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We study the magnetoresistance of spin-valve devices using graphene as a nonmagnetic material to connect
ferromagnetic leads. As a preliminary step, we first study the conductivity of a graphene strip connected to
metallic contacts for a variety of lead parameters and demonstrate that the resulting conductivity is rather
insensitive to them. We then compute the conductivity of the spin-valve device in the parallel and antiparallel
spin polarization configurations and find that it depends only weakly on the relative spin orientations of the
leads, so that the magnetoresistance �MR� of the system is very small. The smallness of MR is a consequence
of the near independence of the graphene conductivity from the electronic details of the leads. Our results
indicate that, although graphene has properties that make it attractive for spintronic devices, the performance
of a graphene-based spin-valve is likely to be poor.
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I. INTRODUCTION

Recently, it has become possible to isolate an individual
graphene layer,1 a two dimensional crystal of carbon atoms
packed in a honeycomb lattice. When deposited on top of a
doped dielectric substrate, the density of carriers moving in
the graphene sheet can be modified by applying a gate
voltage.2,3 At low energies, carriers moving in a graphene
sheet obey the Dirac equation, so that graphene offers the
interesting possibility of studying the properties of Dirac fer-
mions. Apart from the interesting fundamental physics of this
new system, graphene is attracting attention as a promising
new material for microelectronic applications.

The conductivity of graphene tends to a minimum value
when the density of extra carriers tends to zero.2–4 Theories
predict a universal value, �u=4e2 /�h, for the conductivity of
a homogeneous and impurity-free undoped graphene
sheet.5–9 However, experimental values of the minimum
value of the conductivity in graphene sheets is between five
and ten times larger than the theoretical prediction. This dis-
crepancy may occur because in neutral graphene, the system
breaks up into electron and hole puddles,10 so that transport
could occur through the resulting holelike and electronlike
regions.11 The charge puddles may appear in order to screen
impurities which are invariably present,12 or may be induced
by ripples in the graphene sheets.13–17

In the ballistic regime, theoretical work18–21 has shown
that the conductivity of an intrinsic graphene sheet of width
W and length L takes the universal value in the W /L→�
limit. Such a ballistic approximation is valid when the mean
free path of the carriers is larger than the sample dimensions.
This was the case, for example, for devices used in Ref. 22,
which confirmed that the conductivity of wide and short
graphene ribbons tends to the universal value of 4e2 /�h.

Graphene exhibits room temperature mobilities above
105 cm2 /V s2, implying that electrons in graphene sheets can
move very long distances without scattering. For short range
scatters, the mean free path can be as large as 1000 nm.23

From these results, we expect the ballistic approximation to

be appropriate in describing transport in graphene
nanoribbons.24,25 In addition, the small spin-orbit coupling of
carbon atoms26 results in a long spin lifetime for carriers in
graphene sheets. This makes graphene a very good candidate
for microelectronic and spintronic applications.

In developing new spintronic devices, it is very important
to find nonmagnetic materials where a spin-polarized current
can be injected and flow without becoming depolarized. The
most popular existing spintronic devices are spin valves.
These devices use the fact27 that the electrical resistance of a
nonmagnetic material connected to spin-polarized source and
drain leads depends strongly on their relative spin orienta-
tion. Spin valves are promising candidates for systems that
may transform spin information into electrical signals. These
devices perform best when the spin relaxation time of the
nonmagnetic material is long, making graphene a good can-
didate for this component of a spin valve. Moreover, the
combination of weak spin-orbit coupling and low hyperfine
interaction of the electron spin with the carbon nucleus
makes graphene a good candidate for other spintronic appli-
cations such as spin qubits,28 three-terminal devices,29,30 and
spin filters.31

Recently, several groups have performed nonlocal four-
probe measurements32–34 of graphene, connected to ferro-
magnetic electrodes, and have demonstrated the presence of
spin currents between injector and detector. These experi-
ments provide proof, in principle, of the possibility of inject-
ing a spin current into graphene, with a spin relaxation length
larger than 2 �m at room temperature.32 Moreover, a mag-
netoresistance of several hundred ohms was observed in a
spin valve where graphene is contacted by two ferromagnetic
electrodes.35 These experiments clearly demonstrate the po-
tential for graphene in spintronic devices.

In this work, we study the magnetoresistance of a
graphene-based spin valve. This is a three component device,
with a first ferromagnetic lead used as a spin polarizer, a
nonmagnetic spacer—graphene in our case—and a second
ferromagnetic lead used as analyzer. We consider two kinds
of electrodes �see Fig. 1�: �a� a single orbital band metal
where the center of the minority spin band is shifted with
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respect to the majority spin band in such a way that the
material is ferromagnetic �this is a simplified version of a
dilute magnetic semiconductor� and �b� a ferromagnetic tran-
sition metal �e.g., cobalt� with a spin-polarized narrow d
band and a wide paramagnetic s band at the Fermi energy.

We assume the carrier mean free path in graphene is
longer than the dimension of the graphene part of the device,
so that the transport properties can be calculated in the bal-
listic approximation. In addition, since the spin-orbit cou-
pling in graphene is very small, it is appropriate to assume
that the spin diffusion length is sufficiently long that the
carriers do not undergo spin flips while traversing the
graphene. Therefore, we model the transport in terms of two
independent spin channels.36 In this work, we will call this
the independent current model.

This paper is organized as follows. In Sec. II, we describe
the Green’s function formalism for computing the conduc-
tance of a ballistic system37 and show how this leads to a
conductivity for undoped graphene. In Sec. III, we then apply
the formalism to compute the magnetoresistance of a wide
piece of graphene contacted by two single orbital band fer-
romagnetic leads. In Sec. IV, we discuss the case of transi-
tion metal leads, modeled as conductors with two orbital
bands, one narrow and one wide. We then compute the mag-
netoresistance of this system. Finally, we summarize our re-
sults in Sec. V.

II. CONDUCTANCE AND CONDUCTIVITY OF A
GRAPHENE STRIP

We begin by first calculating the conductance of a
graphene strip connected to single orbital metallic leads �see

Fig. 1�a�� for an arbitrary alignment of the lead band bottoms
and the Dirac points of the graphene system.

A. System description

We consider a strip of graphene as illustrated in Fig. 2�a�,
with lattice parameter a, attached to metallic leads which are
each modeled by a commensurably matched square lattice
with the same lattice parameter.20,21 The graphene strip has
length L in the x direction and is infinitely wide in the y
direction, i.e., W→�. With this geometry, we can define a
unit cell, infinitely long in the x̂ direction, that is periodically
repeated in the y direction �Fig. 2�b��. In order to match the
graphene sample to the square lattice leads, the number of
carbon atoms in the unit cell, N, should be a multiple of 4, so
that the length of the graphene sample is L=N /4�3a.

B. Hamiltonian

The electronic properties of the graphene are described by
a tight-binding Hamiltonian with nearest neighbor hopping t
and zero on-site energy. The left �L� and right �R� metallic
leads are also described by tight-binding Hamiltonians, with
nearest neighbor hopping amplitudes tL and tR and on-site
energies �L and �R, respectively. The graphene sample is
connected to the left and right leads with hopping amplitudes
tL� and tR� , respectively.

Because of the discrete translational invariance in the y
direction, we can label the eigenvalues and eigenvectors of
the Hamiltonian by a momentum ky in the y direction that
takes values in the range −� /a�ky �� /a. The limit W
→� is obtained by treating this as a continuous variable. In
order to simplify notation, in the rest of the paper, the wave
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FIG. 1. �Color online� Schematic representation of the spin
valves studied in this work. We plot the density of states of the
central graphene region and of the ferromagnetic source and drain
leads. In �a�, the leads are single orbital band metals where the
center of the minority spin band is shifted with respect to the ma-
jority spin band. �b� corresponds to the case of a ferromagnetic
transition metal with a spin-polarized narrow d band and a para-
magnetic wide s band. The horizontal dashed line indicates the
chemical potential �. In this schematic picture, �=0. In both cases,
the spin polarizations of the leads are illustrated in the parallel
configuration. For the antiparallel configuration, the spin labels of
each band in the drain lead should be reversed.
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FIG. 2. �Color online� �a� Structure of the spin valve studied in
this work. A graphene sample is connected to metallic leads which
are modeled as commensurably matched square lattices. �b� Unit
cell that is periodically repeated in the y direction in the case of a
graphene strip connected to single orbital metallic leads. �c� Unit
cell in the case of a graphene strip connected to ferromagnetic tran-
sition metal leads. Square �blue� points describe the s atoms, and
circle �red� points represent d atoms.
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vector ky will be given in units of 1 /a. With this, the elec-
tronic properties of the two dimensional problem are reduced
to a set of ky-dependent one dimensional Hamiltonians with
on-site energies �see Fig. 1�,

�i = ��L + 2tL cos ky if i 	 0

�R + 2tR cos ky if i 
 N + 1

0 if 1 � i � N ,
� �1�

and hopping amplitudes ti between sites i and i+1,

ti =�
tL if i � 0

tL� if i = 0

t + teiky if i = 1,5,9, . . . , and 0 � i � N − 1

t if i = 2,6,10, . . . , and 0 � i � N − 1

t + te−iky if i = 3,7,11, . . . , and 0 � i � N − 1

t if i = 4,8,12, . . . , and 0 � i � N − 1

tR� if i = N

tR if i � N .

�
�2�

C. Conductance

The conductance per spin channel of the system takes the
form

G��� = �
ky

g1D��,2tL cos ky + �L� , �3�

where � is the chemical potential and g1D�E ,�0� is the con-
ductance of the one dimensional chain with an on-site energy
�0 in the left electrode, evaluated for Fermi energy E. �Note
that g1D implicitly depends on the on-site energy in the right
lead as well.� The one dimensional conductance is given by37

g1D��,2tL cos ky + �L� =
e2

h
�1����N���	G1,N���	2, �4�

where �1�E�= i�1−1
+� and �N�E�= i�N−N

+� are the injec-
tion ratios, and 1 and N are the self-energy terms due to
the leads attached at sites 1 and N, respectively,37

1�N���� = tL�R�� e−ikL�R�, �5�

with

kL�R� = arccos
� − �L�R� − 2tL�R� cos ky

2tL�R�
� . �6�

In Eq. �4�, G1,N��� is the effective Green’s function for the
system, evaluated in the graphene region:

G1,N��� =
1

� − Hc − 1��� − N���
. �7�

Here, Hc is the one dimensional ky-dependent Hamiltonian of
the graphene sample described by the on-site energies and
hopping amplitudes given in Eqs. �1� and �2�.

Finally, the conductivity of the device is related to the
conductance through geometrical factors,

���� =
L

W
G��� . �8�

In two dimensions, conductivity and conductance have the
same units. However, the former is only useful in systems
where its value is sample-size independent for large L and W.
Usually, this is only the case for diffusive systems. Remark-
ably, as has been pointed out previously18,20 and as we dem-
onstrate explicitly below, for undoped graphene, it is true in
the ballistic limit, provided we take W→� before taking L
→�.

In Fig. 3, we plot G����L /W in units of the universal
conductivity for two sets of parameters for the leads, in the
limit of large W, and for two different values of L. One may
observe from these results that except for �=0, the conduc-
tance is essentially independent of L. Interestingly, the con-
ductance is relatively insensitive to the details of the metallic
leads; its overall shape is mostly determined by the graphene
density of states. In particular, the roughly linear rise as �
moves away from zero may be understood as reflecting the
linear density of states of graphene. The shoulders in the
conductance riding on this linear background correspond to
Fabry-Pérot resonances due to the finite length of the
graphene sample.38 The amplitude of these resonances is de-
termined by the parameters of the leads.

In the case of intrinsic �i.e., undoped� graphene—
�=0—the electronic transport behaves as if it is diffusive,
and the conductivity is well defined. For tL= tR= tL�= tR� = t and
�L=�R=0, we obtain �=�3 /2�e2 /h�, in agreement with Ref.
20. This value changes when the centers of the energy bands
in the leads change. The conductivity reaches the universal
value, �u=4 /��e2 /h�, when �L= tL and �R= tR.18,20

The �=0 case may be worked essentially analytically,
because transport is dominated by values of ky in the vicinity
of the Dirac points �0, ± 4�

3a
�. In this case and for large values

of L, it is possible to explicitly evaluate the transmission

�/t
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FIG. 3. �Color online� Conductivity in units of �u=4 /��e2 /h�,
as a function of the chemical potential for two different graphene
sample lengths and two sets of parameters describing the lead band
structures. The conductivity shows a minimum at the Dirac point,
which is independent of the sample length.
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probability associated with HC for each valley and spin chan-
nel using a transfer matrix method, with the result

Tky
�� = 0� =

4�t2 sin kL sin kR

�2e2Lky + t4e−2Lky − 2t2� cos�kL + kR�
. �9�

In this expression, the parameter �= �tL�
2tR�

2� / �tLtR� contains
the information about the coupling to the leads, the wave
vector ky is defined with respect the Dirac point, and kL and
kR are defined in Eq. �6�. For � at the Dirac points, there are
no individual propagating modes in the graphene sample
connecting the metallic leads at any finite value of ky, and the
transmission probability vanishes in the limit L→�.

By integrating the transmission amplitude �Eq. �9�� over
ky, we obtain the �=0 conductance,

G =
e2

h

2gsgv

�

W

L

sin kL sin kR

sin�kL + kR�
arctan
 sin�kL + kR�

1 − cos�kL + kR�� ,

�10�

where gs=2 and gv=2 are the spin and valley degeneracies,
respectively. Remarkably, although all the modes are evanes-
cent, the total conductance falls off only as 1 /L, so that the
electrical transport is Ohmic. This behavior arises because
the effective length scales of the evanescent modes are each
1 /ky, which is arbitrarily large as ky→0, resulting in the
relatively weak 1 /L behavior for G. �Alternatively, the finite
value of the transmission probability near the Dirac points
may be understood in terms of virtual electron-hole pair ex-
citations near zero energy in the graphene region.18� By con-
trast, for systems in which � may lie in a gap, the effective
length scale for wave functions is bounded by a distance that
is determined by the difference between � and the bottom of
the conduction band for the “conducting” region. Because of
this maximum length scale, G falls off exponentially with L,
and the conductivity, as well as the conductance, vanishes as
L→�. Thus, clean graphene is rather unique in displaying
Ohmic behavior.

Another remarkable feature of this result is that the con-
ductivity does not depend on the couplings tL� and tR� of the
metallic leads with the graphene sample. This result is only
possible in the limit W→�, since for any finite value of W,
the two leads become fully disconnected if either of these
parameters vanishes, and the conductance must vanish. How-
ever, in the infinite width limit where the momentum sum
becomes an integral, the parameter � through which tL� and tR�
enter scales out, and the final result is independent of these
parameters.

Finally, it is interesting to examine the dependence of the
conductivity on the parameters specifying the leads. From
the definition of kL and kR, one can see that the conductance
depends on the lead parameters only through the combina-
tions ��R− tR� / tR and ��L− tL� / tL. In Fig. 4, we plot the con-
ductivity, �=G�L /W, as a function of these combinations.
The conductivity is maximized when tL=�L and tR=�R, in-
dependent of the values of tL and tR. Because of conservation
of energy and of the transverse momentum ky, transport
through the graphene ribbon when �=0 is possible only
when the band centers of the left and right leads are in the
intervals 2tL� 	�L− tL	 and 2tL� 	�L− tL	, respectively. In Ref.

20, Schomerus suggests that the conductivity of a graphene
sample connected to metallic leads is maximum when the
self-energies of electrons in the leads have the same value as
the self-energy of bulk graphene with energy at the Dirac
point �−it�. In the square lattice, the self-energies of the in-
coming and outcoming electrons, evaluated at the momen-
tum and energy of the Dirac point, are −tLeikL and −tReikR,
respectively. Our results indicate that when the real part of
the lead self-energies 1��=0� and N��=0� �Eq. �5�� van-
ishes, the conductivity of the system is maximized. This con-
dition is similar to but less restrictive than that proposed in
Ref. 20 and is related to the independence of the graphene
universal conductivity from the hopping amplitude t.

III. MAGNETORESISTANCE: SINGLE BAND LEADS

In this section, we apply the results derived above to find
the magnetoresistance of a spin-valve device with a graphene
strip at its center. In a single band ferromagnetic metal, the
centers of the spin up ��0,↑� and spin down ��0,↓� bands are
shifted, as illustrated in Fig. 1�a�. This implies a relative spin
polarization P of the carriers at the Fermi energy � given by

P =

t↓K
�1 − 
� − �0,↑

2t↑
�2� − t↑K
�1 − 
� − �0,↓

2t↓
�2�

t↓K
�1 − 
� − �0,↑

2t↑
�2� + t↑K
�1 − 
� − �0,↓

2t↓
�2� ,

�11�

where K is the complete elliptic integral of the first kind, and
t↑ and t↓ are the hopping matrix elements in the spin up and
spin down channels, respectively. Equation �11� is obtained
directly from the density of states at energy E of a square
lattice with hopping parameter t and on-site energy �0, which
is given by39
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FIG. 4. �Color online� Conductivity evaluated at the Dirac point,
�=0, in units of �u=4 /��e2 /h�, as a function of the source and
drain lead parameters.

L. BREY AND H. A. FERTIG PHYSICAL REVIEW B 76, 205435 �2007�

205435-4



��E� =
1

�2t
��2t − 	E − �0	�K
�1 −

�E − �0�2

4t2 � . �12�

The transport through a nonmagnetic material connected
to ferromagnetic metals is expected to depend strongly on
the magnitude and relative orientation of the polarizations of
the leads. The magnetoresistance �MR� is defined as the rela-
tive change of the resistance when the relative spin orienta-
tion of the leads changes from parallel, Rpara, to antiparallel,
Ranti. In the ballistic approximation, the MR can be written as

MR =
Ranti − Rpara

Ranti
=

Gpara − Ganti

Gpara
, �13�

where Gpara and Ganti are the conductances of the system
when the relative polarization of the leads is parallel or an-
tiparallel, respectively.

When the nonmagnetic material is an insulator, the trans-
port is through tunneling processes. Assuming that tunneling
transport is proportional to the density of states at the Fermi
energy, Julliere40 proposed the following expression for the
tunneling magnetoresistance �TMR�:

TMR =
2P2

1 + P2 . �14�

Julliere’s expression works rather well for TMR even for
materials with complicated band structures.41 It predicts cor-
rectly that the MR increases as the leads become more spin
polarized. In this section, we study the MR when the non-
magnetic material is graphene and analyze the results as a
function of the spin polarization of the leads.

In the independent current model, and using the ballistic
approximation, Gpara is the sum of the spin up conductance,
Eq. �3� evaluated with �L=�R=�0,↑, and the spin down con-
ductance, Eq. �3� evaluated with �L=�R=�0,↓. In the case of
antiparallel spin polarization of the leads, Ganti is the sum of
Eq. �3� evaluated with �L=�0,↑ and �R=�0,↓ and Eq. �3�
evaluated with �L=�0,↓ and �R=�0,↑.

In Fig. 5, we plot the MR of a graphene-based spin valve
as function of the positions of the center of the spin up and
spin down bands. We consider only intrinsic graphene ��
=0�, and the hopping parameter in the metallic leads is taken
equal to that in the graphene part of the device, tL= tR= t. The
graphene slab is extrapolated to infinite length, although for
L larger than about 20a, the results are essentially the same.

We observe that, in general, the magnetoresistance is
small. Only when the parameters are such that one of the
spin bands is close to or in the forbidden transport region,
2t� 	�0�− t	, does one find MR to be a significant fraction of
1, and when one of the spin bands is in the forbidden region,
then MR, of course, reaches its maximum possible value.
Thus, in order to get a moderate value of the magnetoresis-
tance, a large shift between the center of the spin bands in
the leads is needed.

The reason for the smallness of MR is the weak depen-
dence of the graphene conductance on the parameters of the
leads �see Figs. 3 and 4�. This weak dependence, particularly
on the density of states of the incoming electrons, also im-
plies an absence of any strong correlation between the spin

polarization of the incoming electrons �Fig. 5�b�� and the
magnetoresistance �Fig. 5�a��. By comparing the values of
the polarization and the magnetoresistance, we observe that
the Julliere’s expression, Eq. �14�, fails to describe the mag-
netotransport properties of graphene-based transistors.

Note also that because the conductivity of undoped
graphene is independent of the tunneling amplitude connect-
ing the graphene with the ferromagnetic metallic leads �Eq.
�10��, the magnetoresistance is also unaffected by changes in
the quality of the connection between the leads and the
graphene. This indicates that the smallness of the magnetore-
sistance in graphene-based devices is not due to a conductiv-
ity mismatch, as is the case in metal-semiconductor diffusive
junctions,42 but rather is due to the universal minimum con-
ductivity of graphene, so that a “shutoff” of one spin channel
is difficult to achieve.

In Fig. 6, we have plotted the spin polarization as a func-
tion of position in our graphene-based spin valve. For this
calculation, the lead parameters were chosen so that the spin
polarization in the leads was approximately 60%. Several
points are worth noting. �1� The spin polarization decays to a
zero over a length scale of about 20 lattice parameters. �2�
The spin polarization is oriented in opposite directions for
electrons on different sublattices. �3� The total induced spin
in the graphene region vanishes. These effects are explained
by the strong tendency for local magnetic moments in
graphene to orient ferromagnetically for sites on the same
sublattice and antiferromagnetically for sites on different
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FIG. 5. �Color online� �a� Magnetoresistance �MR� and �b� spin
polarization at the Fermi energy, as a function of the centers of the
spin bands, of a graphene spin valve. The device consists of a long
graphene slab separating single band ferromagnetic metals, Fig.
1�a�. The chemical potential �=0, and tL= tR= t.
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sublattices.43 We note that this result does depend on the fact
that in our chosen geometry, zigzag edges present themselves
to the leads, so that all the graphene sites contacting the leads
are on the same sublattice. The sensitivity of the electronic
states to the edge geometry is a well-known property of
graphene.44–46

Finally, we analyze the magnetoresistance for doped
graphene in the three stripe geometry. In this case the trans-
port through the graphene part of the device is ballistic in the
usual sense, and the MR has to be calculated as the relative
change in the conductance, Eq. �13�. In Fig. 7�a�, we plot the
MR for this case as a function of the chemical potential in
the graphene and of the center of the spin down band. In
addition, we plot the spin polarization at the leads. As in the
case of undoped graphene, the MR is small �although not
quite so small as in the undoped case�, and only moderate
values of MR result from large shifts between the centers of
the spin up and spin down bands. From comparing the two
panels of Fig. 7, we again observe that the values of MR and
the spin polarization at the leads are largely uncorrelated.

IV. MAGNETORESISTANCE: FERROMAGNETIC
TRANSITION METAL LEADS

Energy bands for ferromagnetic transition metals can be
described approximately by using two bands, a d band char-
acterized by a width 4td and center position �d and an s band
with width 4ts and center at �s.

47 Because of the shape of the
atomic orbitals, the s band is much wider that the d band.
Cobalt, for example, is a transition metal with a minority
spin d band shifted up in energy relative to a majority spin d
band. The s band is nearly spin unpolarized, and the Fermi
energy crosses both the majority spin d band and the unpo-
larized s band, as illustrated in Fig. 1�b�. For studying the
transport properties of such systems, it is a good approxima-

tion to neglect the minority spin d band located at high en-
ergy.

We wish to consider the same device as studied in Sec. III
with leads characterized by band structures of this sort. This
can be modeled by assigning two orbitals to each site in the
leads, one for the s band and the other for the d band. We can
then assign on-site energies �s,d, respectively, for the two
orbitals and hopping matrix elements ts and td. These orbitals
then connect to the pz carbon graphene orbitals through hop-
ping amplitudes ts� and td�, respectively. Although cobalt is a
three dimensional metal, for simplicity, we treat it here as
two dimensional. The resulting one-dimensional problem
that one needs to treat for each ky is illustrated in Fig. 2�c�.
Finally, for this section, we will restrict our discussion to the
case of intrinsic graphene, �=0.

A. Conductivities

As there are two band orbitals in the transition metal
leads, in order to compute the conductivity with different
spin polarization orientations in the leads, we will need to
evaluate several partial conductivities, representing transmis-
sion between different combinations of orbitals. These are
the following.

�1� First is the conductivity across a graphene strip at-
tached to single band spin-polarized metals, with the bands
in the two leads centered at the same energies and having
equal bandwidths,
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��,� =
L

W

1

gs
G�k�� , �15�

where G�k�� is the conductance �Eq. �10�� evaluated with

kL=kR=k�=arccos� t�−��

2t�
�. This contribution enters when we

consider the transmission of spin-minority electrons in the
parallel configuration, so that the d bands of the minority
spin are high in energy in both leads and are irrelevant. Thus,
only the band index �=s for this contribution will be relevant
in our calculation.

�2� Second is the conductivity of the device where the
source and drain metals consist of two conducting bands, s
and d. In this case, the conductivity per spin channel is

�sd,sd =
e2

h

4gv

�
�ts sin ks

+ td sin kd�2

arctan
�4	a	4 − �a2 + a*2�2

2	a	2 − a2 − a*2 �
�4	a	4 − �a2 + a*2�2

, �16�

with

a = tse
iks + tdeikd. �17�

This contribution enters for spin-majority electrons when the
lead polarizations are parallel.

�3� Finally, it is necessary to evaluate the conductivity in
the case where the only available band in the source metal is
the s band, whereas both bands, s and d, are available in the
drain lead, or vice versa. These two situations arise when the
lead polarizations are antiparallel. The required conductivi-
ties are both

�s,sd = �sd,s =
e2

h

4gv

�
�ts

2 sin2 ks

+ tstd sin kd sin ks�
arctan
�4	b	4 − �b2 + b*2�2

2	b	2 − b2 − b*2 �
�4	b	4 − �b2 + b*2�2

,

�18�

with

b = �tse
iks + tdeikd�eiksts. �19�

The above conductivities are independent of the values of
the contact hopping amplitudes between the graphene orbit-
als and the s and d orbitals of the transition metal leads.

A very interesting result which emerges from Eqs. �15�,
�16�, and �18� is that the conductivity of intrinsic graphene is
nearly independent of the number of bands in the drain and
source leads. For example, if we take �s= ts and �d= td, we
find that all the conductivities are the same: �ss=�dd=�sd,s

=�sd,sd= �2 /�� e2

h . �Note that we are evaluating the conductiv-
ity per spin channel.� Similarly, if we center all the bands at
zero energy, �s=�d=0, all the conductivities take the value
�3 /4 e2

h , independent of the hopping parameters. Figure 8 il-
lustrates this behavior over a range of lead parameters. These
results reflect the remarkably weak dependence of the
graphene conductivity on the electronic structure of the con-

tacts and, in particular, on the density of states of the metallic
leads at the Fermi energy.

B. Magnetoresistance

For computing the magnetoresistance, we have to evalu-
ate the conductivity in the parallel and antiparallel spin po-
larization configurations of the leads.

In the parallel configuration, majority spin electrons in the
s and d bands of the metallic source are injected in the
graphene slab and received in the majority spin s and d
bands of the metallic drain. The minority spin electrons can
go just from the source s band to the drain s band. Therefore,
the conductivity is

�para = �sd,sd + �s,s. �20�

In the antiparallel configuration, the majority spin electrons
in the source can be in the s or d band. Upon passing through
to the drain lead, these are now minority electrons, which
can only reside in the s band. The inverse situation occurs for
the minority spin carriers in the source lead. Thus, the con-
ductivity in the antiparallel configuration takes the form

�anti = �s,sd + �sd,s. �21�

Since by symmetry �s,sd=�sd,s, the magnetoresistance takes
the form

MR =
�sd,sd + �s,s − 2�s,sd

�sd,sd + �s,s
. �22�

In Fig. 9�a�, we plot our calculated magnetoresistance for
this system. We assume the s band to be much wider than the
d band and plot the results as functions of the energy center
of the d band and for different positions of the center of the
s band. In Fig. 9�b� we plot the corresponding spin polariza-
tion of the ferromagnetic leads. From Fig. 9, we immediately
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FIG. 8. �Color online� Conductivity per spin channel of a
graphene slab connected to metallic leads with two �s and d� bands
each, �sd,sd, and to a two orbital �s and d� source lead and a single
orbital �s� drain lead, �sd,s. We plot the conductivity as a function of
the band center of the d band. We assume that the s band is much
wider than the d band, taking ts=5t and td=0.2t. Plotted are the
��= t� and the ��=0 cases. Note that in all the cases, the conductiv-
ity depends weakly on the parameters of the metallic leads.
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see that the magnetoresistance is generically very small,
which we can again understand as a consequence of the rela-
tive insensitivity of the conductivity to the details of the
leads. Interestingly, this same insensitivity means that there
is no simple relationship between the value of the spin po-
larization in the leads and MR, as can be seen by comparing
Figs. 9�a� and 9�b�. �Note that the peak appearing in the
polarization at �d=0 is due to a Van Hove singularity in
density of states for a two dimensional square lattice in the
tight-binding Hamiltonian.�

Finally, we note that recent experiments35 on a graphene-
based spin valve did lead to a significant MR for undoped
graphene. Our results show that this result cannot be under-
stood purely on the basis of a clean, noninteracting electron

model. However, the ferromagnetic contacts reported by Hill
et al. in Ref. 35 exhibited strongly non-Ohmic, nonlinear I-V
behavior which one would not usually associate with normal
metallic contacts.48 When similar devices with Ohmic con-
tacts �using a Ti sublayer� were fabricated, the magnetoresis-
tance previously observed completely disappeared.48 These
experimental findings support our results that spin valves
employing clean graphene and simple, homogeneously mag-
netized leads should have relatively very low MR.

V. SUMMARY AND CONCLUSION

In this work, we undertook a detailed study of the con-
duction properties of wide graphene strips, with two different
models for the source and drain leads. We reconfirmed that
for undoped graphene, the system can be described by a
conductivity in the L→� limit even when defects are absent
from the system and examined this behavior with respect to
a broad range of lead parameters. The resulting conductance
turns out to be relatively insensitive to these.

We then used these results to compute the magnetoresis-
tance of a simple three stripe spin-valve device with
graphene acting as the nonmagnetic material between the
ferromagnetic leads. Two types of ferromagnetic lead sys-
tems were considered: one with a single �s� orbital for each
spin state, with band centers separated in energy to induce
spin polarization, and another with a narrow d band which
was taken to be spin polarized. It was found that the MR was
rather small for most circumstances in both cases, largely
due to the insensitivity of the conductivity with respect to
conditions in the leads.
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