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We present a theoretical analysis of magnetic toroidal moments in periodic systems, in the limit in which the
toroidal moments are caused by a time and space reversal symmetry breaking arrangement of localized
magnetic dipole moments. We summarize the basic definitions for finite systems and address the question of
how to generalize these definitions to the bulk periodic case. We define the “toroidization” as the toroidal
moment per unit cell volume, and we show that periodic boundary conditions lead to a multivaluedness of the
toroidization, which suggests that only differences in toroidization are meaningful observable quantities. Our
analysis bears strong analogy to the “modern theory of electric polarization” in bulk periodic systems, but we
also point out some important differences between the two cases. We then discuss the instructive example of a
one-dimensional chain of magnetic moments, and we show how to properly calculate changes of the toroidiza-
tion for this system. Finally, we evaluate and discuss the toroidization �in the local dipole limit� of four
important example materials: BaNiF4, LiCoPO4, GaFeO3, and BiFeO3.
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I. INTRODUCTION

The recent resurgence of interest in magnetoelectric mul-
tiferroics has prompted discussion of the relevance of the
concept of magnetic toroidal moments in such systems �see,
e.g., Refs. 1–7�. A magnetic toroidal moment is represented
by a time-odd polar �or “axiopolar,” see Ref. 8� vector,
which changes sign under both time inversion and space in-
version, and is generally associated with a “circular” or
“ringlike” arrangement of spins �see Fig. 1 for some
examples�.9 Materials in which the toroidal moments are
aligned cooperatively—so-called ferrotoroidics—have been
proposed to complete the group of primary ferroics.2,3,7 Fur-
ther interest stems from the fact that the toroidal moment is
related to the antisymmetric part of the linear magnetoelec-
tric tensor;10,11 this points to an important role played by the
magnetic toroidal moment for magnetoelectric coupling phe-
nomena.

Magnetic toroidal moments in condensed matter systems
were first studied in the former Soviet Union during the
1980s, mostly in the context of the so-called “excitonic in-
sulator” model �see Refs. 9 and 12 for reviews of this work�.
At about the same time, Sannikov and Zheludov proposed
the toroidal moment as the primary order parameter for the
low-temperature phase transition in multiferroic nickel io-
dine boracite.13 Since in these early studies the toroidal mo-
ment was mostly treated as a macroscopic order parameter,
no particular attention was paid to the peculiarities arising
from the microscopic definition of the toroidal moment. It is
therefore the purpose of the present paper to give a detailed
analysis of the properties of toroidal moments starting from
the microscopic definition and focusing especially on effects
resulting from the periodic boundary condition in crystalline
solids. In particular, we address the following questions.
How should the toroidal moment density, or toroidization, of
a bulk periodic solid be formally defined? Is there a consis-
tent way to treat the origin dependence of the toroidal mo-
ment? What are the consequences of the periodic boundary

conditions within a bulk crystalline solid? In addition, we
apply our newly developed concepts to evaluate and analyze
the toroidization of four example materials: the antiferro-
magnetic ferroelectrics BaNiF4 and BiFeO3, the polar ferri-
magnet GaFeO3, and the strongly magnetoelectric material
LiCoPO4.

To avoid confusion, we point out that there also has been
some recent discussion about electric toroidal moments g,
defined as g= 1

2�iri�pi, where pi is the local electric dipole
moment at position ri and the summation extends over all
dipole moments in the system.9,14,15 The vector g is funda-
mentally different from the magnetic toroidal moment, since
it is both time- and space-inversion symmetric. It has been
used to characterize circular domains in nanoscale ferroelec-
tric materials.14,15 In the following we exclusively discuss the
case of magnetic toroidal moments, i.e., the term “toroidal
moment” is always used in the sense of “magnetic toroidal
moment.” We point out, however, that some of our general
considerations regarding origin dependence and the effect of
periodic boundary conditions are applicable to the case of
electric toroidal moments as well.

This paper is organized as follows. We begin by summa-
rizing some of the basic definitions and then discuss the limit
where the toroidal moment is caused by a time and space
reversal symmetry breaking arrangement of localized mag-
netic moments �Sec. II�. In Sec. III we then analyze the ori-
gin dependence of the toroidal moment by decomposing the
magnetic moment distribution into a fully compensated, gen-
erally noncollinear, antiferromagnetic part and a noncompen-

a) d)c)b)

FIG. 1. Simple arrangements of magnetic moments which can
lead to toroidal moments. �a� and �b� have equal and opposite tor-
oidal moments. The antiferromagnetic arrangement in �c� has a to-
roidal moment, whereas that in �d� does not.
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sated, collinear, ferromagnetic part. In Sec. IV we define the
toroidization as the toroidal moment per unit cell volume,
and we show that the periodic boundary conditions lead to a
multivaluedness of the toroidization, similar to the case of
the electric polarization in bulk periodic solids �see Refs.
16–18�. This multivaluedness suggests that, as in the case of
the electric polarization, only differences in toroidization can
be physically observable quantities. In Sec. V we illustrate
some consequences of the periodicity by using the example
of a one-dimensional antiferromagnetic chain of magnetic
moments. In Sec. VI we evaluate the toroidizations of four
example materials BaNiF4, LiCoPO4, GaFeO3, and BiFeO3.
Finally, in Sec. VII we summarize our main conclusions and
discuss the correspondence between the microscopic toroidal
moment described in this paper and some phenomenological
quantities with the same symmetry, that have recently ap-
peared in the multiferroics literature.

II. DEFINITIONS

The toroidal moment t corresponding to a current density
distribution j�r� is defined as �see Ref. 9�:

t =
1

10c
� �r�r · j� − 2r2j�d3r , �1�

where c indicates the speed of light in vacuum. The toroidal
moment in the form of Eq. �1� emerges from the multipole
expansion of an arbitrary localized current distribution.9 Its
physical significance can be seen by noting that Eq. �1� is
identically satisfied by the current distribution

j�r� = c � � � � ��r�t , �2�

which represents an elemental toroidal moment centered at
the origin. Evaluating the interaction energy E of this current
density with the electromagnetic field A�r� yields �after par-
tial integration�

E = −
1

c
� j�r� · A�r�d3r = − t · � � B�0� , �3�

where B�0�= �� �A�r��r=0 is the magnetic field at the site of
the toroidal moment. From Eq. �3� it can be seen that the
toroidal moment couples to the curl of the magnetic field
such that a toroidal system in a magnetic field has lowest
energy when its toroidal moment is aligned parallel to the
curl of the magnetic field.

The definition of the toroidal moment can be recast into a
more convenient form, by noting that the current vector can
be decomposed into longitudinal ��� j� =0� and transversal
�� · j�=0� parts. The longitudinal part of j�r� is related to
time derivatives of the charge multipole moments through
the continuity equation �̇+� · j=0, and does not contribute to
the toroidal moment.9 The transverse part of the current den-
sity j��r� can be written as the curl of the magnetization
density ��r�:19

j��r� = c � � ��r� . �4�

Inserting Eq. �4� in Eq. �1� gives the toroidal moment in
terms of ��r�:20

t =
1

2
� r � ��r�d3r . �5�

While in principle, for a finite system with known magneti-
zation density, this expression can be used to evaluate the
toroidal moment, it is not directly applicable to extended
systems where periodic boundary conditions are employed.
The difficulties resemble those encountered in early attempts
to calculate the electric polarization �see Ref. 18�: for a gen-
eral continuous magnetization density ��r�, Eq. �5� evaluated
over one unit cell will lead to arbitrary values, depending on
the special choice of unit cell used in the calculation.

In the case of the electric polarization, a general solution
to this problem is achieved by evaluating the electric polar-
ization directly from the electronic wave-function using
Wannier representations.16–18 In principle, a similar approach
seems appropriate for the case of the toroidal moment. In the
present paper, we pursue a somewhat simpler yet rather in-
structive approach by assuming that the magnetization den-
sity can be well represented by a distribution of localized
magnetic moments 	m�
 at sites r�:

�loc�r� = �
�

m���r − r�� . �6�

This results in the toroidal moment

t =
1

2�
�

r� � m�. �7�

The simplification to localized magnetic moments avoids the
technical difficulties of a full gauge invariant wave-function
formulation but retains all the peculiarities resulting from the
periodic boundary conditions within bulk systems. It also
allows a more intuitive analysis of several important proto-
type systems. Our study thus represents a first step towards a
full microscopic theory of toroidal moments in crystalline
solids and can be used as the basis for future developments.

We note, however, that in some cases the restriction to
localized magnetic moments can represent a severe simplifi-
cation. Obviously, the local moment picture neglects the pos-
sibility of toroidal moments arising from nonlocalized mag-
netization densities, but in addition the symmetry of the
magnetic moment distribution in Eq. �6� can eventually be
higher than the full magnetic space group symmetry repre-
sented by the original magnetization density ��r�. This can
occur even in systems that are usually well described in
terms of localized magnetic moments �see, for example, our
discussion of BiFeO3 in Sec. VI D�. The localized moment
approach also neglects the possibility that the localized cur-
rent distribution around the atomic site, which gives rise to
the local magnetic dipole moment, simultaneously gives rise
to a localized toroidal dipole moment. Such “atomic” toroi-
dal moments have been discussed in the context of atomic
multipole moments and can in principle be measured by
resonant x-ray spectroscopy.21 Here, we restrict our discus-
sion to the case of toroidal moments “on the unit cell scale”
and disregard the possibility of toroidal contributions “on the
atomic scale.”
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Using Eq. �7� we can straightforwardly evaluate the tor-
oidal moments of the arrangements shown in Fig. 1. Taking
the horizontal magnetic moments to be spaced a distance a
apart along the y direction, and the vertical moments a dis-
tance a apart along x, the toroidal moments of arrangements
�a� and �b� in Fig. 1 are t= ±asẑ, where s is the magnitude of
the individual magnetic moments. The toroidal moment of
Fig. 1�c� is t=− 1

2asẑ, whereas it is zero for the arrangement
shown in Fig. 1�d�, since in this case the moment vectors are
aligned parallel to the vector connecting the two sites.

III. ORIGIN DEPENDENCE

It can easily be seen that for systems with nonvanishing
magnetic dipole moment

m =
1

2c
� r � j�r�d3r =� ��r�d3r = �

�

m�, �8�

the toroidal moment in Eqs. �1�, �5�, and �7� depends on the
choice of origin. In particular, for a change of origin defined
by r→r�=r+R0 the toroidal moment changes as t→ t�= t
+1 /2R0�m.

To further analyze this origin dependence, we decompose
the original magnetic moment distribution 	m�
 into two
parts: a totally compensated part 	m�

�0�=m�−m /N
, with no
net magnetization, ��m�

�0�=0, and an uncompensated “ferro-
magnetic” part 	m̃�=m /N
, where m=��m� is the total
magnetic moment and N is the total number of localized
moments �see Fig. 2 for a simple example�. This results in a
corresponding decomposition of the toroidal moment into

t�0� =
1

2�
�

r� � m�
�0� �9�

and

t̃ =
1

2
R̄ � m , �10�

where R̄=1 /N��r� is the average magnetic moment posi-
tion. By construction, only the toroidal moment t̃ depends on
the choice of origin, whereas the part t�0� is origin indepen-
dent.

For a macroscopic toroidal moment to occur, the magnetic
moment distribution has to break both time and space rever-

sal symmetries. In the compensated moment distribution
	m�

�0�
 this can happen in several ways, depending both on
how the magnetic moments are oriented and on how they are
positioned. On the other hand the uncompensated distribu-
tion 	m̃�
 provides less freedom. Due to the nonvanishing
magnetic dipole moment, the configuration 	m̃�
 always
breaks time reversal symmetry. However, the only possibility
for such a “ferromagnetic” moment distribution to simulta-
neously break space inversion symmetry is that the magnetic
moments are positioned in a noncentrosymmetric way. A
nonzero toroidal moment of the uncompensated part of any
moment distribution is therefore always related to an inver-
sion symmetry-breaking arrangement of the underlying ionic
lattice, whereas this does not necessarily have to be the case
for the compensated moment distribution 	m�

�0�
, where the
inversion symmetry can also be lifted by the orientation of
the various magnetic moments.22

It will become clear in the following section, that only
differences in toroidal moment should have any physical sig-
nificance. In the case of the origin-dependent part t̃, such
differences in toroidal moment must be related to corre-
sponding displacements of the moment positions, and the

change in the toroidal moment is then given by �t̃=1 /2�R̄
�m, with �R̄=1 /N���r� and �r� being the displacements
of the individual magnetic moments. Thus, if a consistent
choice of origin is used for the initial and final configuration,
the corresponding change in the toroidal moment is a well-
defined physical quantity. For example, if the initial refer-
ence configuration is centrosymmetric, then the change in
toroidal moment resulting from a symmetry-breaking struc-
tural distortion can be interpreted as the spontaneous toroidal
moment of the system.

Earlier applications of Eq. �7� did not perform the explicit
decomposition described above, but instead evaluated the to-
roidal moment with respect to the “center of the unit cell,”23

without specifying exactly how this center of the unit cell is
defined. We point out that the origin dependent contribution
to the toroidal moment t̃ vanishes, if the “center of the unit

cell” defined by R̄ is taken as the origin.24 However, it is
important to realize that for cases where the toroidal moment

changes as a result of a structural distortion, R̄ in general
also changes �see the discussion in the previous paragraph�.
In such cases the origin should be taken to be the same for
both structural modifications.

Finally, we note that in the case of a nonlocalized magne-
tization density, the “uncompensated” part of ��r� would
correspond to a uniform, i.e., perfectly homogeneous �r in-
dependent�, magnetization density �̃=m /V, where V is the
total volume of the system. Since such a perfectly homoge-
neous magnetization density �̃ can never break space-
reversal symmetry, it does not contribute at all to the toroidal
moment of the system. Thus, in a nonlocalized description,
the decomposition into compensated and uncompensated
parts results in a perfect separation between dipolar and tor-
oidal contributions to the magnetization density. Due to the
“inhomogeneity” that is intrinsic to the localized moment
description, the decomposition is not fully complete in this
case, and the toroidal contribution of the “ferromagnetic”

= +
m

m/2m1

2

m1(0)

m2(0) m/2

FIG. 2. Decomposition of a ferrimagnetic arrangement of two
localized moments �left� into its fully compensated component
�middle� and its uncompensated “ferromagnetic” component �right�.
The ferromagnetic component at each site is the total magnetic
moment divided by the total number of moments m̃�= 1

2 �m1+m2�,
and the compensated part is the difference between the magnitude
of the original local moment and the uncompensated contribution.
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part has to be analyzed separately. In our explicit examples
in Secs. V and VI we will only consider systems with fully
compensated moment configurations and postpone the fur-
ther analysis of toroidal moments resulting from “ferromag-
netic” configurations to future work.

IV. THE CASE OF A PERIODIC BULK SYSTEM

We now proceed to the case of bulk periodic crystals with
an infinite periodic arrangement of magnetic moments. We
begin by defining the toroidal moment per unit volume or
toroidization T= t /V, where V is the volume of the system
with toroidal moment t. Then, for a large finite system con-
taining N identical unit cells each of volume 	:

T =
1

2N	
�
�

r� � m� �11�

=
1

2N	
�
n,i

�ri + Rn� � mi. �12�

Here, ri are the positions of the magnetic moments mi rela-
tive to the same �arbitrary� point within each unit cell, Rn is
a “lattice vector” with index n, and we have used the fact that
the orientation of the magnetic moments is the same in each
unit cell. The summation over i indicates the summation over
all moments within a unit cell, and that over n indicates the
summation over all unit cells. Expanding the cross product,
we obtain

T =
1

2	
�

i

ri � mi +
1

2N	
�

n

Rn � �
i

mi �13�

=
1

2	
�

i

ri � mi +
1

2N2	
�

n

Rn � m �14�

=
1

2	
�

i

ri � mi, �15�

where in the last step we have assumed that the sum over all
lattice vectors contains both Rn and −Rn, so that �nRn=0.
This is true for any infinite Bravais lattice. Thus, the toroidal
moment of a system of N unit cells is just N times the toroi-
dal moment evaluated for one unit cell, and the correspond-
ing toroidizations are identical.

In an infinite periodic solid, we have a freedom in choos-
ing the basis corresponding to the primitive unit cell of the
crystal. In particular, we can translate any spin of the basis
by a lattice vector Rn without changing the overall periodic
arrangement. However, such a translation of magnetic mo-
ment mi by Rn leads to a change in the toroidization as
follows:

�Tni =
1

2	
Rn � mi. �16�

The freedom in choosing the basis corresponding to the
primitive unit cell thus leads to a multivaluedness of the

toroidization with respect to certain “increments” �defined by
Eq. �16�� for each magnetic sublattice i and lattice vector Rn.

This multivaluedness of the toroidization is in strong anal-
ogy to the modern theory of electric polarization,16–18 where
the polarization changes by eRn /	 if one translates an el-
ementary charge e by a multiple of a lattice vector Rn. The
resulting multivaluedness has led to the concept of the “po-
larization lattice” corresponding to a bulk periodic solid,17

with eRn /	 called the “polarization quantum” if Rn is one of
the three primitive lattice vectors. Equation �16� suggests the
existence of an analogous “toroidization lattice.” However,
the vector product in Eq. �16� and our classical treatment of
magnetic moments can lead to arbitrary projections of mi on
a certain axis, and therefore the structure of the “toroidiza-
tion lattice” is quite different from that of the polarization
lattice. In the most general case, if there are r magnetic basis
atoms in the primitive unit cell, there can be 3r linearly
independent toroidization increments. This can lead to cases,
where multiple incommensurate increments exist along cer-
tain crystallographic directions. In addition, for a collinear
moment configuration no toroidization component is allowed
parallel to the global magnetic axis. Thus, the set of allowed
toroidization values does not necessarily have the same
translation symmetry as the corresponding crystal structure
and does not necessarily form a Bravais lattice, whereas this
is always true in the case of the electric polarization. In prac-
tice, the magnetic symmetry of the system can significantly
reduce the number of linearly independent toroidization in-
crements �see Sec. VI for some realistic examples�.

In spite of the difficulties associated with the multivalued-
ness of the polarization, it is now recognized that only dif-
ferences in the polarization lattices between different ionic
configurations are in fact measurable quantities, such as for
example the difference between two oppositely polarized
states of a ferroelectric crystal or between a centrosymmetric
nonpolar reference structure and the actual polar crystal.
These differences are the same for each point of the polar-
ization lattice and are thus well-defined quantities. In anal-
ogy with the case of the electric polarization we suggest that
only differences in the set of allowed toroidization values,
corresponding to two different bulk configurations, are
physically observable quantities, such as the difference in
toroidizations between two domain states of a ferrotoroidic,
or the difference between a ferrotoroidic state and its nontor-
oidic paraphrase. Such quantities can be obtained by moni-
toring the change in toroidal moment on one arbitrarily cho-
sen branch within the allowed set of values, when
transforming the system from the initial to the final state
along a well-defined path.

Finally, we emphasize that the multivaluedness of the tor-
oidization and the possible origin dependence of the tor-
oidization are two independent features with different ori-
gins. Both features are rooted in the fundamental definition
of the toroidal moment in terms of the position operator r,
but whereas the origin dependence appears in both finite and
infinite systems if there is a nonvanishing magnetic dipole
moment, the multivaluedness is caused by the periodic
boundary conditions in a bulk solid, and is independent of an
eventually nonvanishing magnetic dipole moment.
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V. A ONE-DIMENSIONAL EXAMPLE

A. The periodic nontoroidal state

To illustrate some consequences of the multivaluedness of
the toroidization in periodic systems described in the previ-
ous section, we now consider the example of a one-
dimensional antiferromagnetic chain of equally spaced mag-
netic moments as shown in Fig. 3�a�. The moments, with
magnitude s, are spaced a distance a apart from each other
along the y axis, and are alternating in orientation along ±x.
Thus, the unit cell length is 2a and there are two oppositely
oriented magnetic moments in each unit cell. Since this con-
figuration does not possess a macroscopic magnetic dipole
moment, the corresponding toroidal moment is origin inde-
pendent, and a decomposition into compensated and uncom-
pensated parts is not required.

The arrangement of magnetic moments in Fig. 3�a� is
space-inversion symmetric with respect to each moment site
and thus cannot exhibit a macroscopic toroidal moment. Fur-
thermore, even though the arrangement in Fig. 3�a� breaks
time reversal symmetry microscopically, there exists a sym-
metry transformation which combines time inversion with a
translation of all moments by the distance a along the y
direction. According to Neumann’s principle �see, e.g., Ref.
25�, the macroscopic properties of a system cannot depend
on such microscopic translations, i.e., the macroscopic prop-
erties are determined by the point group of the system and
not by its space group. Therefore, time reversal symmetry is
not broken macroscopically for the moment configuration in
Fig. 3�a� and its point group contains time inversion as a
symmetry element. No macroscopic toroidal moment can
thus result from this configuration, in spite of the fact that an
isolated unit cell would exhibit a toroidal moment.

The toroidal moment of the single unit cell highlighted in
Fig. 3�a�, calculated using Eq. �7�, is identical to that calcu-
lated for the finite spin configuration in Fig. 1�c�, i.e., t=

− 1
2saẑ, and the corresponding toroidization T= t /	=− s

4 ẑ
�since the “volume” 	 of the one-dimensional unit cell is
just its length 2a�. The elementary toroidization increment in
this case is �T= ± s

2 ẑ, which means that the toroidization of
the unit cell is exactly equal to one half of the toroidization
increment, and the allowed toroidization values for the peri-
odic arrangement are Tn= � 1

2 +n� s
2 ẑ, where n can be any inte-

ger number.
We see that in our example the allowed toroidization val-

ues form a one-dimensional lattice of values, centrosymmet-
ric around the origin. This is analogous to the case of the
electric polarization, where the polarization lattice is invari-
ant under all symmetry transformations of the underlying
crystal structure. In particular, the polarization lattice corre-
sponding to a centrosymmetric crystal structure has to be
inversion symmetric. This can be achieved either by a lattice
that includes the point P=0 or by the same lattice but shifted
from the origin by exactly half a polarization quantum. We
see that the same holds true for the toroidization of our one-
dimensional example, so that a centrosymmetric set of tor-
oidization values can be understood as representing a nonto-
roidal state of the corresponding system.

We emphasize again, however, that the toroidization case
is slightly more involved than the case of the electric polar-
ization. In particular, due to the fact that several incommen-
surate toroidization increments can exist along the same
crystallographic direction, there are many more allowed val-
ues of the toroidization in the nontoroidal state than for the
polarization in the nonpolar state, as can be seen for the
system BaNiF4 discussed in Sec. VI A.

B. Toroidal state and changes in toroidization

In order to obtain a nontrivial “macroscopic” toroidization
the system has to break both space and time inversion sym-
metry. In the case of the one-dimensional antiferromagnetic
chain this can be achieved by “spin pairing,” i.e., if the dis-
tances between neighboring magnetic moments alternate as
shown in Fig. 3�b�. Here the magnetic moments of magni-
tude s are spaced alternately a distance of �1−d�a and �1
+d�a apart from each other along the y axis �−1
d
1�, and
again are alternating in orientation along ±x. The nontoroidal
example above corresponds to d=0. Since the unit cell size is
the same as in the nontoroidal case, the elementary toroidiza-
tion increment is again �T= ± s

2 ẑ. The toroidization of the
unit cell indicated in Fig. 3�b� is T=−�1−d� s

4 ẑ, so that the
allowed values of T for the full periodic arrangement are

Tn�d� = �n −
1 − d

2
� s

2
ẑ . �17�

Figure 4 shows the allowed toroidization values as a function
of the displacement d of the spins from their positions in the
centrosymmetric, nontoroidal state.

The change in toroidization between two configurations
with d=d1 and d=d2 for a certain branch n is given by

s

s

x

y

s

s

2a s

s

s

s

2a x

ya) b)

a

(1
-d
)a

a

((((1
+d
))))a

FIG. 3. �Color online� Calculation of the toroidization for two
different one-dimensional antiferromagnetic periodic arrangements
of magnetic moments. Our choice of unit cell is indicated by the
shaded area in each case. �a� shows a nontoroidal state, which is
space-inversion symmetric with respect to each moment site. �b� is
a toroidal state.

TOWARDS A MICROSCOPIC THEORY OF TOROIDAL… PHYSICAL REVIEW B 76, 214404 �2007�

214404-5



Tn�d2� − Tn�d1� =
s

4
�d2 − d1�ẑ , �18�

i.e., it is independent of the branch index n. In particular, if
the noncentrosymmetric distortion is inverted �d1=d0, d2=
−d0�, the change in toroidization is 2Ts=

sd0

2 so that Ts=
sd0

4
can be interpreted as the spontaneous toroidization, again in
analogy to the case of the electric polarization, where the
spontaneous polarization is given by the branch-independent
change in polarization compared to a centrosymmetric refer-
ence structure.

Another possible way to alter the toroidization is by
changing the orientation of the magnetic moments instead of
changing their positions. In particular, we expect that a full
180° rotation of all magnetic moments, which is equivalent
to the operation of time reversal, should invert the macro-
scopic “spontaneous toroidization,” and should therefore
lead to the same change 2Ts as discussed above. If we allow
the magnetic moments to rotate out of the x direction, while
preserving the antiparallel alignment of the two basis mo-
ments, the toroidization along the z direction is given by

Tn
z�d,�� = �n −

1 − d

2
� s

2
cos � , �19�

where � is the angle between the magnetic moments and the
x direction. The change in toroidization for a full 180° rota-
tion of the moments is thus

Tn
z�d0,180 ° � − Tn

z�d0,0 ° � = −
sd0

2
+ s�2n + 1� �20�

and apparently depends on the branch index n. However, if
one calculates the same change in toroidization for the non-
toroidal state with d=0, one obtains

Tn
z�0,180 ° � − Tn

z�0,0 ° � = s�2n + 1� . �21�

Obviously, in this case the corresponding change in macro-
scopic toroidization should be zero, since both the initial and
final states �and all intermediate states� correspond to a non-
toroidal configuration and thus Ts=0. If one subtracts the
improper change in Tz, Eq. �21�, from the change in tor-
oidization calculated in Eq. �20�, one obtains the proper
change in toroidization 2Ts=

sd0

2 , which is identical to one
obtained by inverting the noncentrosymmetric distortion d.
Here, we use the terminology “proper” and “improper” in
analogy to the case of the proper and improper piezoelectric
response,26 where a similar branch dependence is caused by
volume changes of the unit cell, and the improper piezoelec-
tric response has to be subtracted appropriately.

Figure 5 shows the initial and final states for the two cases
where either the moment displacements or the magnetic mo-
ment directions are inverted. The two final states are equiva-
lent except for a translation of all moments by half a unit cell
along y, which, again due to Neumann’s principle, is irrel-
evant for the macroscopic properties. The spontaneous tor-
oidization of the state on the left in Fig. 5 is therefore the
same as for the state on the right side of Fig. 5.

VI. TOROIDIZATIONS FOR SOME EXAMPLE
MATERIALS

To further illustrate the concept of toroidal moments in
crystalline solids and to investigate the consequences of the
definitions and simplifications outlined in the preceding sec-
tions for real systems, we now evaluate the toroidizations of
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FIG. 4. �Color online� Allowed values of the toroidization for
the antiferromagnetic chain of Fig. 3 as a function of displacement
d from the nontoroidal case �d=0�. The cartoons at the bottom
indicate the corresponding positions of the magnetic moments
within the unit cell.

flip
spins

move
atoms

FIG. 5. �Color online� Effect on the magnetic moment configu-
ration of Fig. 3�b� �center� of a reversal of all magnetic moments
�right� and of a reversal of the noncentrosymmetric distortion d
�left�. Note that the right and left final states are identical, with the
moments on the left translated by half a unit cell compared to those
on the right.
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four example materials BaNiF4, LiCoPO4, GaFeO3, and
BiFeO3. All these materials have been discussed recently in
the context of multiferroics, magnetoelectric coupling, or fer-
rotoroidics. BaNiF4 and BiFeO3 are both antiferromagnetic
ferroelectrics, with additional weak ferromagnetism in the
case of BiFeO3, and the possible coupling between the vari-
ous order parameters in these systems has recently been stud-
ied using first principles techniques.27,28 LiCoPO4, which is
not ferroelectric, exhibits a rather large linear magnetoelec-
tric effect,29 and the observation of ferrotoroidic domains in
this material using nonlinear optical techniques has been
reported.7 GaFeO3 is a magnetic piezoelectric which exhibits
a strong asymmetry in the magnetoelectric tensor. This
asymmetry has been interpreted to result from a nonvanish-
ing toroidal moment in this material.23

A. BaNiF4

BaNiF4 belongs to an isostructural family of antiferro-
magnetic ferroelectrics with composition BaMF4, where M
can be Mn, Fe, Co, or Ni.30,31 It was recently shown that
BaNiF4 exhibits two distinct antiferromagnetic order param-
eters and that the order parameter corresponding to the
“weak” �secondary� antiferromagnetic order can be reversed
by using an electric field.28 The crystallographic structure of
BaNiF4 is orthorhombic corresponding to space group
Cmc21.30,31 The magnetic space group is Pa21,32 which con-
tains a nonprimitive translation along the a direction com-
bined with time inversion.33 This reflects the fact that the
antiferromagnetic ordering in BaNiF4 leads to a unit cell
doubling compared to the paramagnetic phase. The corre-
sponding �macroscopic� magnetic point group is thus 21�,
which does not break time inversion, similar to the case of
the one-dimensional antiferromagnetic chain discussed in
Sec. V A. Therefore, neither a macroscopic magnetization
nor a macroscopic toroidal moment is allowed in this sym-
metry. We note that, in general, when the magnetic ordering
leads to a unit cell doubling compared to the paramagnetic
phase, then the system is always macroscopically time rever-
sal symmetric and therefore nontoroidal.

Nevertheless it is instructive to examine the effect of the
periodic boundary conditions and the resulting multivalued-
ness of the toroidization for this trivial case. The magnetic
unit cell of BaNiF4 contains four magnetic Ni ions, whose

positions and spin directions are listed in Table I. A decom-
position into fully compensated and uncompensated compo-
nents is not necessary, since there is no macroscopic magne-
tization in this system. Application of Eqs. �7� and �16� leads
to a “toroidization lattice” of the form

Tklmn =
S

2	
cos ��
ck

0

a

2
�l − m + 2n� �

+ sin ��
b

2
�l + m − 2n�

b

2
�l + m + 2n + 4�

0
�� , �22�

where � is the canting angle of the magnetic moments �of
magnitude S� relative to the orthorhombic b direction, and
a ,b ,c are the orthorhombic lattice parameters. k, l, m, and n
are arbitrary integer numbers corresponding to four different
independent toroidization increments in this system. Due to
the pairwise collinear spin structure in BaNiF4 the original
4�3=12 increments according to Eq. �16� are reduced to
2�3=6. Additional symmetries reduce the number of inde-
pendent increments to 4. Due to the base-centered ortho-
rhombic Bravais lattice of BaNiF4, these toroidization incre-
ments are in general neither parallel to the cartesian
coordinate directions nor perpendicular to each other. It can
be seen from Eq. �22� that for a general value of the angle �,
the allowed values of T do not form a Bravais lattice, and the
multivaluedness of T is more complex than in the case of the
electric polarization. Nevertheless, the set of allowed tor-
oidization values in BaNiF4 is inversion symmetric as re-
quired by the time-symmetric point group. In the absence of
canting ��=0° �, the toroidization and the toroidization incre-
ment along the b direction would be zero; however, we see
that for small � there is a small nonzero increment of the
toroidization along this direction, reflecting the small com-
ponent of the magnetic moments perpendicular to b. Thus,
the example of BaNiF4 shows that the structure of the set of
allowed toroidization values is in general more complex than
the “polarization lattice” in the modern theory of electric
polarization in crystalline solids.

B. LiCoPO4

The observation of ferrotoroidic domains in LiCoPO4 us-
ing nonlinear optical techniques has been reported in Ref. 7.
LiCoPO4 crystallizes in the olivine structure with the ortho-
rhombic space group Pnma,34 and originally it was believed
that the magnetic moments of the four Co ions in the unit

TABLE I. Positions, ri and moment directions mi of the mag-
netic Ni cations in BaNiF4. a, b, and c are the orthorhombic lattice
constants, � represents an internal structural parameter, � is the
angle between the magnetic moments and the orthorhombic b axis,
and S is the magnitude of the Ni magnetic moment. The corre-
sponding lattice vectors are a1= �a ,b ,0�, a2= �a /2,−b /2,0�, and
a3= �0,0 ,c�.

site ri
x /a ri

y /b ri
z /c mi

x mi
y mi

z

Ni 0 � 0 0 S cos � S sin �

Ni 0 −� 1 / 2 0 −S cos � S sin �

Ni 1 � 0 0 −S cos � −S sin �

Ni 1 −� 1 / 2 0 S cos � −S sin �
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cell are antiferromagnetically aligned along the orthorhom-
bic b direction.35 This moment configuration corresponds to
the magnetic space group Pnma�, which contains the opera-
tion of simultaneous time and space inversion, but not the
pure time and space inversion separately, and thus allows the
existence of a macroscopic toroidal moment. Furthermore,
the toroidal moment is required to be aligned parallel to the
c axis. Recently, it was found that the magnetic moments in
LiCoPO4 are rotated slightly away from the b direction by an
angle ��4.6°, while preserving the overall collinear mag-
netic structure.36 For a moment rotation within the b-c plane,
the rotated moment configuration corresponds to a lower
symmetry with the magnetic point group 2� /m, which allows
a toroidal moment also along the orthorhombic b direction.
At the moment, it is not clear what the primary order param-
eter for this additional symmetry lowering is, although since
it does not change the relative antiferromagnetic arrangement
of the spins a toroidal origin has been proposed.7 Further-
more, a weak magnetization has been measured along the b
direction,37 which indicates an even lower point group sym-
metry of 2�. Since the small magnetization occurs along the
b direction, i.e., parallel to the direction of the antiferromag-
netic alignment, it has been described as weak ferrimag-
netism.

Here we calculate the toroidization corresponding to the
fully compensated antiferromagnetic configuration with
magnetic point group 2� /m, where all spins are rotated from
the b direction towards the c direction by an angle �. The
corresponding positions and spin directions of the four mag-
netic Co cations within the unit cell are listed in Table II. The
toroidization resulting from Eqs. �7� and �16� is

Tnml =
S

2	
cos �� cm

0

�4� 
 l�a
� + sin �� bn

�4� ± l�a
0

�� .

�23�

Here, a, b, and c are the orthorhombic lattice constants and
n, m, and l are arbitrary integer numbers. It can be seen that
there is only a trivial component of T along the a direction
and that there is a nontrivial part of the toroidal moment

proportional to �, which rotates from the c direction for �
=0° towards the b direction for �=90°. For �=0 the system
is centrosymmetric and thus nontoroidal. The spontaneous
toroidization is given by Ts= 2S�a

	 . For the experimentally re-
ported parameters listed in Table II and using the formal
magnetic moment S=3�B of Co2+, the corresponding value
is Ts=6.17�10−3�B /Å2�ẑ cos �+ ŷ sin ��, corresponding to a
spontaneous toroidal moment per unit cell of ts

=1.75�B Å�ẑ cos �+ ŷ sin ��. Thus, the magnetic moment ro-
tation described by � results in a corresponding rigid rotation
of the toroidization.

C. GaFeO3

Ga2−xFexO3 was the first material that was found to ex-
hibit both piezoelectricity and a macroscopic
magnetization.38 It was also the first known material with a
spontaneous magnetization that simultaneously exhibits a
linear magnetoelectric effect.39 The system Ga2−xFexO3 has
been studied recently because of its interesting optical prop-
erties, which result from the simultaneous breaking of both
space and time inversion symmetries in this material.40,41 In
addition, an asymmetry of the magnetoelectric tensor has
been measured and was attributed to the existence of a tor-
oidal moment in this system.23

The crystal structure �space group Pc21n� of Ga2−xFexO3

contains four inequivalent cation sites, one with tetrahedral
oxygen coordination and three different octahedrally coordi-
nated sites.42 The Fe cations occupy predominantly two of
the octahedral sites �called Fe1 and Fe2�, but there is also a
sizable Fe occupation on the third octahedral site �Ga2�,
whereas the tetrahedral site �Ga1� is occupied mainly by Ga.
The exact occupation of the various cation sites depends on
the composition x as well as on the preparation technique
and sample history.43

Two different magnetic structures have been proposed for
this system, both of which are consistent with the magnetic
space group Pc�21�n, which allows for a macroscopic mag-
netization along the crystallographic c direction. Abrahams
and Reddy originally proposed a canted antiferromagnetic
structure with compensating magnetic moments within the
a-b plane and a net magnetization along c.44 On the other
hand Arima et al. �Ref. 43� recently interpreted their data in
terms of a collinear ferrimagnetic configuration suggested in
Ref. 45, where all spins are oriented either parallel or anti-
parallel to the c direction. In both cases, the relative orienta-
tion of the four symmetry-related magnetic moments on the
Fe1 sites or the Fe2 sites, respectively, is dictated by the
magnetic space group Pc�21�n.

We note that in the magnetic configuration used by Arima
et al. �Ref. 43� the net magnetization stems mainly from the
intersite disorder; the system is a perfectly compensated an-
tiferromagnet if �i� all Fe1 and Fe2 sites are occupied by Fe
cations, �ii� there is no Fe occupation of the Ga1 and Ga2
sites, and �iii� the magnetic moments on the two Fe sites are
the same. Here, we consider only this perfectly compensated

TABLE II. Positions ri and magnetic moment directions mi of
the Co cations in LiCoPO4, according to Ref. 36 and assuming a
moment rotation towards the c direction. � and � are internal struc-
tural parameters corresponding to Wyckoff positions 4c of the
Pnma space group. � is the angle between the magnetic moments
and the b axis and S is the magnitude of the Co magnetic moment.
Experimental values are �=0.0286, �=0.0207, and ��4.6° �Ref.
36�. The orthorhombic lattice parameters are a=10.20 Å, b
=5.92 Å, and c=4.70 Å �Ref. 34�.

site ri
x /a ri

y /b ri
z /c mi

x mi
y mi

z

Co 1 /4+� 1 /4 −� 0 −S cos � −S sin �

Co 1 /4−� −1 /4 1 /2−� 0 S cos � S sin �

Co −1 /4−� −1 /4 � 0 S cos � S sin �

Co −1 /4+� 1 /4 1 /2+� 0 −S cos � −S sin �

CLAUDE EDERER AND NICOLA A. SPALDIN PHYSICAL REVIEW B 76, 214404 �2007�

214404-8



configuration with no site disorder and composition x=1,
i.e., all Fe1 and Fe2 sites are occupied by Fe3+ cations and all
Ga1 and Ga2 sites are occupied by Ga3+ cations. Thus, the
magnetic configuration discussed in the following does not
have a net magnetization. We point out that in general the
magnetic and toroidal properties will depend on the exact
occupation numbers of the various cation sites. The positions
of the Fe sites as well as the corresponding moment direc-
tions are listed in Table III.

The magnetic space group Pc�21�n breaks both space and
time reversal symmetries and thus allows the existence of a
macroscopic toroidal moment. Evaluation of Eqs. �7� and
�16� for the positions and moment directions listed in Table
III leads to the toroidization

Tnm =
S

2	�4�y1 − y2�b + nb

ma

0
� . �24�

It can be seen that there is a nontrivial toroidization along the
a direction, as dictated by the magnetic space group symme-
try, whereas the component along the b direction represents
only the trivial increment resulting from the periodic bound-
ary conditions, and the component along c is zero. The mac-
roscopic toroidization along a depends on the difference of
the coordinates y1 and y2 of the two different Fe sites along
b.

One can verify that for y1−y2= 1
4 l �for any integer l� the

“magnetic lattice,” i.e., the spatial arrangement of magnetic
moments on the Fe1 and Fe2 sites, is centrosymmetric, and
thus the system is nontoroidic in the localized moment limit
�see also Ref. 43�. This is consistent with Eq. �24�, which for
y1−y2= 1

4 l results only in a trivial nontoroidal component of
T along the a direction. We point out that the nontoroidicity
for y1−y2= 1

4 l holds true only for the case of localized mag-
netic moments, where the presence of all nonmagnetic ions
is neglected. The full crystallographic symmetry of this sys-
tem �given by both magnetic and nonmagnetic ions� is non-
centrosymmetric even for y1−y2= 1

4 l. In fact, GaFeO3 is an
example of a pyroelectric crystal that is polar but not ferro-

electric, i.e., the polarization cannot be switched, since it
does not result from a small distortion of a centrosymmetric
reference structure. However, in the localized moment pic-
ture the system is nontoroidal for y1−y2= 1

4 l and we can
evaluate the spontaneous toroidization with respect to this
reference configuration. The relevant structural parameters
determined experimentally in Ref. 43 at 4 K are a
=8.719 Å, b=9.368 Å, c=5.067 Å, y1=0.5831, and y2
=0.7998. This gives a spontaneous toroidization of Ts

= 2Sb
	 �0.25−0.2167�=7.5�10−3�B /Å2, corresponding to a

spontaneous toroidal moment per unit cell of 3.1�B Å. Here,
we used the formal magnetic moment S=5�B of Fe3+.

It can be seen from Eq. �24� that the set of toroidization
values is also centrosymmetric around the origin if y1−y2 is
equal to any integer multiple of 1

8 , even though only for y1

−y2= 1
4 l the corresponding magnetic moment configuration is

nontoroidal as discussed in the previous paragraph. This
shows that even though the set of toroidization values of a
nontoroidal structure is always centrosymmetric, the con-
verse is not necessarily true. A centrosymmetric set of tor-
oidization values does not necessarily correspond to a non-
toroidal state. Thus, for y1−y2= �2k+1� 1

8 the higher
symmetry of the toroidization values is accidental and does
not correspond to a vanishing macroscopic toroidization.

The toroidal moment of a single unit cell of GaFeO3 was
also evaluated in Ref. 23, without taking into account the
multivaluedness of the toroidization due to the periodic
boundary conditions. A value of t0=24.155�B Å along the a
direction was reported for the centrosymmetric reference
structure with y1−y2=−0.25, and the spontaneous toroidal
moment was specified as 0.03t0. It is unclear from Ref. 23
whether mixing of Fe ions onto the Ga sites was included in
the calculation and therefore a direct comparison with our
calculation is not possible.

D. BiFeO3

BiFeO3 is a multiferroic material of high practical interest
since it combines both magnetic and ferroelectric order
above room temperature �see Ref. 46�. It exhibits a rhombo-
hedrally distorted perovskite structure �space group R3c� in-
volving both polar displacements of the ions along the �111�
direction and counter-rotations of oxygen octahedra around
this direction.47–49 The spin structure of BiFeO3 is a super-
position of various components. In a first approximation, the
spins order in a G-type antiferromagnetic structure, where all
neighboring magnetic moments are oriented antiparallel to
each other.50 In addition, in bulk BiFeO3 the axis along
which the spins are aligned rotates throughout the crystal,
leading to an additional spiral spin structure with a large
period of �620 Å.51 However, this spiral component is ab-
sent in thin film samples,52 where instead a weak ferromag-
netic moment, resulting from a small canting of the magnetic
moments, has been reported.27,46 Here, we exclude the bulk
spiral component as well as the small weakly ferromagnetic
component from the discussion. Depending on the direction
of the antiparallel Fe moments, the magnetic point group is
either 3m �if the moments are aligned along the polar z axis�,
m �if the moments are oriented perpendicular to the polar

TABLE III. Positions ri and magnetic moment directions mi of
the Fe sites in GaFeO3 with magnetic space group Pc�21�n. Both Fe
sites correspond to Wyckoff positions 4a. The magnetic configura-
tion is that discussed in Ref. 43. S is the magnitude of the Fe
magnetic moment, which is assumed to be identical on both sites
and a, b, c are the usual orthorhombic lattice parameters.

site rx /a ry /b rz /c mi
x mi

y mi
z

Fe1 x1 y1 z1 0 0 S

Fe1 1 / 2−x1 y1 1 / 2+z1 0 0 S

Fe1 1 / 2+x1 y1−1 / 2 1 / 2−z1 0 0 S

Fe1 1−x1 y1−1 / 2 1−z1 0 0 S

Fe2 x2 y2 z2 0 0 −S

Fe2 1 / 2−x2 y2 1 / 2+z2 0 0 −S

Fe2 1 / 2+x2 y2−1 / 2 1 / 2−z2 0 0 −S

Fe2 1−x2 y2−1 / 2 1−z2 0 0 −S
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axis and parallel to the glide plane�, or m� �with the moments
perpendicular to the glide plane�; all of these symmetries
allow for a macroscopic toroidization. First-principles calcu-
lations showed that 3m symmetry, which would not allow for
a macroscopic magnetization, is energetically unfavorable.28

BiFeO3 provides an instructive example to illustrate the
limitations of the localized moment approach to toroidal mo-
ments based on Eq. �7�. Both space and time-inversion sym-
metries are broken in BiFeO3, so that in principle a toroidal
moment is symmetry allowed for this system. Indeed, an
antisymmetric component of the magnetoelectric tensor, in-
dicating a nonvanishing toroidal moment, has been measured
at high magnetic fields where the bulk spiral spin structure is
destroyed.53 However, if we consider only the localized spins
on the Fe sites, the magnetic lattice is centrosymmetric, i.e.,
it has a higher symmetry than the full magnetization density
��r� �see the discussion towards the end of Sec. II�, and thus
the corresponding toroidal moment vanishes. In the R3c
crystal structure of BiFeO3 the inversion symmetry is lifted
by displacements of the different ionic sublattices relative to
each other. Since the local moment picture neglects the pres-
ence of all nonmagnetic ions, this inversion symmetry break-
ing is not present in the purely magnetic lattice.

If we take the rhombohedral axis of BiFeO3 as the z di-
rection �hexagonal setup of the rhombohedral unit cell� and
consider a perfect G-type ordering with the magnetic mo-
ments of the Fe cations along ±x̂, then the calculated tor-
oidization is

Tn =
S

2	�
0

c

6
+ n

c

3

0
� . �25�

Here, c is the lattice constant of BiFeO3 along z within the
hexagonal setup. The first term along the y direction in Eq.
�25� is the trivial half-toroidization increment, and the whole
set of toroidization values is centrosymmetric, i.e., nontoroi-
dal. This shows that it is not always sufficient to consider
magnetic dipole moments localized at the sites of the mag-
netic cations, but that the spatial moment distribution can be
very important. The exact magnetic moment density ��r�
always reflects the full magnetic space group symmetry of
the system, whereas the reduction to localized magnetic mo-
ments can result in a higher symmetry than that of the full
system.

VII. SUMMARY, CONCLUSIONS, AND OUTLOOK

In summary we have presented a detailed study of mag-
netic toroidal moments in bulk periodic solids in the limit
where the toroidal moment is caused by a time and space
reversal symmetry breaking arrangement of localized mag-
netic moments. We have reviewed the basic microscopic
definitions and showed that the periodic boundary conditions
lead to a multivaluedness of the toroidization, which sug-
gests that only differences in toroidization are well-defined
observable quantities. We suggest that the origin dependence
of the toroidal moment should be treated by decomposing the

magnetic moment arrangement into a fully compensated an-
tiferromagnetic and an uncompensated ferromagnetic com-
ponent, so that only the ferromagnetic component depends
on the origin. Differences in toroidization resulting from the
compensated part of the moment configuration can be evalu-
ated rather straightforwardly, if one keeps in mind the mac-
roscopic symmetry properties of the system. We have illus-
trated the main concepts and difficulties in evaluating
magnetic toroidization in periodic systems by first discussing
the simple example of a one-dimensional antiferromagnetic
chain, and we have then analyzed the toroidization for four
example materials.

In addition to illustrating the general consequences of the
origin dependence and the multivaluedness of the toroidal
moment in periodic systems in the localized moment limit,
our main conclusion is that it is important to be aware of the
macroscopic symmetry properties when evaluating toroidiza-
tion changes. This is particularly striking in the example of
the distorted one-dimensional antiferromagnetic chain dis-
cussed in Sec. V, where the change in polarization due to a
structural distortion can be calculated straightforwardly,
whereas in the case of a magnetic moment reversal one has
to subtract the improper toroidization change that is caused
by the corresponding change in the toroidization increment.
We have also shown the limitations of the local moment
picture in evaluating toroidal moments in cases where the
reduction to localized moments changes the symmetry of the
system.

An open question, which we have not addressed in our
theoretical analysis, is how the spontaneous toroidization can
be measured experimentally. According to the fundamental
definition of the toroidal moment, this is in principle possible
by measuring the torque on a sample that is placed in an
inhomogeneous magnetic field. However, either a field with
a constant curl over the whole dimension of the sample has
to be generated, or the effects of other multipole moments
that couple to other field components have to be subtracted
appropriately. To our knowledge such a measurement has not
been attempted as of yet. So far, experimental evidence for
toroidal moments has been based mostly on the detection of
an asymmetric component of the magnetoelectric tensor, but
since the corresponding prefactors are not known, an abso-
lute quantitative determination of T is not possible. Simi-
larly, the nonlinear optical techniques used in Ref. 7 are
mostly sensitive to symmetry breaking, but are at best semi-
quantitative. Overall it appears that quantitative measure-
ments of toroidal moments are a challenging task, but in
principle possible.

Finally, we comment on some aspects of toroidal mo-
ments that have been discussed in a sometimes confusing
way in the literature. First, the relation between the toroidal
moment and the asymmetric component of the linear magne-
toelectric effect, and second the outer product of the polar-
ization with the magnetization, which has sometimes been
interpreted as a toroidal moment.

From a macroscopic symmetry point of view, the symme-
tries which allow for a macroscopic toroidal moment are
identical with that allowing for an antisymmetric component
of the linear magnetoelectric effect tensor. The relation be-
tween these two quantities can be seen by analyzing the fol-
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lowing free energy expression �see also Ref. 11�:

U =
1

2
�P2 − P · E +

1

2
BM2 − M · H +

1

2
AT2

+
1

4
CT4 + aT · �P � M� . �26�

This is the simplest possible free energy expression that can
simultaneously describe �i� a phase transition from a parator-
oidic �T= �T � =0� into a ferrotoroidic phase �T�0�, �ii� the
coupling of the electric polarization P and the magnetization
M to the electric field E and the magnetic field H, respec-
tively, and �iii� a coupling between the electric polarization,
the magnetization, and the toroidization. In Eq. �26�� and B
are the inverse electric and magnetic susceptibilities, A and C
are temperature dependent coefficients, and a represents the
strength of the magnetoelectric coupling. The trilinear form
of the coupling term in Eq. �26� is the lowest possible order
that is compatible with the overall space and time reversal
symmetries. The equilibrium values for P and M can be ob-
tained by minimizing Eq. �26�. This leads to

P =
1

�
	E − a�M � T�
 �27�

and

M =
1

B
	H − a�T � P�
 . �28�

If one inserts Eq. �28� into Eq. �27� one obtains �to leading
order in T�

P =
1

�
E −

a

�B
�H � T� . �29�

The last term in Eq. �29� represents an antisymmetric linear
magnetoelectric effect proportional to the toroidization.
Thus, the presence of the trilinear coupling term between
toroidization, magnetization, and polarization in Eq. �26�
gives rise to an antisymmetric magnetoelectric effect P
=�H in the ferrotoroidic phase, with �ij =− a

�B�k�ijkTk. Note
that in general other terms in the free-energy expansion can
give rise to additional symmetric contributions to the mag-
netoelectric tensor, which are not proportional to the toroidal
moment.

In Eq. �26� only the magnetization and the polarization
couple to H and E, the toroidization in general does not
couple to any homogeneous external fields, in agreement
with the fundamental definitions discussed in Sec. II �in par-
ticular Eq. �3��. The effective coupling represented by the
invariant EME�T · �E�H� �discussed in Refs. 2, 9, and 12�
arises from the trilinear coupling term in Eq. �26� if P and M
are substituted by their corresponding fields, by inserting
Eqs. �27� and �28� into Eq. �26�. Of course it depends on the
problem at hand whether it is more convenient to use the
fields E and H or the magnetization M and polarization P as

free variables. It is worth pointing out, though, that the two
cases should be carefully distinguished. One can either use a
description where P, T, and M are the free variables, P and
M couple linearly to their corresponding fields, and there is a
trilinear coupling term of the form T · �P�M�, or one can
alternatively use a picture where the variables P and M are
eliminated altogether and are replaced by the field variables
E and H. In this case the trilinear coupling term leads to an
effective coupling of T to E�H.

Another source of confusion is the relation of the tor-
oidization to the cross product P�M, which has the same
time and space reversal symmetry as T. This has led to a
number of instances in the literature in which P�M itself
has been described as a “toroidal moment.”5,6,54 We point out
that this is generally not correct. From our discussion in Sec.
III it becomes clear that P�M can never describe a toroidal
moment resulting from the compensated part of a magnetic
moment configuration �for which M=0�. We have also
shown in Sec. III that the change in toroidal moment result-
ing from the uncompensated part of the magnetic moment

configuration can be expressed as �t̃=1 /2�R̄�m, where

�R̄ is the average �noncentrosymmetric� displacement of the
magnetic moments. We point out that, at least in the local-

ized moment picture, �R̄ is in general not proportional to P,
and therefore the toroidal moment is in general not propor-
tional to P�M. In most magnetic ferroelectrics, the polar-
ization is related to a rigid shift of the magnetic cations rela-
tive to the nonmagnetic ions, which does not affect the

average position R̄ of the magnetic cations. It is therefore not
clear whether the conditions for T�P�M are fulfilled in
any currently known material.

It has been argued that ferrotoroidicity is a key concept
for fitting all forms of ferroic order in a simple fundamental
scheme based on the different transformation properties of
the corresponding order parameters with respect to time and
space inversion �see Refs. 2, 3, and 7, in particular, Fig. 2 in
Ref. 7�. The four fundamental forms of ferroic order listed in
these references are ferroelasticity, ferroelectricity, ferromag-
netism, and ferrotoroidicity, with order parameters trans-
forming according to the four different representations of the
“parity group,” which is generated by the two operations of
time and space reversal.8 A similar scheme has also been
proposed in Ref. 9, but with the electric toroidal moment g
�see Sec. I and also Refs. 14 and 15� as the time and space
symmetric order parameter instead of the ferroelastic strain
tensor. The latter classification scheme seems more natural to
us, since in this case all ferroic order parameters are vector
quantities. It is thus very important to clearly distinguish
between magnetic ferrotoroidicity and electric ferrotoroidic-
ity, which correspond to different representations of the par-
ity group. On the other hand, the existence of ferroelasticity,
with the second-rank strain tensor as time and space invari-
ant order parameter, raises the question of whether other fer-
roic second-rank tensor order parameters, corresponding to
different representations of the parity group, can be identified
in the future.
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