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A simulation of dislocation patterning in a two-dimensional multislip configuration is carried out by means
of coarse graining in the presence of plastic strain. In order to study the influence of climb on the dislocation
cell pattern formation, fatigue simulations with and without climb mobility are performed and compared. The
main result is that, in the presence of climb, cellular structures with well-defined characteristic length emerge,
in contrast to the self-similar dislocation patterns developing under similar deformation conditions in the
absence of climb. Despite the simplicity of our model, the fractal dimension of the self-similar dislocation
patterns emerging without climb confirms the previous results for fcc crystals deformed in a multislip configu-
ration. The cell structures emerging when climb is not negligible �in our simulations a climb mobility 1000
times smaller than the glide mobility was considered� resemble the dislocation patterns seen in thermal recov-
ery or melt-grown experiments.
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I. INTRODUCTION

The mechanical properties of nickel-based superalloys,
which are candidate materials for heat exchangers, turbine
blades, or gas-cooled reactors �currently studied in the Gen-
eration IV program1�, operating at high temperatures under
extreme loading conditions, may degrade with time. The
general degradation mechanisms of materials include time-
dependent deformation, microstructural and compositional
changes, corrosion enhanced by the accelerating effects of
elevated temperatures, etc. High-speed rotating components
are susceptible to component failure due to bearing wear and
vibration, failure due to low cycle fatigue �the fatigue of
rotating components brought on by the continuous imposing
and relaxing of centrifugal force caused by fluctuation in
speed or by thermally induced strains�, flaws in the material
�impurities or voids�, etc. Investigation of the dynamic be-
havior of dislocations, the carriers of plastic deformation,
attracts growing interest because of its importance for under-
standing many properties of plastically deformed crystalline
materials. Depending on the materials and the deformation
conditions, many different dislocation structures can de-
velop. It is well known that a very heterogeneous dislocation
distribution called persistent slip bands in a surrounding
“matrix” may form upon cyclic deformation of single crys-
tals. In early transmission electron microscopy �TEM� stud-
ies, it was observed that cell structures form at small strains
in multislip conditions.2 Depending on the material param-
eters and deformation conditions, different types of disloca-
tion patterns are observed also in heavily deformed metals,
such as, e.g., cell structures or scale-invariant dislocation
patterns.3 Dislocation patterns appear not only in crystals,
but in many other systems, such as, e.g. Wigner crystals,4

vortex �Abrikosov� lattices,5 magnetic bubble structures,6

charge density waves,7 colloidal lattices,8 dusty plasma,9 etc.
They determine properties of superconducting films10 and
play a crucial role in melting.11

The long-range dislocation-dislocation interactions domi-
nate the plastic current and the motion of dislocations, mak-
ing the development of a theory of the deformation hard and

intractable analytically. As deformation proceeds, the forma-
tion of partially ordered dislocation cell structures delineated
by a vague three-dimensional �3D� network of dislocation
walls can be observed. This ordering also has a strong influ-
ence on the tensile and creep strength of the superalloys.
Other plastic properties of crystalline materials are also
closely related to the dislocation patterning and dynamic
properties of dislocation motion. To better understand, to
model these properties, and to describe these self-organized
structures and dislocation patterns observed by transmission
electron microscopy during the past decades, several analyti-
cal and computational methods have been developed,12–30

but we are still far from a complete understanding of these
phenomena.

One still open question related to cell and fractal disloca-
tion structures is to explain why in the same material in some
conditions the observed dislocation pattern is a scale-
invariant structure, and in other TEM micrographs cell
structures with a well-defined characteristic length scale are
seen. Many authors have proposed that the transition to
the cell structure should be considered a noise-generated
process.31–34 Computer simulations also show that for crys-
tals in single-slip configuration the matrix structure can be
reproduced35 and to obtain fractal dislocation structures acti-
vation of multiple-slip systems is necessary. Fractal disloca-
tion structures in two-slip configuration were reproduced by
two-dimensional �2D� stochastic discrete dislocation dynam-
ics simulations of a fatigued fcc single crystal,36 but the cell
structure was observed only during simulation of a thermal
recovery process.37 The important effect of cross slip was
emphasized by Madec et al. in Ref. 38. Their 3D dislocation
dynamics simulations of multiple slip in fcc crystals can also
lead to the formation of cell structures—however, presently
it is not possible, due to lack of computing power, to check
how they evolve and to check self-similarity properties in the
developed microstructures.

The present work is concerned with the modeling of dis-
location patterning in multislip systems and a qualitative
characterization of the observed cellular dislocation
structures.39 The influence of dislocation climb during fa-
tigue on the pattern formation is explored in the simplest
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possible multislip model, where a system of straight parallel
edge dislocations is considered. In the first part of the paper,
we reconsider the continuum dislocation dynamics method
based on a coarse-graining technique. In the second part,
simulation results on our oversimplified model are presented.

II. COARSE-GRAINED DISLOCATION DYNAMICS

A. Field theory of dislocations

Due to the long-range nature of interaction forces the in-
ternal force acting on a reference dislocation is the sum of
forces created by all the other dislocations of the system. The
force from dislocation B acting on dislocation A is given by
the Peach-Koehler equation

FB,A = �bA�B� � lA, �1�

where bA is the Burgers vector and lA represents the sense
vector of dislocation A.

In the continuum limit, when the lattice spacing tends to
zero, the positional changes of the atoms can be described by
a displacement field u�x�. To linear approximation we define
the symmetric tensor called strain as

uij�x� =
1

2
��iuj�x� + � jui�x�� . �2�

In terms of strain the stress has the form

�ij = Cijklukl, �3�

where for isotropic crystals

Cijkl = ���ik� jl + �il� jk� +
2��

1 − �d − 1��
�ij�kl, �4�

� being the shear modulus, � the Poisson number, and d the
embedding dimension of the crystal.

We can introduce a gauge field ��x�, known in the litera-
ture as the Airy stress function, which has the property that
its double curl is equal to the stress tensor,40

�ij�x� = �ikl� jmn�k�m�ln�x� . �5�

This representation has the advantage of being automatically
symmetric if �ln is.

The total defect density ��x� is defined as the double curl
of the strain tensor,40

�ij�x� = �ikl� jmn�k�muln�x� . �6�

In analogy with the current density of magnetism, we can
introduce the density for dislocations as

	ij�x� = �ikl�k�luj�x� . �7�

The defect density can be expressed as a function of the
dislocation density tensor as

�ij =
1

2
��ikl�k	 jl + � jkl�k	il� . �8�

The knowledge of the total defect density makes it possible
to calculate the stress function � from the field equation42

�4�ij = cd�ij , �9�

where cd�2��1+�� for real 2D crystals, such as, e.g., the
Abrikosov vortex lattice in thin film superconductors, and
cd�2� / �1−�� for 3D crystals.

For a straight edge dislocation with unit line vector l po-
sitioned at x0, the dislocation density tensor components are
given by

	ij�x� = libj��x − x0� . �10�

In two dimensions, for which the defect line degenerates into
a point, the density tensor of dislocation reduces to

	i�x� � 	3i�x� = �kl�k�lui�x� = bi��x − x0� . �11�

With these notations, from Eq. �9� for the quasi-2D crystal
we have ����33�

�4� =
2�

1 − �
��1	32 − �2	31� . �12�

The stress components can be expressed as a function of the
field � as �see Eq. �5��

�11 = �2
2�, �22 = �1

2�, and �12 = − �1�2� . �13�

B. Coarse-grained dynamics

It is widely accepted that, if the crystal has a large Peierls
barrier, the inertial forces arising from the dislocation’s ac-
celeration are negligible compared to the drag forces, which
are taken to be proportional to the dislocation velocity. Then
the glide and climb velocity of the ith dislocation can be
given by

vg
i = 
g

Fibi

b

bi

b
and vc

i = 
c�Fini�ni, �14�

where the Peach-Koehler force F is given by Eq. �1�,
n= l�b /b is a unit vector perpendicular to the Burgers vec-
tor b, and 
g,c represent the temperature-dependent glide and
climb damping factors of the dislocation.

To predict the macroscopic response of the dislocation
system, we should try to operate with locally averaged quan-
tities, like the dislocation density tensor, stress, etc. The dis-
location density tensor introduced by Eq. �7� is a highly sin-
gular quantity. More precisely, it is proportional to �
functions along the dislocation lines. During the evolution of
the dislocation system these � functions do not “spread out.”
Averaging the dislocation density tensor locally is equivalent
to convolving it with a window function. In the literature this
procedure is called homogenization or coarse graining. The
coarse-graining procedure is not sensitive to the actual win-
dow function shape and its width. For any window function
w�r� we define the coarse-grained quantity X as

�X�r�� =� w�r − r��X�r��dr�. �15�

It is easy to show that the coarse-grained fields are related to
each other in the same way as the discrete ones:
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�4��� =
2�

1 − �
��1�	32� − �2�	31�� , �16�

��ij� = �ik� jm�k�m��� . �17�

The above results make it possible to set up a mesoscale
simulation method. Let us consider N parallel edge disloca-
tions in an L�L size square simulation area divided into
cells with an appropriate coarse-grain size. The dynamics of
the system is defined by repeating the following steps: First,
the smoothed-out dislocation density tensor components 	32
and 	31 are determined by counting the dislocations in each
cell. After this, the coarse-grained stress tensor components
are determined from Eqs. �16� and �17� �this is done effi-
ciently using the convolution theorem of Fourier analysis�
for each cell. Finally, each dislocation is moved under the
action of the local stress according to Eqs. �1� and �14�. By
considering M mesh points in both the x1 and x2 directions,
the first-order discretized operators in the Fourier space cor-
responding to �1, �2, �1

2, and �2
2 can be given as37,41

Dm = i
M

L
sin	2�

M
m
 , �18�

Dm
2 = 2

M2

L2 �cos	2�

M
m
 − 1� , �19�

where m=0,M −1 denotes the indices of the mesh points in
the x1 and x2 directions. Then Eqs. �17� read37,41

�̃11�l,m� = cdDlDl
b2Dl − b1Dm

�Dl
2 + Dm

2 �2 ,

�̃22�l,m� = cdDmDm
b2Dl − b1Dm

�Dl
2 + Dm

2 �2 ,

�̃12�l,m� = cdDlDm
b1Dm − b2Dl

�Dl
2 + Dm

2 �2 . �20�

The inverse discrete Fourier transforms of the above expres-
sions give the corresponding stress components at the grid
points. Certainly, if two dislocations are closer to each other
than the grid distance the approximate stresses obtained by
the method explained above cannot be applied to calculate
the interaction force between the two dislocations. In order
to solve this problem inside the box the stress expressions
corresponding to an infinite body can be used42

�11
ind =

cd

4�

b2x1�x1
2 − x2

2� − b1x2�3x1
2 + x2

2�
�x1

2 + x2
2�2 , �21�

�22
ind =

cd

4�

b1x2�x1
2 − x2

2� + b2x1�x1
2 + 3x2

2�
�x1

2 + x2
2�2 , �22�

�12
ind =

cd

4�

�x1
2 − x2

2��b1x1 + b2x2�
�x1

2 + x2
2�2 . �23�

Therefore the total stress acting on the ith dislocation being
in the box indexed by �l ,m� is

�̂�ri� = �̂sf�l,m� + 
j

�̂ind�ri − r j� , �24�

in which the sum needs to be performed only for those dis-
locations that are in the same box as the ith dislocation, and
�̂sf�l ,m� is the Fourier transform of

�̃11
sf �l,m� = cdDlDl

	̃2�l,m�Dl − 	̃1�l,m�Dm

�Dl
2 + Dm

2 �2 ,

�̃22
sf �l,m� = cdDmDm

	̃2�l,m�Dl − 	̃1�l,m�Dm

�Dl
2 + Dm

2 �2 ,

�̃12
sf �l,m� = cdDlDm

	̃1�l,m�Dm − 	̃2�l,m�Dl

�Dl
2 + Dm

2 �2 , �25�

where 	̃i�l ,m� is the Fourier transform of the coarse-grained
dislocation Burgers vector field 	i�l ,m�.

C. The model

Stresses arising during the normal operation of the com-
ponents operating at high temperatures under extreme load-
ing conditions have multiple components and can activate
many slip systems at the same time. For simulations we have
chosen a three-slip system, because the results can be di-
rectly applied to the Abrikosov lattice formed by the vortices
in type-II superconductors too. Our simplified model consist
of N straight, parallel edge dislocations with line direction
�0, 0, 1� and Burgers vectors defined by the directions
±(cos�m� /3� , sin�m� /3� ,0), m=1,2 ,3. This system is ef-
fectively 2D, representing a cross section of the 3D crystal,
and is equivalent to the slip geometry of the triangular lattice
structure formed by the vortices in type-II superconductors.
Periodic boundary conditions are assumed, which means that
the square box of size L�L is replicated in each supercell.
Lattice rotations are ignored.

The dislocations are initially randomly distributed in the
supercell and are assumed to be presented in an equal num-
ber in each slip system so that the net Burgers vector is null.
To avoid starting our simulations from these unphysical con-
figurations, we first relax the system until it reaches a meta-
stable configuration. During this relaxation the number of
dislocations is reduced due to dislocation annihilation. In our
model we annihilate a dislocation dipole when the distance
between the individual dislocations with opposite Burgers
vectors is shorter than a preassigned annihilation distance
�when a pair of them on the same glide axis but of opposite
signs came closer to each other than the grid distance L /M
they were taken out of the system�. To keep our model as
simple as possible, dislocation multiplication due to forest
dislocations is ignored.

The outlined simulation method is applied to the relaxed
dislocation configuration described above. We assume an
overdamped dynamics in which the dislocation climb and
glide velocities proportional to the total force perpendicular
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and parallel to the Burgers vector of the dislocations are
given by Eq. �14�. The coarse-grained quantities are deter-
mined by dividing the main supercell in 256�256 boxes.
The Peach-Koehler force acting on the ith dislocation is cal-
culated from Eq. �1�, where the total stress acting on the ith
dislocation is considered the sum of the coarse-grained stress
�24� calculated at each time step with a fast Fourier transfor-
mation method �the above method can be considered as a
special fast multipole expansion method�, the external stress
and the Peierls stress. To integrate numerically the N coupled
equations of motion �14� an adaptive step size fifth-order
Runge-Kutta algorithm is used.

To eliminate material parameters, without restricting the
generality, we set cd=1 and the dimensionless variables

r → r/L, t → t
gcdb2/4�L2 �26�

are introduced. The arbitrary value 10−4cd was chosen for the
Peierls stress, considered constant in space.

III. RESULTS

To study the influence of climb on dislocation pattern for-
mation in multislip systems an initially random dislocation
distribution in three-slip configuration was relaxed at low
temperature �without climb and externally applied stress�
until it reached a metastable configuration. Using the
metastable configuration as initial configuration, two
simulations—one without climb 
c /
g=0 and one with
climb 
c /
g=0.001—were performed, by fatiguing the
sample with a sinusoidal external stress applied parallel to
the x1 direction. The amplitude of the external stress was
chosen to be much larger than the critical resolved shear
stress of the sample. To determine the critical stress, we ana-
lyzed the relaxation of 30 independent, initially random

dislocation configurations. After the relaxation to a meta-
stable state, a constant external shear stress was applied. For
stresses lower than a critical value the plastic strain rate,
defined as

��
��

��
��

��
�� ��

�� �
�

��
�� ��

��

��
��

106.98 116.46 126.79 138.03 150.27

σext

0.0001

0.001

0.01

0.1
dγ

/d
t

1 x 105

FIG. 1. Steady-state value of the strain rate �averaged over 30
independent configurations� as a function of the applied stress in
dimensionless units set by Eqs. �26�.

N: 18120 t: 0

N: 17274 t: 2.5 N: 11790 t: 0.5

N: 14530 t: 5 N: 10448 t: 1

N: 10982 t: 7.5 N: 9632 t: 1.5

N: 7928 t: 10 N: 9088 t: 2

FIG. 2. Time evolution of dislocation patterns in absence of
climb �left� and with climb �right�. The number of dislocations is
shown in the bottom left corner, while the elapsed time in units of
the period of external stress is shown in the bottom right corners.
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d�

dt
=

1

b

i=1

N

��bivi��ni � bi� − �nivi��bi � bi����r − ri�

= 
i=1

N �− b1
i v2

i − b2
i v2

i

b1
i v1

i b2
i v1

i � , �27�

decays exponentially to zero �here the operator � represents
the dyadic product�. For high stresses the strain rate reaches
a plateau indicating a linear regime. Figure 1 shows the
steady state strain rate calculated by averaging over the 30
different random configurations as a function of stress.

To see the effect of climb on pattern formation during
fatigue we started two simulations from the relaxed meta-
stable state, applying a sinusoidal external stress with an am-
plitude corresponding to the linear regime. In our dimension-
less units given by Eq. �26� we have chosen a resolved shear
stress parallel to the x1 direction �ext�t�=150 sin�0.2�t�. The
time evolution of the system with and without climb �corre-
sponding to high and low temperatures� is shown in Fig. 2.
When climb is enabled, formation of cells is observed �right
snapshots�. In the absence of climb �left snapshots� the mor-
phology of the dislocation pattern is significantly different
from the case when climb is present.

The two different type of patterns were analyzed to esti-
mate their fractal dimension by the box-counting method. In
the box-counting method for grids of square boxes with edge
length l, the number N�l� of boxes containing at least one
dislocation is determined. The relation N�l�� l−DB defines the
“box-counting” dimension DB.

To better visualize the cells, we apply a geometrical defi-
nition of a cell in the simulations with climb �the procedure
is described in detail in Ref. 37� as follows. For a given
dislocation configuration we perform Delaunay triangulation.

Then removing �clipping� all links longer than a certain
value dmax depending on the dislocation density yields a
graph wherein the contiguous areas enclosed by loops are
identified as cells �Fig. 3�b��. For the cell-like dislocation
patterns investigated, the box-counting method gives a trivial
box-counting dimension 2.

Without climb the emerged cell structure shows self-
similarity properties on limited length scales. The relatively
low number of dislocations in this case does not permit a
precise determination of the box-counting dimension. Figure
4 displays the results of the box-counting analysis on the
dislocation pattern obtained after ten cycles in absence of
climb. The value of DB�1.87 confirms reports by others.31,36

In conclusion, the analysis reported in the present work
evidences that the dislocation cell structures formed during
plastic deformation of fcc single crystals oriented for mul-
tiple slip show scaling behavior in the absence of climb.
When climb is activated by temperature or other factors, the
self-similarity of the developed cell structure breaks down
for otherwise similar deformation conditions and a transition
from fractal patterns to more homogeneous dislocation struc-
tures, characterized in terms of an average cell size, takes
place.
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