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We performed a comprehensive study of the static, dynamic, and electronic properties of liquid Pb at T
=650 K, p=0.0309 A~3 by means of 216-particle ab initio molecular dynamics simulations based on a real-
space implementation of pseudopotentials constructed within density-functional theory. The predicted results
and available experimental data are in very good agreement, which confirms the adequacy of this technique to
achieve a reliable description of the behavior of liquid metals, including their dynamic properties. Although
some of the computed properties of liquid Pb are similar to those of simple liquid metals, others differ
markedly. Our results show that an appropriate description of liquid Pb requires the inclusion of relativistic
effects in the determination of the pseudopotentials of Pb.
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I. INTRODUCTION

Molecular dynamics (MD) is a powerful simulation tech-
nique for describing the properties of condensed matter sys-
tems in general and, in particular, those of liquid metals. MD
results allow the assessment of the reliability of available
theoretical approximations, also affording information on
properties that would be very difficult or impossible to de-
termine experimentally or simply have not been measured.
MD simulations fall into two broad classes. One is classical
MD (CMD) simulations, in which the simulated particles are
moved in accordance with the dictates of some interatomic
potentials. In CMD, the electronic degrees of freedom are
not explicitly treated. The second class of MD simulations is
based on ab initio MD (AIMD) simulations using quantum
forces between the nuclei. In AIMD, these forces are com-
puted using electronic structure calculations that are per-
formed as the MD trajectory is generated. In recent years,
there has been a marked increase in the use of AIMD meth-
ods based on density-functional theory (DFT)."? For a speci-
fied set of nuclear positions, the Hellmann-Feynman
theorem? is employed to obtain the forces acting on the nu-
clei following the calculation of the ground-state density and
energy of the valence electrons. In DFT-based AIMD simu-
lations, the nuclear positions thus evolve in accordance with
classical mechanics, while the valence electron subsystem
follows adiabatically, i.e., the system remains on the Born-
Oppenheimer surface.

Liquid lead (/-Pb) is an intriguing system that has been
the subject of theoretical, experimental, and MD investiga-

1098-0121/2007/76(21)/214203(9)

214203-1

PACS number(s): 61.25.Myv, 61.20.Ja, 71.15.Pd

tions. Some theoretical investigations used semiempirical ap-
proaches based on the simple hard-sphere (HS) model to
calculate a number of properties. For instance, Ashcroft and
Lekner* used the HS packing fraction as a fitting parameter
to obtain fairly good description of the static structure factor
S(g) of I-Pb, which combined with pseudopotential theory
and Ziman’s formula’ afforded a reasonable estimate of the
electrical resistivity. A similar approach was followed by
Umar and Young,® who calculated the HS packing fraction
within the framework of a variational theory based on the
Gibbs-Bogoliubov inequality. This scheme gave a good esti-
mate of S(g) both at T=613 K (near the melting point, T
=600.61 K) and at a higher temperature (7=1373 K). The
HS model was also used by Ascarelli’ to achieve reasonable
predictions of the isothermal compressibility Ky, the speed of
sound c,, and their temperature dependencies.

The static structure and some dynamic properties of [-Pb
were computed by Mentz-Stern and Hoheisel® by CMD
simulations using a six-center Lennard-Jones pair potential
to model the atomic interactions. At T=615 K, S(g) was
found to be in fair agreement with experiment, i.e., the main
peak was slightly lower than the experimental data and the
subsequent oscillations were somewhat out of phase. How-
ever, the calculated self-diffusion D and shear viscosity #
were approximately 30% smaller and 20% greater, respec-
tively, than the experimental values. CMD simulations, with
interactions described by a pair potential ®(r) derived from a
nonlocal pseudopotential with relativistic core functions,
were performed by Jank and Hafner® to study the structural
and electronic properties of [-Pb at 7=619 K. Their com-
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puted atomic structure showed rather good agreement with
experimental data, i.e., the main peak of the pair distribution
function g(r) was slightly shifted to greater r values, and the
main peak of S(g) was around 18% higher than the experi-
mental values. Their calculated electronic density of states
(DOS) suggested a metallic behavior, although strongly de-
parting from that of a free-electron system and showing a
marked gap at approximately 5.0 eV below the Fermi level.
The results by Jank and Hafner highlighted the importance of
using relativistic core functions in the determination of the
Pb pseudopotential. They found a nonrelativistic pseudopo-
tential that gave rise to a ®(r) with a repulsive core plus an
oscillatory tail (Friedel oscillations), whereas the inclusion of
relativistic corrections induced a strong damping of the os-
cillatory tail, leading to a ®(r) which practically reduces to a
purely repulsive core. Dzugutov et al.'® investigated the
static and dynamic properties of /-Pb using an effective pair
potential which was derived from a fit to the experimental
static structure factor S(g), in conjunction with CMD simu-
lations along with advanced liquid state theories. Their work
provided useful insights into some time correlation functions
and their associated memory functions, and, more impor-
tantly, it was helpful for assessing the range of validity of the
mode-coupling theory. Using also CMD simulations, Bryk
and Mryglod!"' investigated the collective dynamics of [-Pb
in terms of generalized collective modes. They found that,
beyond the hydrodynamic region, the spectrum of the collec-
tive excitations had three pairs of kinetic propagating modes
in addition to the generalized sound modes.

Recently, the static and electronic properties of /-Pb have
been investigated by AIMD methods.'?"'* The first of such
studies was performed by Kresse,'? who computed the static
structure of /-Pb near the triple point using the Vienna ab
initio simulation package (VASP)!> with 96 particles and the
generalized gradient approximation for the exchange and
correlation potential.'® S(¢) was found to have a too pro-
nounced main peak and the depth of the subsequent mini-
mum was also overestimated. Similar issues appeared in
g(r), with oscillations being somewhat out of phase. These
inaccuracies were attributed by Kresse'? to the small system
size and the low temperature (T=610 K) used in the simula-
tions. A better description of the static structure of /-Pb was
obtained by Knider et al.,'* who calculated g(r) near the
triple point by means of 32-particle AIMD simulations using
the SIESTA code.'” Knider et al.'* also calculated electronic
properties such as the dc conductivity and the DOS, which
showed similar features to those obtained by Jank and
Hafner” by CMD simulations.

With regard to the experimental information on [-Pb, its
static structure has been determined by means of x-ray
(XR)'® and neutron scattering (NS)'°2! measurements at
several temperatures within the range 613-1163 K. S(g) al-
ways showed a symmetrical main peak along with other fea-
tures typical of simple liquid metals. This explains why the
static structure can be fairly well described using the simple
HS model.*® The first experiments on the dynamic structure
of [-Pb by inelastic NS (INS) techniques were carried out in
the 1950s.2%%3 Later, in the 1980s, Soderstrom et al.>*=2" per-
formed new INS measurements at 7=623 and 1173 K. For
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both states, data were collected over a similar range of mo-
mentum transfers. For instance, at 7=623 K, the data cov-
ered the range 0.18¢,<¢<3.0g, [g,~2.20 A-'is the posi-
tion of the main peak of S(g)]. These experimental
measurements provided evidence of the existence of collec-
tive excitations in /-Pb up to ¢ ~3/5¢,, which basically co-
incides with what has been found in simple liquid
metals.”832 However, it was not possible to ascertain the
possible existence of a “positive dispersion” effect, as it
would require to collect data up to much smaller g values.

In this paper, we present the results of a comprehensive
study of the static, dynamic, and electronic properties of /-Pb
by means of 216-particle AIMD simulations based on PAR-
SEC, a DFT-based pseudopotential algorithm for real-space
electronic structure calculations.>® Our calculations were car-
ried out with the two following objectives: (a) to obtain a
good description of the behavior of [-Pb through AIMD
simulations and (b) to examine in detail, within the theoret-
ical framework employed in this work, the importance of
including relativistic effects in the pseudopotentials of Pb for
an accurate description of /-Pb properties.

In Sec. II, we describe the AIMD method used in this
work. In Sec. III, we discuss our results comparing them
with available experimental data. Finally, in Sec. IV, we
summarize our main conclusions.

II. COMPUTATIONAL METHOD

One of the most successful ways in obtaining the elec-
tronic structure of matter has been the use of computational
approaches based on DFT. Among these approaches, real-
space pseudopotential techniques® have recently attracted
special interest owing to their computational advantages, es-
pecially the ease of implementation. Pseudopotential theory
allows one to focus on the chemically active valence elec-
trons by replacing the strong all-electron atomic potential by
a weak pseudopotential, which effectively reproduces the ef-
fects of the core electrons on the valence states. This ap-
proximation significantly reduces the number of eigenpairs
to be handled, especially for heavier elements. Since the en-
ergy and length scales are set by the valence states, simple
bases can be used. Working in real space has a number of
points in its favor. Implementation of these approaches is
simple: there is no “formal” basis. As for plane waves, the
“grid basis” is independent of the atomic positions, and only
one parameter, the spacing of the grid, needs to be refined to
control convergence. (The equivalent parameter in plane
waves is the energy “cutoff” parameter.) Second, real-space
methods are semilocal, which facilitates implementation on
parallel computers. This makes such methods highly attrac-
tive for computation of the electronic structure of large, com-
plex systems.

In this work, we adopted a real-space pseudopotential ap-
proach to study [-Pb. Specifically, we performed AIMD
simulations using the PARSEC code.®® In this method, the
Kohn-Sham equations are solved self-consistently on a cubic
three-dimensional real-space grid within a supercell
geometry.>> The core electrons were represented by norm-
conserving pseudopotentials generated for the reference con-

214203-2



AB INITIO MOLECULAR DYNAMICS SIMULATIONS...

3 =
i 0.04 —
2 :o——-/
P — OIIIIIIIIII
T r 0 1
©
1_
0
0

qA™h

FIG. 1. Static structure factor S(g) for [-Pb. The solid and
dashed lines represent our AIMD results at 7=650 K using relativ-
istic and nonrelativistic pseudopotentials, respectively, and the solid
circles represent the experimental NS data at 7=643 K (Ref. 20).
The inset shows low-g AIMD results, which are compared with XR
(open circles, Ref. 18) and NS (solid diamonds, Ref. 21) data near
melting.

figuration [Xe]6s*(5f'%5d'°)6p*6d° using the Troullier-
Martins prescription,®® with a radial cutoff of 3.2 a.u.
(1 a.u.=0.529 A) for the s, p, and d channels. The potential
was made separable by the procedure of Kleinman and
Bylander,’ applied in real space, with the p potential chosen
to be the local component. A partial-core correction for non-
linear exchange correlation was included in the pseudopoten-
tial construction. The local density functional of Ceperley
and Alder’® was used as parametrized by Perdew and
Zunger,* and the single I" point was employed in sampling
the Brillouin zone. A spacing of 0.65 a.u. was used for con-
structing the real-space grid.

Calculations were performed for a thermodynamic state
of I-Pb characterized by the number density p=0.0309 A3
and the temperature 7=650 K (~50 K above the measured
melting point). 216 atoms were placed at random in a cubic
supercell; the cell was coupled to a virtual heat bath via the
Langevin equation of motion*’ and was heated far above the
target temperature in order to eradicate any memory of its
initial configuration. The temperature was then set to 650 K;
the system allowed to stabilize, and gradually decoupled
from the virtual heat bath. Then, an AIMD simulation run
was performed over 1000 time steps (5 ps of simulated
time), ion dynamics being generated using the Beeman
algorithm*' with Hellmann-Feynman forces.? Previously, an
equilibration run of 1 ps was performed with the particles’
velocities being rescaled so as to move the system at the
desired temperature. The data from the longer simulation run
were used in calculating the static, dynamic, and electronic
properties reported below. Data were collected using both
relativistic and nonrelativistic pseudopotentials.

III. RESULTS AND DISCUSSION
A. Static properties

Figure 1 (continuous line) shows the static structure factor
S(g) obtained in our AIMD simulations of [-Pb at T
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FIG. 2. Pair distribution function g(r) for /-Pb. The solid and
dashed lines represent our AIMD results at 7=650 K, using relativ-
istic and nonrelativistic pseudopotentials, respectively, and the solid
circles represent the experimental XR data near melting (Ref. 18).
The inset shows the computed bond angle distribution, g3(6).

=650 K using pseudopotentials with relativistic corrections.
The main characteristic is the existence of a very symmetri-
cal main peak located at ~2.19 A=, The computed S(q)
agrees very well with the NS data obtained by Dahlborg et
al.®® at T=643 K for the whole g range. An additional com-
parison with experiment is provided in the inset of Fig. I,
which is focused on the low-g region. Within this region,
very good agreement also exist between the AIMD results
and the experimental XR (Ref. 18) and NS (Ref. 21) data
near melting. Extrapolation of S(g) to ¢—0 allows the iso-
thermal compressibility K; to be estimated from the relation
S(q—0)=pkgTK;, where kg is the Boltzmann constant. A
least squares fit of S(g)=s,+s5,4> to the computed S(g) for ¢
values up to 0.7 A~! yields the result S(g— 0)=0.010, thus
yielding the value K;=3.60 (in units of 10~'" m® N~!). This
result is close to the experimental data taken near melting,
K;=3.49.4

Closely related to S(g) is the pair distribution function
g(r), which provides information about the short range order
in the liquid. Figure 2 (continuous line) shows the calculated
g(r), which has a main peak at 3.28 A and closely follows
the corresponding experimental values.'® This result clearly
improves on that obtained in Kresse’s AIMD study of [-Pb
using VASP,!> where g(r) had the main peak somewhat
shifted to greater r values and slightly overestimated the am-
plitude of the following oscillations. To evaluate the coordi-
nation number N, in [-Pb, we integrate 47r’g(r) up to the
position of its first minimum (which corresponds to the value
R,;,=4.40 A), obtaining N.~ 11.3. The bond angle distribu-
tion function g;(6) gives information about the distribution
of bond angles defined by atoms up to a distance which we
have taken as R,,;,. The calculated g;(6), shown in the inset
of Fig. 2 (continuous line), exhibits two distinct peaks at
~58° and 108°. These features, including the value obtained
for N, are rather close to those of a system with local icosa-
hedral structure, which is typical of simple liquid metals near
melting.3°

Figure 1 (dashed line) shows the static structure factor
S(g) obtained using pseudopotentials that do not include
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FIG. 3. Normalized velocity autocorrelation function Z(z) for
[-Pb at T=650 K, as obtained from our AIMD simulations. The
solid line is for the relativistic pseudopotentials and the dashed line
for the nonrelativistic pseudopotentials. The inset shows the corre-
sponding power spectrum Z(w).

relativistic corrections. A substantial modification of the pre-
viously determined S(g) is found, the agreement with experi-
mental data being less satisfactory in this case. S(g) has a
remarkably asymmetrical main peak along with a broad
shoulder at its high-g side. [We note that such a shoulder is a
characteristic feature of the behavior of S(g) for the other,
lighter, molten group IV elements Si, Ge, and Sn; see, e.g.,
Ref. 12.] The influence of not including relativistic effects in
the Pb pseudopotentials is also apparent in the other struc-
tural quantities, g(r) and g;(6), that are shown in Fig. 2. The
oscillations in g(r) are now dampened and the coordination
number becomes N,~ 10.1 atoms (with R,,;,=4.21 A). The
bond angle distribution becomes more structureless, which
indicates an increased diversity in the local order.

The results presented above show that the inclusion of
relativistic effects in the pseudopotentials of Pb is necessary
for an accurate description of the static properties of /-Pb
through DFT-based AIMD simulations. As shown below, the
same holds for the dynamic and electronic properties.

B. Dynamic properties
1. Single particle dynamics

Figure 3 shows the results obtained for the normalized
velocity autocorrelation function Z(¢), calculated as

_ <Va(t) ) Va(0)>
<Va(0) : Va(0)> ’

where v,(r) is the velocity of a tagged ion in the fluid and
angle brackets indicate an ensemble average. Z(z) exhibits
the backscattering and other features typical of simple liquid
metals near melting.?8-394344 The deepness of the first mini-
mum (when relativistic corrections are taken into account) is
around 0.27 ps and the subsequent maximum has a rather
small amplitude. The self-diffusion coefficient D was found
to be 0.21+0.02 A?/ps when calculated as the time integral
of Z() and 0.22+0.02 A%/ps when calculated as the slope of
the mean square ion displacement function AR?(r)=(|R(1)
—~R,(0)[%). These results are very close to the experimental

Z(1) (1)
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data obtained by Tanigaki et al® at T=645K,
0.235+0.005 A%/ps. The power spectrum of Z(t), Z(w),
shown in the inset of Fig. 3, exhibits a two-peaked shape,
which is typical of simple liquid metals near melting.?8-30

Figure 3 shows that the use of nonrelativistic pseudopo-
tentials induces visible changes in the predicted single par-
ticle dynamics of /-Pb. First, Z(r) has a steeper decay and,
after taking negative values, it reaches its minimum at a short
time. This is understandable in terms of the so-called “cage
effect”, 434447 by which a given particle rebounds against the
cage formed by its nearest neighbors. As the cage’s size is
proportional to R;,, when relativistic effects are not taken
into account, the cage is smaller and the particle rebounds
sooner. The short time expansion of Z(z) reads Z(r)=1
—wétz/ 2+..., where wp, is the so-called “Einstein frequency”
of the system, and provides an estimate of the frequency at
which a given particle is vibrating within the cage.”® A sort
time fitting of the two Z(z) curves in Fig. 3 yields the values
wg~10.0 and 12.0 ps~! for the relativistic and nonrelativis-
tic pseudopotentials, respectively. In both cases, the corre-
sponding wg falls among the two peaks of the associated
Z(w), which is another feature typical of simple liquid
metals. 3% The self-diffusion coefficient corresponding to
the nonrelativistic pseudopotentials is 0.18+0.02 A?/ps,
which differs somewhat from the experimental data indicated
above.

2. Collective dynamics

The collective dynamics of density fluctuations in the lig-
uid is usually described by means of the intermediate scat-
tering function F(q,1), defined as

F(q.1) = %<E exp{-iq - [Ry(r) - Rm(O)]}>, ()

I,m

where N is the total number of atoms and R,(z) is the position
of the /th atom at time ¢. The time Fourier transform (FT) of
F(q,t) into the frequency domain gives the dynamic struc-
ture factor S(¢g,w), which is directly related to the intensity
of scattering in INS or inelastic x-ray experiments.

In our AIMD simulations, F(q,t) was found to oscillate
up to ¢~ (3/5)g,=1.4 A~', the amplitude of the oscillations
being stronger for the smaller g values (Fig. 4). This behav-
ior is typical of simple liquid metals near melting, as has
been found by computer simulations3!#%4-50 and theoretical
models.”! However, at low-g values (¢=<0.5g,), F(q,t)
shows an appreciable diffusive component that imposes a
slow decay. This is at variance with the results obtained for
simple liquid metals (alkalis, alkali earths, and Al) near
melting, 31464951 where for a comparable ¢ range the diffu-
sive component is already very weak and the corresponding
F(g,t) shows marked oscillations around zero. This differ-
ence can be understood by resorting to the following expres-
sions of F(q,t) and its corresponding S(g,w), which are ex-
act in the limit ¢— 0 (hydrodynamic limit®°):
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FIG. 4. Normalized intermediate scattering function,

F(q,1)/8(qg), for [-Pb at T=650 K, as obtained from our AIMD
simulations using relativistic pseudopotentials, for several values of
q (solid lines). The dashed lines are the results obtained using the
eight-parameter analytical expression proposed by Ebbsjo et al.
(Ref. 48) (see below).

Flg.1)/S(g) = ( -l )exp[— Dy(g)] + 17 expl-T(g)1]
X[cos(c,qt) + bq sin(c,qt)] (3)
and
(r=1 2D4(q)
2l w)/S(a) = ( y ) o+ DT
1{ I'(g) +bg(w+c,q)
v (0+c9)* +[T(g)T

I'(g) + bg(w - c,q) } @)

(w=-cq)* +[T(g)]

Here, y=C,/C, (the ratio of specific heats); D(q)=D+q,
where Dr=ky/(pC,) is the thermal diffusivity and «; the
thermal conductivity; ['(¢q)=Ig?, ' being the sound attenua-
tion constant given by F:%[a(y— 1)/y+y)], with a
=7/ (pC,) and v, the kinematic longitudinal viscosity. Ac-
cording to Eq. (4), in the hydrodynamic limit, S(g,w) has
two (inelastic) propagating peaks centered at w=*c,q, each
one having a half width at half maximum (HWHM) given by
I'(¢) and a diffusive peak at w=0 whose width is determined
by the thermal diffusivity D;. For a metallic system, Dy has
electronic and ionic contributions with the former being
dominant. However, it has been shown?3 that Eqgs. (3) and
(4) contain only the contribution to D7 due to the ions. The
value of Dy predicted by fitting Eq. (3) to the low-¢ F(q,1)
values obtained in this work is (1.0+0.3)X 1073 cm?/s,
which is comparable to estimates made for the ionic contri-
bution to Dy in liquid Si and Ge’>> ~1.0X 107 and
~1.3X 1073 cm?/s, respectively (values that are about 2 or-
ders of magnitude smaller than their respective total D, val-
ues). The ionic contribution to Dy in liquid alkali metals near
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FIG. 5. Half width at half maximum (HWHM) of the interme-
diate scattering function F(q,). The solid and dashed lines repre-
sent our AIMD results 7=650 K using relativistic and nonrelativis-
tic pseudopotentials, respectively, and the solid circles represent the
experimental data at 623 K (Ref. 27). The dotted line stands for the
free particle limit.

melting ranges from 20.0X1073 cm?/s (Li) to 3.0
X 1073 cm?/s (Cs).>* Consequently, as D; determines the
diffusive behavior of F(g,7) at small ¢’s, the greater D val-
ues of the alkalis imply a smaller diffusive component that is
easily overcome by the oscillatory parts of F(g,1).

The time decay of F(q,t) is usually analyzed in terms of
its HWHM. Figure 5 shows that the AIMD results we ob-
tained using pseudopotentials with relativistic corrections
closely follow the experimental INS data by Dahlborg et
al.”” for [-Pb at 623 K. By contrast, the results derived using
nonrelativistic pseudopotentials are less satisfactory. In Fig.
5, we have also included the HWHM curve corresponding to
the free particle limit, around which the two computed
HWHM curves, and the curve joining the experimental data,
exhibit an oscillatory behavior with phases resembling those
of the corresponding S(g) curves (Fig. 1). This close connec-
tion between the HWHM curves and the corresponding S(g)
curves is clearly evinced in the AIMD results obtained using
the nonrelativistic pseudopotentials: the HWHM curve, be-
sides exhibiting the same general pattern as its associated
S(g) curve, displays a singular feature at ¢g~3 A~', which is
due to the shoulder in S(g).

By a time FT of F(q,t), we calculated the dynamic struc-
ture factor S(q,w). However, as the present simulations
lasted for 5.0 ps, for the smallest g values, ie., for g
<0.5 A", F(g,1) was still significantly nonzero at the end of
the simulation time, so that some caution had to be taken
when performing its FT. This was carried out using an aux-
iliary window function that removes the cutoff noise in the
FT of F(q,t). The function is constant for small times and
slowly decays to zero at the last considered point of F(q,1).
This approach provided well-behaved S(g,w) (at the cost of
a slight broadening and lowering of spectral side peaks). As
a check of the reliability of the method used to compute
S(g,w), we resorted to the approach proposed by Ebbsjo et
al.®® Specifically, we took the FT of the result of fitting the
calculated F(q,t) with an eight-parameter analytical expres-
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FIG. 6. Normalized dynamic structure factor S(q,w)/S(g) of
[-Pb for several values of g. The solid and dashed lines represent
our AIMD results at 7=650 K using relativistic and nonrelativistic
pseudopotentials, respectively, and the solid circles represent the
experimental INS data at 623 K (Ref. 25). For some values of ¢, the
two sets of AIMD results are virtually the same.

sion that interpolates among the ideal gas, viscoelastic, and
hydrodynamic models (see Fig. 4). The resulting dynamic
structure factors were similar to those previously obtained,
with the side peaks remaining at the same positions although
somewhat higher.

Figures 6 and 7 show an illustrative sample of the com-
puted dynamic structure factors S(g,w) for different wave
vectors up to ~2¢,. They have well defined side peaks, in-
dicative of collective density excitations, up to g~ (3/5)g,;
beyond this value, the side peaks become shoulders up to g
~1.5 A~', and for larger ¢ values, S(¢,w) shows a mono-
tonically decreasing behavior. We stress that the existence of
side peaks as well as its range of appearance are typical
features of simple liquid metals.?®*? Figures 6 and 7 also
shows experimental results for the dynamic structure factor

of [-Pb at T=623 K that were obtained by INS
=
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FIG. 7. As for Fig. 6, but for other values of g.
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FIG. 8. Dispersion relation w,,(q) for [-Pb. The open circles
represent our AIMD results at 7=650 K as obtained from the posi-
tion of the side peaks in S(g,w) using relativistic pseudopotentials.
The solid triangles and squares, with error bars, correspond to INS
data at 7=623 K taken from Refs. 24 and 25, respectively. The
dashed line is the linear dispersion with the experimental hydrody-
namic adiabatic speed of sound ¢,=1760 m/s (Ref. 55).

measurements.” Comparison with the computed S(g,w)
curves again shows that the AIMD predictions obtained us-
ing relativistic pseudopotentials are better than those ob-
tained with nonrelativistic pseudopotentials.

From the position of the side peaks in the dynamic struc-
ture factors S(q,w), we obtained the dispersion relation of
the density fluctuations w,,(¢), which is shown in Fig. 8 to-
gether with available INS data*?> for [-Pb at T=623 K. For
small ¢, the slope of the dispersion relation gives a
g-dependent adiabatic speed of sound c,(g), which in the
limit g — 0 reduces to the bulk adiabatic speed of sound c.
The value of ¢, predicted by fitting a straight line to the low-
q ,(g) values obtained in this work using relativistic
pseudopotentials is 1750+100 m/s, which agrees very well
with the experimental data, ~1760 m/s.>> ¢, can also be
obtained from the expression c,=[vkpT/mS(q— 0)]1? 2
where m is the atomic mass. Using for the ratio of the spe-
cific heats the value y=1.20 (Ref. 42) and our calculated
value S(g—0)=0.010, the previous expression gives c;
=1770+50 m/s, which shows the consistency between the
static and dynamic AIMD results obtained in the present
work. The use of nonrelativistic pseudopotentials leads to a
somewhat greater value of ¢, 1850+ 100 m/s, a result that is
consistent with the fact that the corresponding S(g — 0) value
was smaller.

Our AIMD results shown in Fig. 8 do not reach small
enough ¢ values to allow a conclusive analysis of the pos-
sible existence of a positive dispersion, i.e., an increase of
w,,(q) with respect to the linear hydrodynamic dispersion
relation. This phenomenon has been experimentally observed
in liquid alkali metals,’*=% as well as in liquid Al,>® Mg,
and Hg.%° Therefore, judging from the previously mentioned
similarities among [-Pb and simple liquid metals, it seems
plausible that /-Pb might also exhibit such a phenomenon.

Associated with the density fluctuations is the current due
to the overall motion of the particles, defined as
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i(q.0) = 2 va(expliq - R, (1)]. (5)

The longitudinal and transverse current correlation functions
are, respectively, given by

C(g.0) = G (g.0j, (g,0)) (6)

and

Cr(q.0) = (r(g.0j(g,0)), (7)

where j;(q.t) and j{(q,t) are the components of j(g,7) that
are, respectively, longitudinal and transverse to q. Cr(q,?) is
not directly associated with any measurable quantity but
through MD simulations provides information on shear
modes. In the free particle limit (¢— ), it is Gaussian with
respect to both ¢ and ¢, and in the hydrodynamic limit (g
—0), it is Gaussian with respect to g and exponential with
respect to r; for intermediate g values, C{(q,r) exhibits a
more complicated behavior.?0 Its spectrum, Cy(g,w), may
show peaks within some ¢ range, which are connected with
the propagation of shear waves. The present AIMD calcula-
tions show that, for /-Pb at T=650 K, C{(q,w) displays
peaks for a range 0.2¢g,<q<3q,, which is similar to the
range found for simple liquid metals near melting.>* The
shear viscosity coefficient » can easily be obtained from
Cy(q,1), as indicated, for instance, in Refs. 30, 31, 61, and
62. Our AIMD calculations using relativistic pseudopoten-
tials give 7=2.35+0.15 GPa ps. The experimental value at
melting is 7=2.61 GPaps,®® which when extrapolated®® to
the temperature used in the present study, 7=650 K, gives
7=2.30 GPa ps. The use of nonrelativistic pseudopotentials
leads to a value in worse agreement with experiment, 7
=2.7+£0.20 GPa ps.

Within the context of the Brownian motion of a macro-
scopic particle of diameter d in a liquid of viscosity 7, the
Stokes-Einstein relation 7=kzT/(27dD) provides a connec-
tion between 7 and the self-diffusion coefficient D.>° Al-
though approximate when applied to atoms, this relation has
been used to estimate 7 by identifying d with the position of
the main peak of g(r). When D is set equal to 0.215 A2/ps
(the average of the two values obtained in this work using
relativistic corrections, 0.21 and 0.22 Az/ps) and d to the
position of the main peak of g(r), d=3.28 A, the value of 7
afforded by the Stokes-Einstein relation is 2.05 GPa ps. Al-
though this result is somewhat smaller than that obtained
above, it still supports the validity of using the Stokes-
Einstein relation for atoms.

C. Density of states

Figure 9 shows the relativistic and nonrelativistic elec-
tronic DOS curves obtained for /-Pb at 7=650 K. The DOS
curve generated using relativistic pseudopotentials clearly
shows a metallic behavior, a strong departure from the free-
electron parabolic DOS curve, and a gap of about 2.3 eV
separating a lower s-like and an upper p-like band, in keep-
ing with the CMD predictions by Jank and Hafner® using an
orthogonalized-plane-wave pseudopotential generated with
relativistic core wave functions and the AIMD results by
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FIG. 9. Density of states (DOS) of I-Pb. The solid and dashed
lines represent our AIMD results at 7=650 K using relativistic and
nonrelativistic pseudopotentials, respectively. The results were ob-
tained by averaging over several ionic configurations and by sam-
pling the Brillouin zone over eight special points.

Knider et al.'* The existence of such a gap is in agreement
with conclusions drawn on the basis of photoemission spec-
tra results (see Ref. 9 and references cited therein). By con-
trast, the DOS curve obtained using nonrelativistic pseudo-
potentials does not exhibit such a separation between states
of different character. This shows that relativistic effects also
play a fundamental role in determining the electronic struc-
ture of /-Pb. It should be noted that the electronic behavior of
[-Pb is quite different from that obtained for a simple liquid
metal such as [-Al, whose electronic DOS is quite close to
the free-electron curve.®

IV. SUMMARY AND CONCLUSIONS

In this work, we compute the static, dynamic, and elec-
tronic properties of [-Pb at T=650 K, p=0.0309 A~ by
means of 216-particle AIMD simulations based on PARSEC, a
real-space pseudopotential approach based on DFT. The
AIMD results that we obtain using relativistic pseudopoten-
tials are in very good agreement with experiment for both
static, dynamic, and electronic properties. By contrast, the
results obtained using nonrelativistic pseudopotentials are
less satisfactory. In particular, the use of nonrelativistic
pseudopotentials produces a static structure that resembles
more those of other, lighter, molten elements of group IV.
The importance of including relativistic effects for an appro-
priate description of static and electronic properties of [-Pb
was already highlighted by Jank and Hafner,” who performed
CMD simulations using an effective inter-ionic pair potential
derived from a nonlocal pseudopotential. In this work, this
analysis, besides being performed using AIMD simulations
rather than CMD simulations, has been extended to include
the dynamic properties.
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