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Results are presented for spin-wave dispersions in geometrically frustrated stacked triangular antiferromag-
nets with a thin film or semi-infinite geometry having either zero, easy-plane, or easy-axis anisotropy. Surface
effects on the equilibrium spin configurations and excitation spectrum are investigated for the case of antifer-
romagnetically coupled films, serving to extend previous results on ferromagnetically coupled layers �E.
Meloche et al., Phys. Rev. B. 74, 094424 �2006��. An operator equation of motion formalism is applied to
systems which are quasi-one- and quasi-two-dimensional in character. In contrast to the case of ferromagneti-
cally coupled films, the results of this work show surface modes that are well separated in frequency from bulk
excitations. Magnetic excitations in thin films with an even or an odd number of layers show qualitatively
different behavior. These results are relevant for a wide variety of stacked triangular antiferromagnetic
materials.
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I. INTRODUCTION

The significant amount of research effort devoted to the
discovery and understanding of new aspects of geometrically
frustrated magnetic systems in recent decades has been al-
most exclusively focused on the study of bulk properties.1

Among such systems, a large number of materials have been
identified which are realizations of the prototype frustrated
triangular antiferromagnet �AF�. In addition to the AF near-
neighbor in-plane coupling, the vast majority of these sys-
tems are also characterized by AF coupling between stacked
triangular layers, such as in most of the ABX3 compounds.2

Theoretical and experimental studies of magnetic excitations
in these model materials have revealed important informa-
tion on the nature of the fundamental interactions and ex-
posed new types of spin-wave modes in the bulk systems.3–6

Interest in surface effects on frustrated magnetic systems has
been enhanced recently with the fabrication of new material
classes. Studies of hexagonal magnetoelectric and multifer-
roic rare-earth magnetite �e.g., RMnO3� thin films are being
fueled by potential technological applications in the field of
spintronics.7 Ultrathin films of Mn on fcc �111� Fe-Ni sub-
strates also offer the possibility to study AF triangular
layers.8 The understanding of thin-film, surface, and interface
spin dynamics of such systems is of interest for the engineer-
ing of high data transfer rate devices.9

In the present work, results of solving the operator equa-
tion of motion to examine surface spin excitations in a model
of AF-coupled frustrated triangular layers which have either
easy-plane or easy-axis anisotropy are shown. This study
represents an extension of our previous work where the tech-
nique was developed and applied to the case ferromagneti-
cally �F� coupled triangular layers having easy-plane aniso-
tropy �see Ref. 11, hereafter referred to as Paper I�. �A
summary of general theoretical and experimental techniques
that have been employed to study thin-film and surface spin
waves in unfrustrated systems is also provided in Ref. 10.�
The formulation of a linear spin-wave theory is based on a
model Hamiltonian which includes isotropic and anisotropic

exchange as well as single-ion anisotropy and allows for
layer-dependent coefficients of these interactions. Depending
on the specific system of interest �e.g., semi-infinite and thin
films with or without adjacent layers of a different material�,
surface parameters may have values quite different from the
bulk. A significant difference found for the present case of
AF-coupled layers is that localized modes can be well sepa-
rated in frequency even with bulk parameter values used at
the surface layers, in contrast with F-coupled films. Also, as
might be expected, equilibrium spin configurations and exci-
tations are dependent on whether the films are composed of
an even or odd number of layers �again in contrast with
F-coupled films�. Due to physical geometrical consider-
ations, nearly all material realizations of stacked triangular
layers can be classified as having either quasi-one-
dimensional �quasi-1D� or quasi-two-dimensional �quasi-2D�
magnetic character.2 In quasi-1D compounds, the exchange
interactions along the crystal c axis are much greater than the
weaker AF coupling between nearest-neighbor pairs in the
basal plane. In contrast, in quasi-2D compounds, the domi-
nant AF interactions are within the basal plane and the spins
along the c axis are weakly coupled. Illustrative numerical
results of the spin-wave calculations for these cases are dis-
cussed in the following sections with the intent to reveal key
aspects of thin-film and surface effects on spin excitations in
these systems.

These results are generally applicable to a wide variety of
AF-coupled layered triangular materials. Among the ABX3
compounds, CsMnBr3 and CsVCl3 are notable examples of
quasi-1D materials with planar anisotropy.3 Bulk excitations
have been well studied in prototypical axial quasi-1D hex-
agonal materials CsNiCl3 and CsCoX3.4 Examples of
quasi-2D compounds with well established bulk magnetic
properties include axial CuFeO2 �Ref. 5� and planar VX2 and
LiCrS2.6 Most of the RMnO3 materials exhibit planar aniso-
tropy although characterization of thin films in this regard is
ongoing.7 In ultrathin films, surface effects dominate and
spin reorientation transitions can occur.8 A number of pos-
sible experimental techniques to examine long wavelength
surface modes are summarized in our previous work.11
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Progress using inelastic neutron scattering techniques to
probe surface excitation in multilayer systems has been
reported.12

The systems considered here may be represented using
the following spin Hamiltonian:

H = �
�i,j�

Ji,j�Si · S j + �Si
zSj

z� + �
�i,i��

Ji,i�
� �Si · Si� + ��Si

zSi�
z �

+ �
i

Di�Si
z�2, �1�

where Ji,j �0 represents the intralayer nearest-neighbor AF
exchange coupling and Ji,i�

� �0 represents the interlayer AF
exchange coupling. The effects of anisotropic exchange cou-
pling are included through the parameters � and ��, and Di
represents the strength of the single-ion anisotropy at a mag-
netic site labeled i. The Hamiltonian in Eq. �1� can be used to
describe systems characterized with easy-plane �Di�0� and
easy-axis �Di�0� single-ion anisotropy. Easy-plane and
easy-axis systems have different equilibrium spin configura-
tions and spin dynamics and therefore the cases are treated
separately. We also allow the intralayer exchange interaction
and single-ion anisotropy parameters for spins located at the
surface to differ from their respective bulk values. This
asymmetry in the surface parameters can be used to investi-
gate the spin-wave properties of a frustrated magnetic thin
film placed between different nonmagnetic layers.

In Sec. II, bulk and surface spin-wave modes are calcu-
lated for the case of easy-plane anisotropy. In Sec. III, results
are deduced for the spin-wave energies and spectral intensi-
ties for the case of easy-axis anisotropy. A discussion of
these results and their relevance to specific compounds is
presented in Sec. IV.

II. EASY-PLANE ANISOTROPY

A. Easy-plane bulk spin-wave excitations

Although the Green’s function formalism used in this
work has been developed previously to calculate spin waves
in numerous unfrustrated thin-film systems,10,13,14 the appli-
cation to frustrated cases requires some care and a detailed
outline is provided here. Extending the general method de-
scribed in Paper I to calculate the bulk spin-wave dispersion
relation, the system is divided into three pairs of sublattices
on two adjacent layers, which are labeled A1, B1, C1, A2, B2,
and C2, and the specific sites on each sublattice are labeled
with indices l1, m1, n1, l2, m2, and n2, respectively. Within
any particular layer, the 120° structure is stabilized as a result
of the pairwise antiferromagnetic coupling between nearest-
neighbor spins. Also, in the classical ground state configura-
tion, the spins on adjacent layers �along the crystallographic
c axis� order antiparallel to one another. We first transform to
a local coordinate system such that the z axis for each sub-
lattice is in the direction of the average spin alignment. The
transformations to the local coordinate systems for the vari-
ous sites may be written as

�Si
x,Si

y,Si
z� → ��− 1��+1�Si

x� cos �i − Si
z� sin �i�,�− 1��+1

��Si
x� sin �i + Si

z� cos �i�,− Si
y�� , �2�

with i= l�, m�, n�, �l�
=0, �m�

=2� /3, and �n�
=−2� /3, with

�=1,2. The equations of motion for the local spin raising
and lowering operators at each lattice site are formed using

i
dSi

±

dt
= �Si

±,H� , �3�

where H is the transformed Hamiltonian. The exchange
terms on the right-hand side of Eq. �3� involving the product
of spin operators at different sites are decoupled using the
random-phase approximation. The terms involving the
single-ion anisotropy involve the product of spin operators at

the same site and these are decoupled using �Si
±Si

z�+Si
z�Si

±�
→2SpSi

±, where the decoupling parameter is p=1− �2S�−1.
The set of linearized coupled equations is then trans-

formed to a wave vector representation. Assuming the usual
time dependence exp�−iEt�, the resulting set of 12 equations
may be expressed as Mb=0, where

M = �A �

� A
	 and b = 
b1

b2
� . �4�

The elements of the 6�6 block-circulant matrices A and �
are written as

A = � Ã B̃ B̃*

B̃* Ã B̃

B̃ B̃* Ã

, � = �	�kz� 0 0

0 	�kz� 0

0 0 	�kz�

 . �5�

The matrix elements of A and � depend on the energy and
system parameters and are defined as

Ã = �E + 
 �

− � E − 

	 ,

B̃ = � � 


− 
 − �
	, 	�kz� = SJ��kz�/2� − �� 2 + ��

− 2 − �� ��
	 ,

�6�

where


 = − SJ�0� − SD� − SJ��0� ,

� = SD�,

� = − S�1/2 + ��J�k��/2,


 = S�3/2 + ��J�k��/2,

D� = �1 − �2S�−1�D . �7�

The exchange integrals J�k�� and J��kz� are defined as in
Paper I in terms of the lattice constants a and c. The elements
of the column vector b are written as
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b� = �SA�

+ �k�,SA�

− �− k�,SB�

+ �k�,SB�

− �− k�,SC�

+ �k�,SC�

− �− k��T,

�8�

for �=1,2. The terms SA�

± �k� correspond to the Fourier am-
plitudes of the spin operators Sl�

± , for �=1,2, along with
similar definitions for SB�

± �k� and SC�

± �k�. The bulk spin-
wave modes correspond to the solutions of det M=0. Ana-
lytical results may be obtained by first block diagonalizing
M using the transformation W†MW=D, where

W =
1
�2

� U U

− U U
	 , �9�

U =
1
�3�12 12 12

12 x12 x*12

12 x*12 x12

 with x = exp�i2�/3� . �10�

The nonzero elements of D consist of six 2�2 matrices
along the main diagonal and the bulk spin-wave energies are
obtained from the solutions of the determinantal conditions

det(�̃���±	)=0 for �=0, ±2� /3 where we have defined

�̃���= Ã+ B̃ exp�i��+ B̃* exp�−i��. Bulk spin-wave energies
may be expressed as �k±��� with �=0, ±2� /3, where

�k±
2 ��� = �
 + � ± SJ��kz� + SJ��k�,����
 − � � S�1 + ���

�J��kz� − 2SJ�1 + ����k�,��� �11�

and

��k�,�� = 2 cos��3kya/2�cos�− kxa/2 + �� + cos�kxa + �� .

�12�

B. Easy-plane surface spin waves

As in our previous work,11 calculations are first made for
a semi-infinite system with a single �001� surface and for a
thin film composed of N magnetic layers which are labeled
using the layer index n �=1, . . . ,N�. The linearized equations
of motion for the local spin raising and lowering operators at
all the sites are formed and then transformed to a represen-
tation involving a two-dimensional wave vector k� which
runs parallel to the surfaces and a layer index n. The spins
located on the layers with an odd layer index n are taken to
belong to sublattices A1, B1, and C1 whereas those located on
layers with an even layer index n belong to sublattices A2,
B2, and C2. For the lth site on sublattice A1, the wavelike
solution for the spin operator is written as

Sl1
± = SA1,n

± �k��exp�i�k� · � − Et�� , �13�

where the position vector �= �x ,y� and the amplitudes
SA1,n

± �k�� depend on the z coordinate through the layer index
n. Similar expressions are defined for sites on sublattices B1,
C1, A2, B2, and C2. For a semi-infinite system, the set of
finite difference equations connecting the Fourier amplitudes
may be expressed in supermatrix form as Mb=0, where M is
an ��� block-tridiagonal matrix with diagonal elements

equal to A �except for the leading element which is equal to
A1� and off-diagonal elements 	�0� /2.

Each element M represents a 6�6 matrix and A is de-
fined as in Eqs. �5� and �6�. The elements of the matrix A1
are defined as in A but with the substitution J→J1, D→D1,
and J�→J� /2. The differences between A1 and A occur be-
cause of different exchange and anisotropy parameters for
spins in the surface layer as well as the reduced number of
interlayer neighbors for surface spins. The infinite column
vector b is written as b= �b1 ,b2 , . . . �T, where bn is defined in
Eq. �8� and n=1, . . . ,�. The equations are first partially de-
coupled by applying the transformation U−1Mi,jU to all of
the elements of the supermatrix. The transformed equations
may be written into three sets of finite difference equations
as

�̃1���X1,� +
	�0�

2
X2,� = 0 �n = 1� , �14�

	�0�
2

X2�,� + �̃���X2�+1,� +
	�0�

2
X2�+2,� = 0

�n = 2� + 1,� � 1� , �15�

	�0�
2

X2�−1,� + �̃���X2�,� +
	�0�

2
X2�+1,� = 0 �n = 2�,� � 1� ,

�16�

for �=0, ±2� /3. The matrix �̃1��� is defined as �̃1���
= Ã1+ B̃1 exp�i��+ B̃1

† exp�−i��, whereas �̃��� is defined as
in the bulk case. The column vectors in Eqs. �14�–�16� are
written as Xn,�= �Xn

+��� ,Xn
−����T with elements

Xn
±��� =

1
�3

�SA,n
± + SB,n

± exp�− i�� + SC,n
± exp�i��� , �17�

where we omit the wave vector label k�. Column vectors
Xn,� with an odd �even� layer index n involve linear combi-
nations of the operator amplitudes on sublattice 1 �2� only.
Equations �14� and �15� are used to eliminate the Xn,� with n
odd from the set of equations represented by Eq. �16�. The
resulting set of relations connecting Xn,� with n even can be
written in the matrix form

�
P1,� Q� 0 0 0 ¯

Q� P� Q� 0 0 ¯

0 Q� P� Q� 0 ¯

] � � � � ¯


�
X2,�

X4,�

X6,�

]


 = 0, �18�

where

P1,� = �̃��� −
1

4
	�0���̃1

−1��� + �̃−1����	�0� ,

P� = �̃��� −
1

2
	�0��̃−1���	�0� ,
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Q� = −
1

4
	�0��̃−1���	�0� . �19�

The three sets of equations given in Eq. �18� �for �
=0, ±2� /3� couple the amplitudes on sublattice 2 only. The
surface spin-wave frequencies can be numerically obtained
following an analogous approach employed for ferromag-
netically coupled layers.11

For a thin film composed of N layers with �001� surfaces,
the system of finite difference equations can be expressed in
a supermatrix form as Mb=0 as for the semi-infinite case
except that M is now a 6N�6N block-tridiagonal matrix and
the column vector is defined as b= �b1 , . . . ,bN�T. The first
and the last elements on the main diagonal of the superma-
trix M are written as A1 and AN, respectively. The elements
of the matrix AN describe the effects of the additional surface
of the film and are defined as in A1 for the semi-infinite case
except that with the appropriate exchange and anisotropy
parameters at the surface n=N. The coupled systems of
equations in the case of a thin film can be decoupled using
the method outlined for a semi-infinite system. However,
cases involving an even or an odd number of layers N must
be dealt with separately. For a film containing an odd number
of layers, both surfaces belong to the same sublattice,
whereas for a film with an even number of layers, the spins
in the surface layers belong to difference sublattices. The
spin-wave excitation spectrum in a stacked triangular antifer-
romagnetic film is numerically obtained by solving the de-
terminantal condition det M=0.

C. Numerical results

In Fig. 1, illustrative results are shown for the spin-wave
frequency versus in-plane wave vector kxa �with ky =0� for a
representative S=1 quasi-1D planar triangular antiferromag-
net where we set J=1.0 GHz, J�=100.0 GHz, and �=��
=0.0. The dispersion relations in the top and bottom figures
correspond to D�=1.0 GHz and D�=0, respectively. For
clarity, the results for the dispersion relation are shown using
an extended zone scheme.11,15 The surface exchange and an-
isotropy parameters are taken to be uniform throughout the
system. The shaded areas represent all of the bulk solutions
�k±��� �see Eq. �11�� with 0�kzc�� /2 and the three sec-
tions �from left to right� correspond to the bulk solutions
with �=0,2� /3,−2� /3. The M point denotes the zone-edge
wave vector �kx ,ky�= �2� /3a ,0�. For these parameter values,
the top of the bulk regions extends to approximately
208 GHz and only the lower part of the effective bulk con-
tinuum is shown. The solid line represents a surface spin
wave obtained from the solution of Eq. �18� for a semi-
infinite system. This mode is characterized with an amplitude
that decays into the film away from the surface. In the top
figure, results are also shown for two lowest energy modes
for thin films composed of 8 layers �dotted lines� and 16
layers �dashed lines�. The gapless �Goldstone� excitation in
each case is a uniform mode and reflects the fact that all of
the spins can be simultaneously rotated about the crystal c
axis without any cost in energy. In the bottom figure, the
dotted, dashed, and solid lines represent two lowest energy

excitations for a film composed of N=9, 17, and 100 layers,
respectively. The additional zero-energy mode corresponds
to the simultaneous rotation of all the spins out of the ab
plane. This operation does not cost energy in the limit of
D�=0. The dominant effect of the anisotropy is to open up a
gap in the spectrum at the � point for the surface and bulk
excitation. The gap energies for the bulk modes are obtained
from Eq. �11� and are �k−�±2� /3�=S�D��8J�+9J��1/2. For
most values of the wave vector, the surface mode obtained
for a semi-infinite system is well separated from the bulk
region. This contrasts with the behavior obtained for a
quasi-1D easy-plane triangular antiferromagnet with ferro-
magnetic interlayer exchange coupling where the splitting
between the surface branch and the bulk region is negligible
for a system characterized with uniform exchange and aniso-
tropy parameters.

The eigenvectors can be used to characterize the symme-
try of the spin-wave modes in frustrated thin films and to
describe the nature of the modes in terms of acoustical �in-
phase� and optical �out-of-phase� precession. As an example,
we consider the symmetry properties of the four lowest k�

=0 energy modes for a quasi-1D antiferromagnetic film with
an even number of layers. For N=8, the four spin-wave
modes have energies equal to �1=0.0, �2=20.7, �3=29.3,
and �4=40.6 GHz �see Fig. 1�. The Fourier amplitudes of

(b)

(a)

FIG. 1. Spin-wave energy versus in-plane wave vector kxa for a
quasi-1D system with J=1.0 GHz, J�=100.0 GHz, and �=��=0.0,
and in the top figure D�=1.0 GHz, whereas in the bottom D�=0.0.
The M point refers to the wave vector k� = �2� /3,0�. Shaded re-
gions correspond to the bulk excitations. In the top figure, solid,
dotted, and dashed curves correspond to the semi-infinite, 8-layer,
and 16-layer systems, respectively. In the bottom figure, dotted,
dashed, and solid lines correspond to films with 9, 17, and 100
layers, respectively.
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the transverse spin components �Si,n
x� �k�� ,Si,n

y� �k��� �for i
=A ,B ,C� within any particular layer n are numerically ob-
tained from Eqs. �14�–�18�. The amplitudes are defined with
respect to the local coordinate systems defined by the trans-
formation in Eq. �2�. The mode �1 is characterized with
SA,n

x� �k��=SB,n
x� �k��=SC,n

x� �k�� and SA,n
y� �k��=SB,n

y� �k��=SC,n
y� �k��

=0. On any sublattice, the mode has a uniform amplitude
throughout the thickness of the film and this mode is classi-
fied as an acoustic spin wave. The mode �2 is characterized
with �SA,n

x� �k�� ,SA,n
y� �k���=−�SB,n

x� �k��+SC,n
x� �k�� ,SB,n

y� �k��
+SC,n

y� �k��� within any layer. On a given sublattice, the mode
is antisymmetric with respect to the center of the film. For
example, on sublattice A, we have �SA,n

x� �k�� ,SA,n
y� �k���=

−�SA,N+1−n
x� �k�� ,SA,N+1−n

y� �k���. On any sublattice, the spin-
wave mode �3 is symmetric about the center of the film and
the amplitudes on the three sublattices satisfy
�SA,n

x� �k�� ,SA,n
y� �k���=−�SB,n

x� �k��−SC,n
x� �k�� ,SB,n

y� �k��−SC,n
y� �k���.

Mode �4 is antisymmetric with respect to the center of the
film and the amplitudes on any layer satisfy SA,n

x� �k��
=SB,n

x� �k��=SC,n
x� �k�� and SA,n

y� �k��=SB,n
y� �k��=SC,n

y� �k��. The
higher energy modes �2, �3, and �4 involve some out-of-
phase oscillations and are classified as optical spin waves.
The relationships between the Fourier amplitudes for the
four lowest k� =0 modes hold for any film composed of an
even number of layers. Similar relationships can be obtained
for a film composed of an odd number of layers.

The spin-wave dispersion relation in these frustrated films
shows interesting characteristics. The dispersion relation in
films composed of an odd number of layers is qualitatively
similar to that with ferromagnetic interlayer exchange. This
can be explained by the fact that for an odd number of layers,
both surfaces belong to the same sublattice and each indi-
vidual chain of spins will possess a net moment. For thin
films with an even number of layers N, the system is com-
posed of antiferromagnetically coupled chains that possess
no net moment because each chain of spins has an equal
number of sites from sublattices 1 and 2. As the number of
layers in the film increases, this effect becomes less impor-
tant and the two lowest branches eventually become degen-
erate and equal to the results obtained for the semi-infinite
system. The two modes correspond to localized excitations at
each surface. The crossing point of the two low-energy
branches in Fig. 1 �top� depends on the assumed parameters
of the model.

In Fig. 2, results are shown for the surface and bulk spin-
wave energies versus in-plane wave vector kxa �with ky =0�
for a semi-infinite quasi-2D system with J=100.0 GHz, J�
=1.0 GHz, D�=1.0 GHz �with D1=D�, and �=��=0.0. The
bulk spin waves form a very narrow continuum �shaded ar-
eas� in quasi-2D systems because of the weak dependence on
the third wave vector component kz. Also shown are the sub-
stantial effects of a modified surface exchange coupling J1
on the surface spin waves. Splitting of the surface branch
away from the bulk region can also be obtained by assuming
a modified value for the surface anisotropy D1 compared to
the bulk value. The energy gap at the zone center � for the
bulk modes �k−�±2� /3� is due to the anisotropy and van-
ishes when D�=0.

III. EASY-AXIS ANISOTROPY

A. Easy-axis bulk spin-wave excitations

Consider now the triangular antiferromagnet character-
ized with a single-ion anisotropy whose easy axis is along
the crystallographic c axis. It is instructive to first carry out
the calculations for the bulk spin-wave dispersion. We follow
a method similar to the one described previously for the case
of easy-plane anisotropy. For the bulk spin-wave calculation,
the system can again be divided into the six sublattices as
depicted schematically in Fig. 3�a�. It is worth noting that the
ground state spin configuration can be rotated about the c
axis by any arbitrary angle and here we assume that all of the
spins have their equilibrium positions in the ac plane. With-

FIG. 2. Surface and bulk spin-wave energy versus in-plane wave
vector kxa for a semi-infinite quasi-2D system with J=100.0 GHz,
J�=1.0 GHz, D�=1.0 GHz �with D1=D�, and �=��=0.0. The solid
line appearing just below the bulk region �shaded area� corresponds
to a case with uniform interlayer coupling J1=J, whereas the dotted
and dashed lines are obtained with J1=0.5J and J1=0.75J,
respectively.

FIG. 3. �a� The deformed 120° structure for a stacked triangular
antiferromagnet with easy-axis anisotropy. The angle � is greater
than 2� /3 when D�0 �when �=��=0.0�. All of the spins lie in the
ac plane and the directions of the spins on sublattices A2, B2, and
C2 are opposite to those on sublattices A1, B1, and C1, respectively.
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out loss of generality, we set the equilibrium direction for
spins on sublattice A1 along the c axis. The equilibrium con-
figurations for spins on sublattices B1, C1, A2, B2, and C2 can
be obtained using a local field method.16–18 The main effect
of the easy-axis anisotropy on the equilibrium configuration
is that the spins now lie in the a plane containing the c axis
and a deformation of the 120° structure giving ��120° as
shown in Fig. 3�b�.

The Hamiltonian in Eq. �1� is transformed to a local co-
ordinate system such that the direction of the local z axis is
in the direction of the equilibrium spin alignment. The trans-
formations for the sites on the six sublattices are written as

�Si
x,Si

y,Si
z� → ��− 1��+1�Si

x� cos �i − Si
z� sin �i�,Si

y�,�− 1��+1

��Si
x� sin �i + Si

z� cos �i�� , �20�

with i= l� ,m� ,n�, �l�
=0, �m�

=�, and �n�
=−�, with �=1,2.

The stability condition requires that the coefficients of the

local transverse spin components Si
x� and Si

y� vanish for all
sites and leads to the bulk canting angle which is given by

cos � =
− �1 + ��

2�1 + �/2 − ��J�/3J + D�/3J�
. �21�

Equation �21� is a generalization of the results obtained in
Refs. 16 and 19 which treat the cases of either easy-axis
anisotropy or exchange anisotropy, but not both. In the ab-
sence of anisotropy ��=��=D�=0�, the 120° structure is re-
covered, as expected. The linearized equations of motion for
the various sites are calculated and then transformed to a
wave vector representation. Twelve equations are required to
obtain a closed set. The system of coupled equations may be
expressed as Mb=0, where the 12�12 matrix M has the
same form as in Eq. �4� and the column vector b is formally
written as in Eq. �8�. In this case, the elements of the super-
matrix M are now given by

A = � Ã B̃ B̃*

B̃* C̃ D̃

B̃ D̃* C̃

, � = �	�kz� 0 0

0 ��kz� 0

0 0 ��kz�

 ,

�22�

where

Ã = �E + 
 0

0 E − 

	, B̃ = − SJ�k��/2� c1

+ c1
−

− c1
− − c1

+ 	 ,

C̃ = �E + � �

− � E − �
	, D̃ = − SJ�k��/2� c2

+ c2
−

− c2
− − c2

+ 	 ,

	�kz� = SJ��kz�� 0 1

− 1 0
	 ,

��kz� = SJ��kz�/2� �� sin2 � �2 + �� sin2 ��
− �2 + �� sin2 �� − �� sin2 �

	 ,

�23�

with matrix elements defined as


 = 2S�1 + ��cos �J�0� + 2SD� − S�1 + ���J��0� ,

� = S��1 + ���cos � + cos2 �� − sin2 ��J�0�

− S�1 − 3 cos2 ��D� − S�1 + �� cos2 ��J��0� ,

� = − SD� sin2 � ,

c1
± = cos � ± 1,

c2
± = cos2 � − �1 + ��sin2 � ± 1,

D� = �1 − �2S�−1�D . �24�

The matrix A is not a block-circulant matrix due to the
effects of the anisotropy and analytical solutions for the bulk
spin waves cannot be obtained using the diagonalization pro-
cedure employed in Eqs. �9� and �10�. Instead, the bulk spin-
wave spectrum is numerically obtained by solving the deter-
minantal condition det M=0.

B. Spin waves in thin films

The spin-wave excitations in thin films composed of N
magnetic layers with �001� surfaces may be investigated by
extending the method used for bulk spin waves. The calcu-
lations for a thin film with easy-axis anisotropy are algebra-
ically more complicated than those for a film with easy-plane
anisotropy because the system can no longer be described in
terms of a six sublattice model. However, within any particu-
lar layer of the film, the system is still divided into three
interpenetrating sublattices. Without loss of generality, the
equilibrium direction for the surface layer spins n=1 on sub-
lattice A is set along the c axis and the equilibrium direction
for all of the other spins is obtained by minimizing the clas-
sical energy of the system. Sites on sublattice A with an odd
layer index n also have their equilibrium directions along the
c axis, whereas sublattice A sites with an even layer index
are antiparallel because of the antiferromagnetic interlayer
exchange coupling. The canting angles for sites on sublat-
tices B and C in layer n are written as �B,n=�C,n=�n. A
schematic diagram of the system is illustrated in Fig. 4�a�
along with the local set of axes for each sublattice. The 3N
coordinate transformations may be written as

�Si
x,Si

y,Si
z� → ��− 1�n+1�Si

x� cos �i − Si
z� sin �i�,

�Si
y�,�− 1�n+1�Si

x� sin �i + Si
z� cos �i�� , �25�

for i= ln ,mn ,nn with n=1, . . . ,N, and we define �ln
=0, �mn

=�n, and �nn
=−�n. The Hamiltonian in Eq. �1� is again writ-

ten with respect to the local coordinate systems, and the sta-
bility conditions for the spins on sublattice B �or C� are now
given by

3Jn��1 + ��sin �n + �1 + �/2�sin 2�n� + Dn� sin 2�n

+ J���sin �n−1 cos �n − �1 + ���cos �n−1 sin �n��1 − �1,n�

��sin �n+1 cos �n − �1 + ���cos �n+1 sin �n��1 − �n,N��

= 0 for n = 1, . . . ,N . �26�
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The surface effects are taken into account through the
Kronecker � in Eq. �26� and modified values of the exchange
and single-ion anisotropy at the surfaces of the film are al-
lowed. The set of N nonlinear equations can be solved using
a numerical self-consistent approach.20,21 However, there are
a few limiting cases that can be solved analytically. If we
neglect the anisotropy terms ��=��=Dn�=0�, we recover the
120° structure in any particular layer, as expected. In the
limit of J�=0, the layers are independent from one another
and the canting angle within any layer will be given by Eq.
�21�. When the exchange and anisotropy surface parameters
are set equal to their bulk values, it is easily verified that the
canting angles for sites on sublattices B and C are layer
independent and again given by Eq. �21�. For all other cases,
a numerical solution is required.

The spin-wave energies in thin films are obtained by
forming 6N linearized coupled equations of motion which
may be expressed as Mb=0, where M is a block-tridiagonal
matrix, with diagonal elements defined as An and off-
diagonal elements equal to �i,i+1 �with i=1,N−1�, and b
= �b1 , . . . ,bN�T. The elements of the matrices An and �n,n�
�defined in the Appendix� are similar to those in the bulk
case in Eqs. �22�–�24�, where the main differences are due to
the layer-dependent canting angles for spins on sublattices B
and C. Spin-wave excitations are numerically obtained from
the solutions of det M=0.

C. Numerical results

In all the cases studied, the spins on sublattice A form
antiferromagnetic chains with ordering along the c axis. The
canting angle is layer dependent only if the surface exchange
or anisotropy parameters are allowed to differ from their cor-
responding bulk values. In quasi-1D systems, the strong in-

terlayer coupling tends to restore the antiferromagnetic order
in the spin chains on sublattices B and C. For quasi-2D sys-
tems, the perturbation of the canting angle in cases with
modified surface parameters is localized to a small number
of layers �typically �2� away from the surface.

An example of the spin-wave dispersion relation for a
quasi-1D system with easy-axis anisotropy is illustrated in
Fig. 5. The shaded area corresponds to the low-energy bulk
spin waves. The solid lines represent the six lowest energy
modes for a uniform film composed of N=20 layers. The
parameter values for the representative quasi-1D system are
J=1.0 GHz, J�=100.0 GHz, D�=−1.0 GHz, and �=��=0.0.
All of the spin-waves modes obtained from the determinantal
condition det M=0 are degenerate in magnitude and only the
positive solutions are shown. A Goldstone mode also exists
in bulk and thin films characterized with easy-axis aniso-
tropy because of the zero energy cost associated with rotat-
ing the spin configurations in Figs. 3 and 4 about the crystal
c axis.

The operator equation of motion method used in the pre-
vious sections may be easily extended to calculate Green’s
functions which can be used to discuss the spectral intensi-
ties of the spin-wave modes predicted in this work. In order
to further characterize the low-energy spin-wave modes in
thin films with easy-axis anisotropy, the mean-squared am-
plitude of the spin precession, defined for sublattice i
�=A ,B ,C� as Qi�k� ,n�= ��Si,n

x �2+ �Si,n
y �2�k�

, is considered. For
simplicity, we outline the calculation of QA�k� ,n�. This real
quantity can be written in terms of equal time �t= t�� trans-
verse spin-correlation functions as

FIG. 4. �a� Schematic view of the spin configuration for a
stacked triangular antiferromagnet with easy-axis anisotropy and a
�001� surface as viewed along the chains. �b� Local coordinate sys-
tem for spins in layer n, where n is an odd layer index.

FIG. 5. Spin-wave energy versus in-plane wave vector kxa �with
ky =0� for an S=1 quasi-1D system with easy-axis anisotropy. The
parameters are J=100.0 GHz, J�=1.0 GHz, D�=−1.0 GHz, and �
=��=0.0. The exchange and anisotropy parameters at the surfaces
of the film are set equal to their corresponding bulk values. The
shaded area corresponds to the lower edge of the bulk continuum
and the solid lines correspond to the six lowest energy modes ob-
tained for a thin film composed of N=20 layers. The six lowest
energy branches for the film are labeled �1 , . . . ,�6.
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QA�k�,n� =
1

2
��SA,n

+ �t�SA,n
− �t��k�

+ �SA,n
− �t�SA,n

+ �t��k�
� . �27�

The spectral representation �n�k� ,E� of the transverse spin-
correlation function �SA,n

− �t�SA,n
+ �t���k�

defined as

�SA,n
− �t�SA,n

+ �t���k�
= �

−�

�

�n�k�,E�exp�− iE�t − t���dE

�28�

is obtained from the imaginary part of the Green function
Gn,n

A �k� ,E�= ��SA,n
+ �k�� ;SA,n

− �k����E using the fluctuation dissi-
pation theorem.22 The spectral function of the other correla-
tion function �SA,n

+ �t�SA,n
− �t���k�

may also be deduced from
Gn,n

A �k� ,E�. Some examples of the application of the Green
function equation of motion method to magnetic thin films
with a different ordering of the spins are given in Refs. 13
and 21–23. In the low-temperature limit �T�TC�, the solu-
tion to the Green function Gn,n

A �k� ,E� may be written as

Gn,n
A �k�,E� =

S

� det M
�adj M�6n−5,6n−5 for n = 1, . . . ,N ,

�29�

where �adj M�n,n denotes the nth diagonal element of the
adjoint of the matrix M. Other diagonal elements of the ad-
joint of M are used to obtain the Green functions Gn,n

B �k� ,E�
and Gn,n

C �k� ,E�. The spin-wave energies obtained from
det M=0 will correspond to the poles of the Green functions.
The mean-squared amplitude QA�k� ,n� �or integrated inten-
sities� of a particular spin-wave mode is estimated by evalu-
ating the area under the peak of the imaginary parts of
Gn,n

A �k� ,E+ i��, where the real and positive quantity � is in-
troduced phenomenologically to model an intrinsic damping
or reciprocal lifetime.

Figure 6 shows the mean-squared amplitudes as a func-
tion of the layer index corresponding to some of the k�

= �2� /3a ,0� spin-wave modes shown in Fig. 5. The mean-
squared amplitudes for sublattices B and C within any par-
ticular layer are equal. Numerical results show that the spin-
wave modes �1 , . . . ,�4 contribute mostly to the spin
fluctuations on sublattices B and C. These modes are local-
ized near the surfaces of the film and are characterized with
amplitudes which decay with distance from the surfaces. The
amplitudes QA�k� ,n� �not shown� of the spin-wave modes
�1 , . . . ,�4 are negligible. The differences in amplitudes be-
tween odd and even layers are a result of the AF ordering of
the spin chains. The spin-wave modes �5 and �6 contribute
much less to the fluctuations on sublattices B or C compared
with modes �1 , . . . ,�4. These higher energy modes are char-
acterized with amplitudes that vary in a wavelike fashion
across the thickness of the film on sublattices B and C. How-
ever, numerical results show that the spin-wave modes �5
and �6 are localized on sublattice A sites that are near the
surfaces of the film. Higher energy modes are characterized
with amplitudes that vary in a wavelike fashion on all three
sublattices.

Figure 7 shows illustrative results for an S=1 quasi-2D
film composed of N=20 layers where we set D�=−10 GHz,
J�=1.0 GHz, J=100.0 GHz, and �=��=0.0. Exchange and
anisotropy parameters at the surfaces are set equal to their
corresponding bulk values. For each value of the in-plane
wave vector k�, the solution of det M=0 yields a total of 6N
spin-wave modes. All of the solutions are degenerate in mag-
nitude and the dispersion relation �showing positive solutions
only� is illustrated in Fig. 7�a�. The modes are split into three
distinct groups each containing a total of 20 branches. Quali-
tatively similar results �not shown� are obtained for a
quasi-2D system with easy-plane anisotropy. The main effect
of the easy-axis anisotropy is to remove the degeneracies

(b)

(a)

FIG. 6. Mean-squared amplitudes QB�k� ,n�=QC�k� ,n� plotted
against the layer index n for some of the low-energy k�

= �2� /3a ,0� modes defined in Fig. 5 for a quasi-1D film composed
of N=20 layers. The amplitudes QB�k� ,n� of the spin-wave modes
�2 and �3 �not shown� are qualitatively similar to those of �1. All
of the results are symmetric with respect to the center of the film
because of the symmetric choice of anisotropy and exchange pa-
rameters at the surfaces. The lines are guides for the eye. The closed
symbols define the amplitudes on even numbered layers, whereas
the open symbols are used for the odd numbered layers.
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between some of the spin modes. This is a consequence of
the reduced symmetry in systems characterized with easy-
axis anisotropy compared with systems with easy-plane an-
isotropy. Discussions of the symmetry properties of the bulk
spin-wave modes can be found in Ref. 19. The lowest energy
branch in each group is labeled �1, �2, and, �3. In quasi-2D
systems, these modes are twofold degenerate and each mode
represents a localized excitation at the surfaces of the film.
The 18 other spin-wave branches within each group appear
in the effective bulk continuum �not shown� obtained for the
infinite system. The inset in Fig. 7�a� shows the splitting in
frequency �at small wave vectors� of the surface branch la-
beled �3 from the rest of the modes in the group. In Fig.

7�b�, results are shown for the spectral representation ob-
tained from −Im�Gn,n

A �k� ,E+ i��� for the 20 low-lying k�

= �2� /3a ,0� spin-wave excitations around �1. The solid and
dashed lines show results for the spectral representation in
layers n=1 and n=3, respectively. The intensity of the spin-
wave mode �1 is largest in the surface layers �n=1 or n=N�
and decays extremely rapidly with distance away from the
surfaces. In Fig. 7�c�, we show the amplitude QA�k� ,n� �in-
tegrated intensity� of the surface modes as a function of the
distance away from the surface. The results are symmetric
about the center of the film and only the first four layers are
shown. Qualitatively similar behavior is obtained for the am-
plitudes QB�k� ,n� �=QC�k� ,n��. The surface modes have

(b)

(a) (c)

(d)

FIG. 7. �a� Spin-wave dispersion relation for an S=1 easy-axis quasi-2D film composed of 20 layers with uniform parameters where we
set D�=−10 GHz, J�=1.0 GHz, J=100.0 GHz, and �=��=0.0. The spin-wave modes are split into three groups each containing 20
branches. The labels �1, �2, and �3 refer to the lowest energy branches in each group. The inset focuses on the small wave vector region
and shows the splitting of the �3 branch from the other modes in the group. �b� Sublattice A spectral representation �−Im�Gn,n

A �k� ,E+ i���
with k� = �2� /3a ,0� and �=0.01 GHz� versus frequency in layers n=1 �solid line� and n=3 �dashed line�. �c� The amplitude QA�k� ,n�
�integrated intensity� of the zone-edge surface modes �1, �2, and �3 as a function of the layer index. Results are symmetric about the center
of the film and only results from the first four layers are shown. Lines are guides for the eye and have no physical meaning. �d� The
mean-squared amplitude QA�k� ,n� for the bulk excitation �B defined in �b� versus layer index. Open and close symbols are used for odd and
even layers, respectively.
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negligible spectral intensities for any layer 4�n�16. Figure
7�d� shows results for the amplitude as a function of the layer
index for the bulk mode labeled �B of Fig. 7�b�. The modes
appearing within the effective bulk continuum have ampli-
tudes that vary in a wavelike fashion across the thickness of
the film. The intensities of the bulk excitations at the surfaces
are strongly dependent on wave vector and the assumed an-
isotropy and exchange parameters at the surfaces of the film.

Some effects of modified values of the surface exchange
parameters on the spin-wave dispersion relation and the am-
plitude of the modes are illustrated in Fig. 8 for a quasi-2D
system. The results are obtained using the same parameters
as in Fig. 7�a� except that the exchange parameters at the
surface are set as J1=JN=0.9J. The localized surface modes
labeled �1, �2, and, �3 are shifted to lower frequencies when
the surface exchange parameters are less than the bulk val-
ues. Figure 8�b� shows that the modes �1, �2, and �3, are
localized near the surfaces of the film and are characterized
with amplitudes that are orders of magnitude smaller than the
case with uniform parameters throughout the thickness of the

film. For a symmetric film with J1=JN and D1=DN, the sur-
face modes are twofold degenerate. However, the degeneracy
is lifted when the surfaces are asymmetric.

IV. CONCLUSIONS

The results presented above outline the application of an
operator formalism to calculate surface and thin-film effects
on the spin dynamics in AF-coupled geometrically frustrated
triangular layers. This serves to extend our previously pub-
lished work on F-coupled films to the physically more rel-
evant case applicable to a large variety of materials. Through
the use of illustrative numerical calculations, differences in
linear spin excitations for bulk, semi-infinite, and thin-film
systems having either easy-plane or easy-axis anisotropy and
quasi-1D or quasi-2D exchange couplings are highlighted.

A number of features of these results are of interest. In
contrast with the case of F-coupled films, bulk and surface
mode excitations remain well separated in the case of AF-
coupled layers even in the case where surface exchange and
anisotropy parameters are identical to bulk values. Differ-
ences also arise between these two types of interlayer cou-
plings in the case of thin films. In the case of AF coupling,
the results are dependent on whether there are an even or odd
number of layers corresponding to having compensated or
uncompensated total moments, respectively. Most of our
knowledge regarding the sign of exchange interactions is
based on rules which may not be entirely applicable to sur-
face and thin-film environments.24,25 Examination of the spin
excitation spectrum in view of these findings offers a pos-
sible tool to distinguish the type of interlayer coupling. The
present work also features a calculation of mode amplitudes.
The mode amplitudes exhibit a variety of dependences
through the thickness of the thin films and if the system is
quasi-1D or quasi-2D. Potential extensions of the present
calculations might be to include dipolar effects that can be
important at surfaces even in AF systems. This may require
the utilization of purely numerical algorithms such as those
based on classical equations of motion.26 Another interesting
extension of the work would be the study of the static and
dynamic magnetic properties of superlattice structures com-
posed of different frustrated antiferromagnetic thin films, ex-
tending work done on unfrustrated superlattice
structures.10,27,28 The magnetic properties of composite ma-
terials can be quite distinct from any individual constituent
due to interface effects between different magnetic materials.
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APPENDIX

The definitions of matrices An and �n,n� for a stacked
triangular antiferromagnetic thin film with easy-axis aniso-
tropy are

(b)

(a)

FIG. 8. �a� As in Fig. 7 except with modified exchange param-
eters at the surface of the film. Results correspond to J1=JN=0.9J.
The labels �1, �2, and �3 refer to the three surface modes. �b�
Sublattice A mean-squared amplitude evaluated at k� = �2� /3a ,0�
for the surface modes as a function of layer index showing the first
four layers only. The amplitudes are �3 orders of magnitude
smaller than those in Fig. 7�c�.
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An = � Ãn B̃n B̃n
*

B̃n
* C̃n D̃n

B̃n D̃n
* C̃n


, �n,n� = �	n,n� 0 0

0 �n,n� 0

0 0 �n,n�

 ,

�A1�

where

Ãn = �E + 
n 0

0 E − 
n
	, B̃n = − SJ�k��/2� c1,n

+ c1,n
−

− c1,n
− − c1,n

+ 	 ,

C̃n = �E + �n �n

− �n E − �n
	 ,

D̃n = − SJ�k��/2� c2,n
+ c2,n

−

− c2,n
− − c2,n

+ 	, 	n,n� = SJ�� 0 1

− 1 0
	 ,

�A2�

�n,n� = SJ�/2� �� sin �n sin �n� 2 cos��n − �n�� + �� sin �n sin �n�

− 2 cos��n − �n�� + �� sin �n sin �n� − �� sin �n sin �n�
	 , �A3�

with matrix elements defined as


n = 2S�1 + ��cos �nJ�0� + 2SD� − S�1 + ���J��2 − �1,n − �n,N� ,

�n = S��1 + ���cos �n + cos2 �n� − sin2 �n�J�0� − S�1 − 3 cos2 �n�D� − SJ���cos��n − �n−1� + �� cos �n cos �n−1��1 − �1,n�

+ �cos��n − �n+1� + �� cos �n cos �n+1��1 − �n,N�� ,

�n = − SD� sin2 �n,

c1,n
± = cos �n ± 1,

c2,n
± = cos2 �n − �1 + ��sin2 �n ± 1,

Dn� = �1 − �2S�−1�Dn. �A4�
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