable regions in which the ampli-
tude of any perturbation wave would exhibit a rapidly expo-
nential growth with time, and the rest areas �blank regions�
are the stable regions. For comparison, we also show the MI
regions for the cases of the NN and NNN approximation in
Fig. 4. In the NN approximation, the MI regions do not de-
pend on the change of the transverse width of the conden-
sates. In the NNN approximation and the long-range case,
the MI regions change gradually with the increase of the
transverse width of the condensates. After the transverse
width w exceeds a certain value, the MI appears near the
Brillouin zone boundary. This is consistent with our qualita-
tive analysis given above. In addition, we see that the MI
regions mainly distribute around the long wavelength modu-
lation in the blue-detuned optical lattice.

In the red-detuned optical lattice, our calculation shows
that the NCSWs are always stable under the NN approxima-
tion. This further extends the conclusion derived in Sec. III B
to arbitrary modulation. In the NNN approximation, the un-
stable regions appear near the Brillouin zone boundary for
either narrow or wider condensate. However, these regions
shrink and even disappear while the long-range interaction
takes effect. In particular, the MI of NCSW modes near the
Brillouin zone boundary in the case of the long-range spin
coupling is enhanced for the width around the wavelength of
light due to the light-induced dipole-dipole interaction.
Hence, again, we see that the NNN approximation com-
pletely fails to describe the spin dynamics in the red-detuned
optical lattice where the anisotropic long-range spin coupling
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−2

−1.5

−1
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0

0.5

1

w (µm)

f B

Long range
NNN approximation

w=0.31µm w=1.04µm

FIG. 2. The curve of function fB�w�. The critical widths w for
the MI to appear have been marked; the other parameters are cho-
sen the same as in Fig. 1�a�.
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FIG. 3. The curve of function fR�w�. The other parameters are
chosen the same as in Fig. 1�b�.
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caused by light-induced dipole-dipole interaction plays a
central role in the spin dynamics.

IV. NUMERICAL SIMULATION

In Sec. III, our results are based on the theory of linear
stability analysis. However, we know that the linear stability
analysis is limited because it can only predict the onset of
instability and does not tell us anything about the long-time
dynamical behavior of the system when the instability
grows.16,27 To further confirm that our linear instability
analysis given above can correctly describe the initial stage
of instability in the atomic spin chain, we exactly solve the
set of coupled nonlinear differential equations 
Eq. �6�� by
numerical fourth-order Runge-Kutta algorithm. The numeri-
cal simulation cannot only confirm the analytical prediction
given in Sec. III for short time but it can also give the long-
time spin dynamics of the nonlinear system.

Here, we consider a case of an atomic spin chain of 100
sites with periodic boundary conditions in a red-detuned op-
tical lattice as an example for our numerical simulation. The
initial conditions of the atomic spin chain at t=0 are assumed
to have the form

�n�0� = 
�0 + � cos�nQ��cos�nq�

+ i
�0 + � cos�nQ��sin�nq� , �30�

where �0 is the amplitude of the plane spin wave and the
modulation amplitude ���0. In our simulation, the ampli-
tude of the modulated plane spin wave is taken to be �0
=0.25�S, the wave numbers q and Q are chosen in the form
q=2�k /N and Q=2�K /N, where k and K are integers, and
N=100. In order to monitor the time evolution of individual
Fourier components, we employ spatial Fourier transform of
the wave function,

m�p,t� = �
n=0

N−1

�n�t�ei�2�np/N�, �31�

where 0� p�N. According to Figs. 3 and 5, when w=1�L,
the MI can occur as the extended wave vector nearby q=�,
i.e., near the Brillouin zone boundary with small modula-
tional wave vector Q. To show the long-time spin dynamical
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FIG. 5. Plots of MI regions in the red-detuned optical lattice.
The other parameters are chosen the same as in Figs. 1�b� and 4.
The plots of stable regions for the case of the NN approximation are
not displayed here.
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behavior in this region, we choose the extended wave having
a wave vector q=50� /50 and the small-amplitude modula-
tional waves having a wave vector Q=5� /50.

The long-time evolution of the complete Fourier spectrum
is shown in Fig. 6, where the time step T denotes the period
of the spin wave that can be derived from the frequency
given in the dispersion relation of Eq. �8�. From Fig. 5, the
extended wave is unstable. We observe the corresponding
growth of the satellite sidebands in Fig. 6 with time, and the
sidebands q±Q, q±2Q, q±3Q , . . . , grow one by one. For the
transverse width w=2�L, the same modulated plane wave
will be stable from Fig. 5, and its long-time evolution shown
in Fig. 7 confirms the result.

From Fig. 7, we see that there is no satellite sideband
displaying any exponential growth, even though there exist
other harmonics that have a very small amplitude for a long
time. The same verifications of the stability of spin waves in
other regions based upon the result of linear stability analysis
can also be done with the same time scale and physical pa-
rameters. The results of numerical simulation have demon-
strated that the linear stability analysis presented in Sec. III
can effectively describes the initial stage of instability of
NCSW in atomic spin chain. The numerical simulation also
shows that the discrete atomic chain of spinor BECs can
support long-lived excitations in the presence of small-
amplitude modulation with suitable wave numbers. Further-
more, it is also possible for us to generate strong localized
long-lived spin excitations in this discrete chain by using the
nature of nonlinear instability.

V. CONCLUSION

In conclusion, the MI of the nonlinear coherent spin
waves in spinor BECs confined in an optical lattice is stud-

ied. By using the methods of HP transformation and the lin-
ear stability analysis, the MI criteria subject to the long-
range dipole-dipole interaction are obtained analytically.
Based on the analytic results, the properties of the MI of the
NCSW modes near the Brillouin zone boundary under the
long wavelength modulation are revealed for both a blue-
detuned and a red-detuned optical lattice, respectively. For a
blue-detuned optical lattice, the static magnetic dipole-dipole
interaction dominantly determines the spin wave dynamics.
In this case, the spin coupling is isotropic. The instability
occurs for wider BECs, and the NNN approximation is rea-
sonably good to describe the MI of the NCSW modes near
the Brillouin zone boundary even the long-range spin cou-
pling exists. For a red-detuned optical lattice, the anisotropic
long-range spin coupling caused by the light-induced dipole-
dipole interaction plays a central role in the spin dynamics.
As a result, the instability occurs strongly for BECs with
width near the light wavelength �L. The NNN approximation
fails to describe the spin dynamics due to the anisotropy and
the long-range spin coupling. In general, compared to the
conventional spin chain in solid-state magnetic materials, the
atomic spin chain created in an optical lattice provides an
ideal and powerful tool to study spin dynamics in a control-
lable way.
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