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Electron transport and current profiles through gated graphene ribbons are addressed within the tight-binding
Keldysh formalism. Conductance, conductivity, and current quantum shot noise are studied numerically as
functions of the width of the ribbons, length of the gated region, and strength of the gate potential. Crossover
between pseudodiffusive and ballistic transport regimes is examined in detail. In particular, around the energy
of the gate potential, it is shown that the pseudodiffusive regime occurs even for moderate potential strengths,
well below the onset of the sp2 hybridized bands of graphene. These findings are supported by the evaluation
of current profiles of the massless Dirac fermions throughout graphene ribbons.
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I. INTRODUCTION

The experimental realization of monolayers of carbon
atoms1–3 has opened a new area of investigation with far
reaching perspectives in fundamental and applied physics. A
subsequent huge number of papers have been devoted to
evidence the striking mechanical, electronic, and transport
properties of monolayers and bilayers of graphene, rooted to
the underlying honeycomb lattice topology �see, for instance
Refs. 4–7 and references quoted therein�.

The breaking novelties of the papers1–3 can be better ap-
preciated by considering that the theoretical study of the
electronic structure of ideal two-dimensional graphene
started 60 yr ago with the pioneering work of Wallace.8

Since then, the quest for deeper understanding of the elec-
tronic structure of graphene, graphite, and carbon based com-
pounds has never ceased, as testified by early and recent
works �for instance Refs. 9–15 and references therein�.

Most of the remarkable and unique properties of graphene
are connected to its peculiar conical bands16 in the low en-
ergy electronic excitation spectrum. In fact, it is accepted
that the Dirac-like shape of the electronic dispersion at the
corners of the graphene Brillouin zone is responsible for the
observed half integer quantum Hall effect2,3 �GH= ± �4e2 /h�
��n+1 /2�, where n is the integer Landau level index�, for
the minimum conductivity of graphene ribbons,2,5 for the
possibility of easy tunneling through arbitrarily high and
large barriers �Klein paradox17�, and for the role of
Zitterbewegung18,19 as intrinsic disorder effect. In particular,
the comprehension of the residual conductivity of pure
graphene ribbons in the limiting case of vanishing carriers
and density of states is currently under debate mainly due to
the “� discrepancy” between the observed values ��xx

min

=4e2 /h� and the most frequently proposed theoretical values
��xx

min=4e2 /�h�. Furthermore, the theoretical results for
minimum conductivity,18–23 which are generally obtained by
means of Kubo theory, Landauer formalism, or field theory
techniques, not always agree on the numeric coefficient in
front of the 4e2 /h term. The degree of robustness of the
minimum conductivity of graphene has also been discussed

against several impurity scattering potentials21–25 or electron-
electron interactions.26

Much interest has been devoted to the transport properties
of clean graphene ribbons in the presence of gated regions of
width W and length L. Ideally, clean, short, and wide gated
samples �W /L�1� may behave20 as conventional disordered
metallic systems, in spite of the fact that the flow of carriers
in graphene ribbons occurs in the absence of impurities, lat-
tice defects, or other scattering mechanisms. The transport
regime of wide and short strips of graphene has been dubbed
as “pseudodiffusive” when the basic universal features20 are
indiscernible from the ones of classical diffusive systems. In
particular, the conductance of graphene strips may exhibit
Ohmic behavior �conductance G=�W /L�, while, concomi-
tantly, the Fano factor27 for shot noise approaches the uni-
versal value 1 /3, typical of classical diffusive systems. The
conditions for manifestation of pseudodiffusive transport
phenomenology or ballistic behavior in gated graphene rib-
bons are investigated and clarified in this paper by means of
accurate numerical simulations.

In Sec. II, we consider some basic aspects of the tight-
binding Keldysh formalism for the numerical study of charge
transport and current profiles in two-dimensional graphene
ribbons. In Sec. III, conductance, conductivity, current shot
noise, and current profiles are evaluated for various values of
the width of the ribbon, length of the gated region, and
strength of the applied gate potential. We discuss the condi-
tions that lead to the Ohmic behavior of the system and
examine the crossover between pseudodiffusive and ballistic
regimes. Section IV contains the conclusions.

II. SYNOPSIS OF THE THEORETICAL AND
COMPUTATIONAL BACKGROUND

In the theoretical study of nonequilibrium properties of
mesoscopic systems, the Keldysh-Green function formalism
has evolved into a most powerful tool for the description of
quantum transport.28–30 This is due from one side to its fully
general formal foundations and from the other to its flexibil-
ity to lend itself to accurate numerical calculations of the
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kinetic equations. Actually, the Keldysh formalism comprises
the full many-body quantum theory. Appropriate self-energy
operators �R,A,�,��scatt� �retarded, advanced, lesser, and
greater�, worked out by diagrammatic techniques, can, in
principle, account for the presence and effects of the many-
body interactions �such as electron-phonon, electron-
electron, surface roughness, disorder scattering of alloys and
impurities, and dephasing effects�; indeed, a number of sig-
nificant models of many-body interactions can be worked out
at the desired, or at least reasonable, level of sophistication.
Last but not the least, the self-energy operators �R,A,�,��leads�

due to the open leads on the active device region are embod-
ied exactly in the theory and computed with high accuracy
by means of the renormalization-decimation or other recur-
sive techniques.

In particular, the transport properties of two-dimensional
square lattices, which simulate the conventional electron gas
at the interface of GaAs-AlGaAs structures, have been inves-
tigated in a number of papers with the nonequilibrium
Green’s function approach,31–36 also in the presence of mag-
netic fields, disorder effects, and quantum point contacts. The
formulation of the Keldysh nonequilibrium Green’s function
theory in the framework of the tight-binding representation
of the electronic system has been thoroughly studied in Ref.
32, where convenient expressions and procedures for the
evaluation of space and energy resolved spectral currents are
reported. In the case of one-electron Hamiltonians, the ingre-
dients necessary to evaluate conductance, shot noise, space,
and energy resolved current profiles, only involve propaga-
tors among orbitals belonging to single transverse sections of
the system, arbitrarily scanned through the device.

For the study of transport of graphene nanoribbons, we
have found a route from the well established procedures for
square lattices to the hexagonal honeycomb topology. We do
not dwell here in concepts, implementations, and details, ex-
cept for the following remark. In the square lattice topology
�with nearest-neighbor interactions�, intracolumn matrices
are tridiagonal and nearest-neighbor intercolumn matrices
are diagonal.32 Both properties also hold for the hexagonal
honeycomb topology, with the difference that alternate ele-
ments of the upper and lower diagonals of intracolumn ma-
trices are zero. Moreover, the presence of imperfections, dis-
ordered potentials in selected regions, boundary roughness,
and other disruptions can be handled by properly defining
site and hopping tight-binding parameters.

III. RESULTS AND DISCUSSION

In this section, we begin with a few considerations on the
electronic structure of graphene and graphene ribbons of rel-
evance in the following. We focus our attention on the �
bands that originate from the dangling pz orbitals of the two
carbon atoms in the graphene primitive cell. The hopping
parameter between two nearest-neighbor pz orbitals is set to
t=−3 eV, �Ref. 13� because this value provides a satisfactory
description of the energy bands near the Dirac points in an
orthogonal tight-binding model. The energy of the pz orbitals
is taken as the reference energy and set equal to zero. The
lattice parameter of the two-dimensional hexagonal structure
of graphene is a=2.46 Å.

In early studies8–12 of the electronic states of graphene,
just on the basis of group theory arguments11,12 of the little
group of k and regardless of the actual band structure meth-
ods adopted, it was realized that the � bands of graphene are
degenerate at the corner points of the hexagonal Brillouin
zone and have linear energy-wave-vector dispersion nearby
�Dirac points�. Within the often adopted nearest-neighbor
tight-binding representation, the � bands are described by
the relation

E�k� = � t�F�k�� , �1a�

where

F�k� = 1 + 2 cos
kxa

2
exp�− i

kyb

2
	, b = a
3, �1b�

is the geometrical structure factor pertinent to the nearest-
neighbor environment of one sublattice for the honeycomb
topology.

The top valence band and bottom conduction band
are degenerate at the Dirac points k= �2� /3a ,0� and
k�= �−2� /3a ,0�, characterized by the equality F�k�=0. The
geometrical structure factor can be linearized near the Dirac
points, where Eq. �1a� becomes

E�k� = �

3

2
�t�ka, k = 
kx

2 + ky
2, �1c�

and the typical conical shape behavior of the energy bands is
recovered. Thus, carriers near the degeneracy points of
graphene behave like relativistic massless Dirac particles.

The lattice structure of graphene ribbons with zigzag
modulation in the longitudinal x direction is depicted in Fig.
1�a�. The average width of a ribbon with Nz zigzag carbon
chains is

W =
b

2
�Nz − 1�, b = a
3 = 4.26 Å. �2�

A typical width W=100 nm corresponds to Nz=470. This
value is the rank of the matrices handled in the implementa-
tion of the tight-binding Keldysh formalism for the simula-
tion of charge transport. Figure 1�a� also indicates the Nz
zigzag chains forming the ribbon and the 2Nz sites in the
primitive cell of the one-dimensional wire.

The energy bands of graphene ribbons are obtained con-
sidering standard Bloch sums for each of the 2Nz basis
atomic orbitals and diagonalizing the crystal Hamiltonian.
The band structure of graphene ribbons with Nz=470 is re-
ported in Figs. 1�b�–1�d� with an increasing degree of detail.
In Fig. 1�b�, all the bands are reported in the whole Brillouin
zone, with kx extending from �−� /a , +� /a�. The 2Nz bands
are delimited by the curves E�kx�= � t�2t cos�kxa /2�. The
flat part of the bands at E=0 corresponds to states com-
pletely localized at the edges of the ribbon for kx=� /a and
penetrating into the bulk as kx approaches the Dirac points
kx= ±2� /3a. In Fig. 1�c�, we enlarge the energy axis and
report a limited number of electron and hole energy bands
around the reference energy E=0. From this figure, for E
�0, it is apparent that the ground electronic band, opening at
zero energy, does not share the twofold valley degeneracy of
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all the successive electronic bands at higher energies. For
E	0, similar considerations can be done by virtue of the
electron-hole particle symmetry. In Fig. 1�d�, we show the
energy bands in a small region of the Brillouin zone around
the Dirac point kx=2� /3a; it is apparent that the one-
dimensional energy bands of graphene ribbons are reminis-
cent of the typical conical intersection of two-dimensional
graphene and break into discretized electron and hole mini-
bands due to the finite transverse dimension of the ribbon.

At the points kx= ±2� /3a of the ribbon Brillouin zone,
the energies of the zigzag ribbons are given �with good ap-
proximation� by the relation20

En = ± �n +
1

2
	
vF

�

W
, n = 0,1,2,3, . . . , �3�

where vF= �b /2��t� /
 is the Fermi velocity of the massless
Dirac fermions at the degeneracy points of the � bands of
graphene. The plus and minus signs refer to electron and
hole states, respectively. We have verified that relation �3� is
also supported analytically from the properties of the tridi-
agonal matrix Hamiltonian describing the ribbon at the Dirac

points. Exploiting relation �2�, Eq. �3� can be recast in the
form

En = ± �n +
1

2
	b

2
�t�

�

W
= ± �n +

1

2
	�t�

�

Nz − 1
.

For a typical value of W=100 nm, the distance between ad-
jacent energies En is

�E =
b

2
�t�

�

W
� 20 meV. �4�

Thus, for positive Fermi energies up to �3 /2��E, only one-
electron conductive channel is active, and for each increase
of energy �E, an additional conductive channel opens at
both valleys. Similar behavior occurs for hole conductive
channels at negative energies.

We consider now transport properties of a zigzag
graphene quantum wire infinitely extended along the x direc-
tion and of width W in the y direction. A gate voltage is
superimposed to the wire in a region of length L, as shown
schematically in Fig. 2. The complete quantum wire structure
is conceptually partitioned into two semi-infinite parts and a
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FIG. 1. �a� Lattice structure of graphene ribbons with Nz longitudinal zigzag chains along the x direction and 2Nz carbon atoms in the unit
cell. �b� Description of all the allowed energy bands of a graphene ribbon made up of Nz=470 zigzag chains and width W=100 nm; the 2Nz

�almost continuous� energy bands lie within the four delimiting curves E�kx�= � t�2t cos�kxa /2�. The surface states are also indicated. �c�
Allowed energy bands of �b� near the E=0 reference energy. �d� Allowed energy bands of �b� around the reference energy and around one
of the Dirac points. For convenience, in �c� and �d�, we indicate with dots the values of the energies at the Dirac points, given by the analytic
expression En= ± �n+1 /2�
vF� /W of the text.
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central region. The semi-infinite regions to the left and to the
right of the central region behave as leads in contact with
electron reservoirs at �L and �R chemical potentials. The
effect of a top gate is modeled by adding a constant potential
to the sites of the gated region of length L �a slightly
smoothed “adiabatic” application of the gate potential is at
times preferable�. We begin our simulations by fixing width
W and length L of the ribbon and by considering two values
of the gate potential.

Figure 3�a� reports the differential conductance G�E� ver-
sus Fermi energy for systems with transverse width W
=100 nm, length L=15 nm, and gate potentials V1=0.5 eV
and V2=1 eV. For E around the barrier heights V1 and V2,
G�E� exhibits the minimum value Gmin�4.1�2e2 /h at the
bottom of a broad valley �see Fig. 3�a��. For energies suffi-
ciently far from the minima, oscillations of G�E� appear with
period of the order of 20 meV, due to the activation or clos-
ing of successive conductive channels, in agreement with the
estimated value of �E in Eq. �4�. From the minimum value
of the conductance Gmin�4.1�2e2 /h, we infer for the mini-
mum conductivity �min�GminL /W�0.62�2e2 /h, a value
very close to �min=2 /��2e2 /h. The present numerical cal-
culations suggest a minimal longitudinal conductivity equal
to 2 /� �in units of 2e2 /h�. This agrees with the currently

accepted value of the minimal conductivity of an ideal hon-
eycomb lattice. A detailed summary of approaches and cor-
responding numerical factors �in front of 2e2 /h� for the mini-
mal conductivity, provided in the literature by analytic or
semianalytic methods, is given in Ref. 19. The main message
of Fig. 3�a� is that the pseudodiffusive regime occurs for
energies around the gate potential.

Another significant quantity for the study of transport
properties is the Fano factor, i.e., the ratio between the shot
noise and the Poisson noise, which is proportional to the
current itself. The Fano factor can be expressed in terms of
the transmission coefficient of the conductance eigenchan-
nels Ti as

F =


i

Ti�1 − Ti�


i

Ti

. �5�

Figure 3�b� reports the Fano factors of gated graphene rib-
bons as a function of the Fermi energy. The two curves show
broad maxima, with similar shapes around V1 and V2. The
maxima of the Fano factor curves are about 0.32, a value
very close to the universal value 1 /3 that characterizes the
diffusive regime of disordered metals.

A closer inspection of Figs. 3�a� and 3�b� shows that the
differential conductance G�E� and the Fano factor F�E� ex-

FIG. 2. �Color online� �a� Schematic representation of a zigzag
graphene ribbon of width W with a superimposed top gate of length
L. The effect of the gate is modeled by assigning to the sites of the
gated region a constant potential of strength V. �b� Variation of the
electrostatic energy potential across the ribbons. For the sake of
qualitative speculations, in the left and right leads, we have reported
the conical shaped energy bands of Fig. 1�d�; in the central device,
the same structure is reported shifted by V. The dashed lines at E1

and E2 denote two possible choices of the Fermi level, with
electron-hole symmetry with respect to V in the gated region.
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FIG. 3. �Color online� �a� Differential conductance G�E� of
gated graphene ribbons with W�100 nm, L=15 nm, V1=0.5 eV,
and V2=1 eV. The two curves look quite similar in an energy range
around V1 and V2, respectively. �b� Fano factor F�E� for the same
graphene ribbons specified above. The shapes of the two Fano
curves look quite similar for energies around V1 and V2, respec-
tively, where they approach the value F�1 /3 �dotted line�.

CRESTI, GROSSO, AND PARRAVICINI PHYSICAL REVIEW B 76, 205433 �2007�

205433-4



hibit two kinds of oscillations as a function of energy:
smaller period oscillations �observed period �20 meV� and
larger period oscillations �observed period �130 meV�. The
sample under investigation in Figs. 3 has width W=1000 Å
and length of the gated region L=150 Å. From the linear
energy dispersion of Eq. �1c� considering integer multiple of
wave numbers � /W or � /L, we estimate the energy periods,

�E =

3

2
�t�

�

W
a � 20 meV for W = 1000 Å,

�E =

3

2
�t�

�

L
a � 133 meV for L = 150 Å.

The close agreement between the above estimated and ob-
served values suggests that large period oscillations are re-
lated to back-and-forth scattering of electrons in the gated
region, while small period oscillations are related to the
opening or closing of the successive channels, as already
noted.

In Fig. 4�a�, we plot the conductance G�E� of graphene
wires as a function of the Fermi energy for fixed width W
�100 nm, for fixed applied voltage V=0.5 eV, and for sev-
eral values of L �W�. Near the energy of the Dirac points in
the gated region, the conductance is approximately inversely
proportional to L and independent of the energy. This occurs

in an energy range of about ±30 meV around V, which is the
region with just one active channel in the gated region. Far
from the Dirac point at V, the conductance is approximately
independent of L and varies linearly with energy �with oscil-
lations due to the opening of new conductive channels�. This
behavior is indicative of an Ohmic-like transport regime
around the Dirac points and of a ballisticlike regime far from
them. Thus, two transport regimes may occur in the same
device depending on the energy region of interest. To further
highlight this issue, in Fig. 4�b�, we report the quantity
��E�=G�E�L /W. For different lengths of the gated region,
the curves of ��E� almost collapse into the value 2 /�
�0.6366 around the Dirac energy at V while spread into a
fan with �almost� linear behavior far from it.

In Fig. 5�a�, we show the ribbon conductance versus
length L of gated region for various widths W at fixed gate
potential V=0.5 eV and fixed energy E=0.505 eV �slightly
above the Dirac point energy�. For convenience, a change of
scale has been performed for L larger than 10 nm. The values
of the conductance in the limit L→0 provide the number of
open conductive channels intersected by the Fermi energy.
For large L, all the conductance curves collapse into the
value of 2e2 /h. The results are better interpreted by consid-
ering the behavior of the quantity ��E�=G�E�L /W versus
L /W, as shown in Fig. 5�b�. In general, G�E� and ��E� de-
pend on L and W separately and not only on the quotient
L /W; however, the curves of the conductivity of Fig. 5�b�
present essentially three regions. For small values of L /W,
the conductivity is linear in L /W, indicating a quasiballistic
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FIG. 4. �Color online� �a� Differential conductance G�E� of a
graphene ribbon of width W�100 nm, gate potential V=0.5 eV,
and several values of the gate length L �10, 20, 30, 40, 50, 60, and
70 nm from top to bottom�. The curves are diffusivelike for ener-
gies near V and ballisticlike for energies far from V. �b� Conductiv-
ity ��E�=G�E�L /W for the same values of the gate length. For
energies around V, the curves nearly overlap at the universal value
2 /��2e2 /h at least for small L /W.
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FIG. 5. �Color online� �a� Conductance of graphene ribbons as a
function of L. The gate potential is V=0.5 eV, the Fermi energy is
E=0.505 eV, and the ribbon widths are W=50, 100, 150, 200, and
250 nm �higher curves of G correspond to increasing values of W�.
�b� Conductivity ��E�=G�E�L /W for the same samples. The hori-
zontal dotted line corresponds to �=2 /� �in units 2e2 /h�; the other
dotted line corresponds to �=L /W �in units 2e2 /h�. �In the small
parameter region L /W�0.05, higher curves of � correspond to in-
creasing values of W�.
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behavior. For values 0.1	L /W0.5, the curves tend to a
plateau of value 2 /� �for large values of W�. Finally, for
L /W�1, the system is ballistic with just one active conduc-
tive channel.

For small values of L /W and large values of W, the con-
ductance reported in Fig. 5�a� can be approximately repro-
duced by the expression

G =
2

�

W

L + L0

2e2

h
, �6�

with L0�13 Å, which corresponds to the width of about ten
columns of carbon atoms. The value L0 can be regarded as a
kind of dephasing length needed to reach the Ohmic regime
in the gated graphene, at least for wide strips W�L. It is
worthwhile to note that in the case of dephasing processes,
site-energy fluctuations are at the origin of the Ohmic behav-
ior. In the case of ideal graphene ribbons, when transport is
mostly determined by stochastic electron transmission via
evanescent modes,20 the Ohmic regime occurs in spite of the
absence of site-energy fluctuations in clean gated samples.

Expression �6�, used above for fitting purpose, has been
inspired by the Datta37 model, originally developed for clas-
sical diffusive systems. According to this model, the conduc-
tance of an array of phase-incoherent scatterers in the diffu-
sive regime �phase-relaxation length shorter than the distance
between successive scatterers� is shown to take the form G
=�W / �L+L0�, where � is a material parameter independent
of the sample dimensions, W and L are the width and the
length of the two-dimensional sample, and L0 is a character-
istic length of the order of a mean free path. In spite of its
simplicity �and unavoidable oversimplifications�, the empiri-
cal model of Datta has some interest for heuristic consider-
ations because it contains a minimal number of parameters
�two parameters, � and L0, with reasonable intuitive mean-
ing� and because the resistance of the array under attention
increases linearly with the length of the array, in perfect ac-
cordance with Ohm’s law.

In graphene ribbons, in the pseudodiffusive regime, the
lead-to-lead transport of carriers occurs mainly via evanes-
cent states. Regardless the peculiar microscopic mechanism
of transport, it is seen that the proposed single-parameter
Datta-like model of Eq. �6�, with only one adjustable param-
eter L0 �since � has been fixed at the minimal conductivity
value �min=2 /��2e2 /h��, can phenomenologically describe
the conductance of the graphene ribbons, at least in some
appropriate energy regions and geometrical shapes.

We report in Fig. 6 the Fano factors of graphene ribbons
for different L, with W�200 nm, V=0.5 eV, and Fermi en-
ergy E=0.501 eV. The Fano factor is almost equal to the
value 1 /3 over a wide range of L �0.05L /W0.3�. The
Fano factor passes from total quenching of the shot noise for
small L to the sub-Poissonian noise F�1 /3, and it remains
almost equal to 1 /3 over a wide range of values of L, as far
as the conductivity of Fig. 5�b� equals 2 /�. Finally, for in-
creasing L, the quenching of the shot noise is recovered. We
have further elaborated this last aspect of Fig. 6 by examin-
ing the transmission coefficients Ti of the eigenchannels. For
all the L and W values reported in Fig. 6, and in Fig. 5, we

have observed the emergence of an eigenchannel with trans-
mission coefficient T�1, which is responsible for the behav-
ior G�2e2 /h and �= �L /W�2e2 /h for large L of Fig. 5, and
of the noiseless asymptotic behavior �F→0 in Fig. 6�, as
evident from Eq. �5�. In the literature,38 “noiseless scattering
states” have been observed originally in the numerical study
of electronic transport in quantum billiards; it is believed that
the quantum-to-classical crossover scenarios for transport in
quantum billiards are signaled by the emergence of noiseless
scattering states. The noiseless scattering state, observed in
graphene ribbons �with smoothed, i.e., adiabatically superim-
posed potential�, seems to play a similar role in signaling the
crossover from the pseudodiffusive to the ballistic regime.

Finally, we report in Fig. 7 some numerical results for
current distributions of massless Dirac fermions. We con-
sider a sample with V=0.5 eV, E=0.505 eV, and W
�100 nm and smoothed gate potentials superimposed to re-
gions of lengths L=0, 10, 50, and 100 nm. For L=0, i.e., in
the absence of the gate, the system and the current distribu-
tion are translationally invariant in the longitudinal direction.
Many channels are active and the current is almost constant
in the central part of the wire and approaches zero with os-
cillations at the wire edges. For L=10 nm, the current in the
leads flows mainly in the bulk of the wire, with several os-
cillations in the transverse direction near the gated region,
while it is distributed almost uniformly in the gated region.
Notice that the current is supported by open conductive
channels in the leads and by evanescent modes in the gated
region for small values of L /W. The connection between the
two kinds of flows is made evident by increasing L: the
transport current tends to flow only in the central part of the
ribbon in the leads, while it remains almost uniform in the
gated region, where transmission occurs through a decreas-
ing number of evanescent states with unstructured contribu-
tion to the current profiles.

IV. CONCLUSIONS

We have presented a numerical study of electronic trans-
port and current profiles in gated graphene ribbons. For en-
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FIG. 6. �Color online� Fano factor �solid line� for a ribbon with
W�200 nm, V=0.5 eV, and E=0.501 eV as a function of L; the
curve remains around 1 /3 �dotted line� in the range of 0.05
L /W0.3.
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ergies near the top of the potential barrier, with a single
conductive channel active in the gated region, pseudodiffu-
sive regime occurs. By means of a comparative study of
conductivity, shot noise, and current profiles, we have exam-
ined and interpreted the crossover of pseudodiffusive trans-
port regime and ballistic transport regime as functions of the
geometrical parameters of the ribbons, of the gate potential,
and of the Fermi energy. The numerical procedures adopted
in this paper for graphene monolayers are suitable for gen-
eralization to other similar topological structures and should

find applications in the active field of research concerning
carbon materials �e.g., bilayers and nanotubes� and isoelec-
tronic compounds �e.g., boron nitride nanostructures�.
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