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Linear piezoelectric coupling between mechanical and electrical phenomena is extremely common in inor-
ganic and biological materials and constitutes the basis for multiple applications. In the macroscopic case, the
coupling coefficients between electric displacement and strain �direct piezoeffect� and stress and electric field
�converse piezoeffect� are equal, the symmetry stemming from the existence of the corresponding thermody-
namic potential. Hence, studies of electromechanical coupling provide information on strain-induced polariza-
tion change, and vice versa. This is not necessarily the case for the electromechanical coupling �or any other
cross-coupled property� in the contact geometry of a scanning probe microscopy or nanoindentation experi-

ment. In this local case, the hypothetical �unknown� thermodynamic potential G̃�P ,� , . . . � depends not only on
conventional variables �e.g., load P and bias ��, but also on additional free length parameters, e.g. radius of
contact, a, or indentation depth, h. Here we derive the relationship between the direct and converse piezoelec-
tric effects in the contact geometry. The implications of the established relationships for nanoscale electrome-
chanical and piezoelectric measurements are analyzed.
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Coupling between electrical and mechanical interactions
is one of the fundamental natural phenomena that underpin
the functionality of an extremely broad range of materials
and systems. Electromechanical interactions vary from pi-
ezoelectricity in polar noncentrosymmetric materials1 and
biopolymers2 to flexoelectric coupling in cellular membranes
and electromotor proteins in biology and molecular transfor-
mations in electrochemical reactions. In ferroelectric materi-
als, piezoelectricity is strongly related to the electrical polar-
ization, and can be used for high-resolution imaging of
polarization distribution and probing polarization reversal
processes.3–7 In biological systems, local piezoelectric mea-
surements can be used for high ��10 nm� resolution struc-
tural and functional imaging.8 In organic molecules, func-
tional electrochemical transformations can form basis for
molecular electromechanical machines.9 Furthermore, in mo-
lecular systems, origins for piezoelectricity can be traced to a
single chemical bond level10 and the properties of bulk ma-
terials are defined by relative bond orientations and collec-
tive interactions.

The ubiquity of electromechanical coupling in inorganic,
macromolecular, and biological systems necessitates local
quantitative studies of these phenomena. However, current
detection on the sub-fA level, required to probe direct piezo-
electric effect in the �10 nm probing volume, is unfeasible.
At the same time, extreme displacement sensitivity of mod-
ern atomic force microscopes and interferometers allows re-
sponses of the order of �1–100 pm /V to be measured on
the 10–30 nm length scale, providing a pathway for probing
converse piezoelectric effect on the nanoscale. In the uni-
form field case realized in macroscopic capacitor-type mea-
surements, the direct and converse piezoelectric effects are
equal and hence the information obtained by two methods is

equivalent. Here, we analyze the equality between the direct
and inverse piezoelectric effects for the contact geometry of
scanning probe microscopy �SPM� and nanoindentors.

In direct piezoelectric effect, the induced strain X results
in the electric displacement, while in converse piezoelectric
effect application of an electric field E results in stress x. The
linear constitutive equations for a piezoelectric material pos-
sessing general anisotropy are

Di = eik
DXk + �ijEj , �1a�

xk = cklXl + eki
CEi, �1b�

where Xk is strain, xl is stress, Di is electric displacement, Ej
is electric field, ckl are elastic stiffnesses, eik are piezoelectric
stress constants, and �ik are dielectric constants. For spatially
uniform fields, i.e., when corresponding quantities are posi-
tion independent, Eqs. �1a� and �1b� allow construction of
thermodynamic potential G�X ,E� where strain and electric
field are independent variables. The coupling constants are
expressed through the derivatives of the potential with re-
spect to external parameter, e.g., eik

C =−��xi /�Ek�X. The differ-
ential of the Gibbs free energy is dG=−xidXi−DmdEm and
from the equality of mixed derivatives �Maxwell relations�

� �Dk

�Xi
�

E
= � �xi

�Ek
�

X
= � �2G

�Xi�Ek
� �2�

the direct and converse piezoelectric coefficients are equal,
eik

D =eik
C. Note that Eq. �2� stems directly from the fact that

strain and electric fields are the only two independent state
variables. The implication of Eq. �2� is that the measure-
ments of the electromechanical response, i.e., stress gener-
ated by uniform electric field, provides information on the
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charge produced by uniform strain, and vice versa. Both
types of measurements are feasible in the macroscopic case
and can be chosen depending on materials system.

Similar situation arises in the context of the problem of
local electromechanical measurements using scanning probe
microscopy3 or nanoindenter11,12 platforms. In these meth-
ods, measurement of the local electromechanical response of
the surface to the bias applied to the probe or indenter is a
well-established detection mechanism. The coupling coeffi-
cients as small as �1–5 pm /V can be measured over �10
nanometer area, providing functional basis for high-
resolution imaging. At the same time, corresponding direct
electromechanical coupling necessitates detection of the
charges of the order of several tens of electron charge, cor-
responding to �fA current at �1 MHz, well below the de-
tection limit of existing electronics due to fundamental limi-
tations such as Johnson noise, and presence of stray
capacitances in the circuit. Hence, macroscopic and
nanoindentor-based measurements can be based on both
direct12 and converse11 piezoelectric effects detection, while
only converse electromechanical measurements are possible
on the nanoscale by SPM. However, it is no longer obvious
that �a� the information obtained by the two detection
schemes would be equivalent even for linear piezoelectric
material and �b� if additional information can be obtained
through detecting both direct and converse responses.

Indeed, local probes �e.g., SPM tip or indentor� can be
represented by the indentor in contact with the surface, such
that indentor bias �0 and acting load P are two experimen-
tally controlled variables, whereas generated charge Q and
vertical displacement h are system responses. The direct and
converse electromechanical responses can be defined, e.g., as
��h /��0�P and ��Q /�P��0

, respectively. However, in this
case the definition of the responses is nonunique, and direct
and converse responses are not necessarily equal. The reason
is that in this case the contact radius a �or any other length
parameter defined by indenter’s geometry� is an additional
degree of freedom that varies in the indentation process and
cannot be controlled independently. Hence thermodynamic
potential G�P ,V� cannot be constructed in a direct fashion,
nor can its existence be postulated. Below, we analyze the
problem of coupled electromechanical indentation of trans-
versely isotropic piezoelectric half-space, and derive the self-
consistent descriptions for direct and converse piezoelectric
effects �see Fig. 1�.

For rotationally invariant indenters �Fig. 2�, the contact
area is a circular region with radius a. The mechanical
boundary conditions are prescribed displacement uz�� ,0�
=h−w��� in the contact area �0���a�, no normal pressure
�zz�� ,0�=0 outside the contact area ���a�, and no shear
traction on the surface, �z�� ,0�=0 for 0��	
. Here, h
specifies the total depth of penetration beneath the specimen
free surface and defined as follows: h=w0 for the flat and
spherical indenters; h=�+w0 for the conical indenter. w���
specifies the shape of the tip of the indenter and defined as
follows: w���=��� /a�2 for spherical indenter with �
=a2 / �2R�, R is the radius of the curvature of the tip;
w���=��� /a� for conical indenter with �=a cot �, � is the
semiangle of the cone measured from the apex. For both

spherical and conical indenter � is defined as the depth of
penetration measured at the circle of contact. The electrical
boundary conditions are ��� ,0�=�0 for 0���a and
Dz�� ,0�=0 for ��a. The first condition implies that the in-
denter is a perfect electrical conductor with a constant poten-
tial �0 prescribed at the base within the contact area, whereas
the second condition tells that the electric charge distribution
outside the contact area is zero.

Recently, Kalinin et al.13 and Karapetian et al.14,15 have
obtained the exact solutions to the above-described piezo-
electric indentation problems for flat, spherical and conical
indenter geometries using the correspondence principle16 in
conjunction with potential theory by Fabrikant.17,18 The stiff-
ness relations that relate applied force P, concentrated charge
Q, indenter displacement w0, indenter potential �0, indenter
geometry, and material properties—for the indenters of the
studied geometries have the following phenomenological
structure:14

P =
2

�
�hn+1C1 + �n + 1�hn�0C3� , �3�

Q =
2

�
�hn+1C2 + �n + 1�hn�0C4� , �4�

where  is geometric factor �=a for the flat indenter, 
= �2 /3��R for the spherical indenter and = �1 /��tan � for

Charge = Force • d33(a) Strain = Bias • d33(b)

FIG. 1. �Color online� Schematic showing the �a� direct and �b�
converse piezoelectric effect. In the uniform field case, correspond-
ing coupling coefficients are equal as the consequence of the exis-
tence of thermodynamic potential. Piezoelectric strain constants are
defined as dnj =enisij.
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FIG. 2. Geometrical parameters for flat �a�, spherical �b�, and
conical �c� indentation. In this case, the contact radius a is an ad-
ditional free parameter that can change during the experiment.

Hence, no thermodynamic potential of the form G̃�P ,�� can be
constructed.
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the conical indenter� and n=0, 0.5, and 1 for the flat, spheri-
cal, and conical indenters, respectively. The constant C1 and
C4 define elastic and dielectric responses, while C2 and C3
define cross-coupled responses. The constants C1–4 entering
equations �3� and �4� represent clusters of electroelastic con-
stants introduced in Ref. 14. Hence, analysis of the relation-
ship between direct and inverse piezoelectric effects in in-
dentation geometry is equivalent to finding the relationship
between cross-coupling constants C2 and C3. Originally, this
equality was conjectured based on numerical analysis; here,
we derive analytical proof and discuss consequences of this
conjecture.

To establish this relationship, we consider the equation
established in Ref. 15:

c44 + mj�c13 + c44� + kj�e15 + e31�
c11

=
mjc33 + kje33

mjc44 + �c13 + c44� + kje15

=
mje33 − kj�33

mje15 + �e15 + e31� − kj�11
= � j

2 	 � j , �5�

where cij denote transversely isotropic elastic stiffnesses, eij
piezoelectric stress constants in reduced Voigt notation, and
�ij are dielectric permeabilities. The constants mj, kj
�j=1,2 ,3� will be given in the text to follow. By presenting
Eq. �5� in the matrix form we define the following eigen-
value problem:

T1x = �T2x , �6�

where

T1 = 
c44 c13 + c44 e15 + e31

0 c33 e33

0 e33 − �33
�,

T2 = 
 c11 0 0

c13 + c44 c44 e15

e15 + e31 e15 − �11
� .

The eigenvalues � j �j=1,2 ,3� are found as the roots of the
cubic equation in Ref. 15. Here, we consider the vector in the
form of x�j�= �lj ,mj ,kj�tr, where

mj =
� j

Zj
��c13 + c44���33 − � j�11� + �e33 − � je15��e15 + e31�� ,

�7�

kj =
� j

Zj
��c13 + c44��e33 − � je15� − �c33 − � jc44��e15 + e31�� ,

�8�

Zj = �c33 − � jc44���33 − � j�11� + �e33 − � je15�2. �9�

lj =1 if Zj�0, and if Zj =0 then lj =0 and

mj = � j��c13 + c44���33 − � j�11� + �e33 − � je15��e15 + e31�� ,

�10�

kj = � j��c13 + c44��e33 − � je15� − �c33 − � jc44��e15 + e31�� .

�11�

Substituting x�j� into Eq. �6�, we have an identity, i.e., this
vector is an eigenvector of Eq. �6� that corresponds to the
eigenvalue � j. From the definition �Ref. 14� of C2 and C3 it
follows that

C2 + C3 =
1

B*�1�2�3�
�1�1 �1 k1

�2�2 �2 k2

�3�3 �3 k3
 + �1�1 �1 m1

�2�2 �2 m2

�3�3 �3 m3
� .

�12�

Substitution of Eqs. �7�–�9� into the expansion of the de-
terminants of Eq. �12� by the first columns and application of
the identities �1�2�3=D /A and �1+�2+�3=B /A, results in
the equality

� j�� j+1kj+2 − � j+2kj+1� + � j�� j+1mj+2 − � j+2mj+1�

=
D�� j+1 − � j+2�
c11� jZ1Z2Z3

��� j + ���A� j
3 − B� j

2 + C� j − D� ,

�13�

where the subscripts are taken modulo 3 �i.e., �4=�1, �5
=�2, �4=�1, �5=�2, etc.� and

� = c13�e15�e15 + e31� + �11�c44 + c13�� − e31�c44e31 − c13e15� ,

�14�

� = c33�e15�e15 + e31� + �11�c44 + c13�� − e33�c44e31 − c13e15� .

�15�

Since � j are the roots of cubic equation in Ref. 15, the left
side of Eq. �13� vanishes and therefore C2+C3=0 for any
numbers � j �j=1,2 ,3�. Notice that while this equality was
shown numerically before, no analytical proof was available.
Thus, Eqs. �3� and �4� for the indentation problem, where
C2=−C3, analogously to Eqs. �1a� and �1b� retain the reci-
procity, and in particular define the analog of the equality of
direct and converse piezoeffects in contact geometry of SPM
or nanoindentation.

Based on the demonstrated relationship C2=−C3 and stiff-
ness relations Eqs. �3� and �4�, relationships between the
mixed derivatives of charge and displacement with respect to
bias and force can be established in a straightforward fash-
ion, e.g.,

� �Q

�h
�

�

=
n�

h
�1 + � ��

�P
�

h
�−1

. �16�

Equation �16� and similar relations allow the relating
properties to be measured in the local indentation under dif-
ferent conditions, e.g., constant force �low frequency�, con-
stant strain �high frequency�, etc. Note, however, that unlike
Eq. �2� that follow from the existence of thermodynamic
potential G�X ,E�, relationships similar to Eq. �16� follow
from the structure of stiffness relations Eqs. �3� and �4� and
relationship C2=−C3 proven above.

We note that by setting the coupling constants eij =0 the
problem decouples and the limiting cases of the purely elas-
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tic and purely electrostatic solutions are recovered from Eqs.
�3� and �4�. This implies the following limits: m3 ,k1 ,k2→0,
�3→��33 /�11. As a consequence C1=H−1, where H is a
transversely isotropic elastic constant17,18 and in the case of
isotropic material H= �1−�2� /�E, where E is the elastic
modulus, and � is Poisson coefficient; C2=C3=0;
C4=2���11�33, so that

P = 2hn+1/�H, Q = 4a��11�33�0 �17�

Hence, the capacitance for all three models is Cca

=4a��11�33.
The applicability of Eqs. �3� and �4� and derived relation-

ships, e.g., Eq. �16� for the description of the nanoindenta-
tion and SPM experiments can be described as following.
This analysis is rigorously correct for �a� linear piezoelectric
materials, �b� perfectly conductive indenter, and �c� under the
assumption that electrostatic field outside the contact area is
negligible. For most ferroelectric materials �except, e.g., re-
laxors�, the deviations from ideal piezoelectric behavior
originate in the vicinity of the intrinsic switching thermody-
namic field, E0� PS /�, of order of �106–107 V /m for most
materials �� is linear dielectric susceptibility�. Estimating
maximal electric field below the indenter as � /a, where a �as
determined form effective resolution� is �10 nm, the devia-
tions in behavior from ideal can start for biases as small as
�1 V �note, however, that this effect can be masked by po-
larization switching�. For nanoindentation experiments �a is
�1 �m�, corresponding bias is �1 kV �note that for nanoin-
dentation the measurements should be performed in elastic

regime�. The conditions �b� and �c� can be violated for
nanoscale indentor, when quantum and stray capacitance ef-
fects become important. Applicability limit for condition �b�
can be estimated as �s	a�g /��11�33, where �s is the effec-
tive width of the ferroelectric-conductor gap �e.g., the sum of
Thomas-Fermi screening length in material and ferroelectric
correlation length in ferroelectric�. Finally, the condition �c�
corresponds to the dominance of the capacitance of tip-
surface contact area vs stray tip-surface capacitance, ana-
lyzed in detail in Ref. 13 and defining the limits of weak and
strong indentation in PFM.

To summarize, we have analytically established the reci-
procity between direct and converse piezoelectric effects in
coupled electromechanical contact of SPM or nanoindenta-
tion experiment. Unlike the macroscopic uniform field case,
thermodynamic potential cannot be defined in a straightfor-
ward manner due to the presence of a third free parameter
�contact radius or indentation depth�, and nonhomogeneity of
the electroelastic field distribution in the material. We have
analyzed the physical implications of the established reci-
procity principle for the nanoscale electromechanical and pi-
ezoelectric measurements.
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