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Using the semiclassical Boltzmann theory, we calculate the conductivity as a function of the carrier density.
We include the scattering from charged impurities but conclude that the estimated impurity density is too low
in order to explain the experimentally observed mobilities. We thus propose an additional scattering mecha-
nism involving midgap states, which leads to a similar k dependence of the relaxation time as charged
impurities. The proposed scattering mechanism can account for the experimental findings such as the sublinear
behavior of the conductivity versus gate voltage and the increase of the minimal conductivity for clean
samples. We also discuss temperature dependent scattering due to acoustic phonons.
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I. INTRODUCTION

Electronic transport through two-dimensional graphene
sheets has attracted incessant attention ever since the first
experimental measurements on a Hall geometry were per-
formed by Novoselov et al. about three years ago.1 This is
due to some spectacular findings such as the universal mini-
mal conductivity at the Dirac point and the high mobility of
the samples, which is basically independent of doping and
temperature.2,3 Different experimental setups, i.e., electrical
field1 versus chemical doping,4 also give rise to different
theoretical models. For recent qualitative reviews on both the
experimental and theoretical status of the field, see Refs.
5–8.

So far, the scattering mechanism which determines the
transport properties has not unambiguously been identified,
but there is a strong evidence that long-range Coulomb scat-
terers can account for many of the experimental findings.9–12

It was shown within the Boltzmann formalism that the con-
ductivity scales linearly with the carrier density if one as-
sumes charged impurities in the SiO2 substrate close to the
graphene sheet.9 This semiclassical approach was also ap-
plied to systems close to the Dirac point and in the presence
of adsorbed molecules.13

Recently, it was claimed that a Boltzmann theory with
long-range Coulomb scatterers can account for all experi-
mental findings if one renormalizes the carrier density close
to the Dirac point due to potential fluctuations.14,15 The
theory predicts a nonuniversal behavior of the minimal con-
ductivity at the Dirac point, which nevertheless coincides
with the experimentally observed value of 4e2 /h for “dirty”
samples. This is in contrast to numerical studies based on the
Kubo formalism by Nomura and MacDonald,16 who show
that the conductivity is a function of n /ni with ni the impu-
rity density, thus finding a universal behavior when the car-
rier density n goes to zero. The main criticism of Ref. 14 is
the high density of charged impurities ni�1012 cm−2 needed
to match the experimentally observed mobilities, not likely
to be present in an insulator such as SiO2.17

In this paper, we propose an additional scattering mecha-
nism originating from midgap states, which may be formed
due to vacancies, cracks, boundaries, or impurities in the

substrate with a high potential difference with respect to
the graphene sheet.18,19 They also occur in corrugated
graphene.20 The phase shift resulting from these types of
disorder must approach zero for wave vectors close to the
Dirac point. In contrast to the phase shift due to a short-range
contact potential, this behavior is not linear but
logarithmic.21,22 The resulting scattering time is, therefore,
proportional to k up to logarithmic corrections. It is interest-
ing to note that this behavior is also found for a two-
dimensional �“nonrelativistic”� electron gas22 and in corru-
gated graphene23 where the focus was laid on the resulting
random gauge field.

Within the Boltzmann approach, the new mechanism can
account for �a� quasiuniversal minimal conductivity for dirty
samples, �b� a higher minimal conductivity for cleaner
samples, and �c� sublinear behavior of the conductivity as
a function of the gate voltage. We further obtain realistic
values for the mobility assuming an equal concentration
for Coulomb scatterers and vacancies of order ni
�1010–1011 cm−2.

The paper is organized as follows. In Sec. II, we will first
introduce the Boltzmann approach and comment on its ap-
plicability to graphene, i.e., to chiral Dirac fermions. In Sec.
III, we discuss the density of states in the presence of midgap
states needed to estimate the transport properties close to the
Dirac point. In Sec. IV, we calculate the relaxation time and
electrical conductivity for the various scattering mechanism
including acoustical phonons. In Sec. V, we discuss the ac
conductivity, the thermal conductivity and the thermopower
for the scattering mechanism including midgap states and
present numerical results in Sec. VI. We close with conclu-
sions and remarks.

II. BOLTZMANN EQUATION

A. Collision-free Boltzmann equation

We start by showing that the Boltzmann equation descrip-
tion leads to the same plasmon spectrum as the more used
many-body methods.24,25 This shows that a semiclassical ap-
proach for the transport properties of graphene is accurate.

The Boltzmann equation is described in terms of the elec-
tronic distribution function fk. Within this semiclassical ap-
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proach, fk depends on space r and time t, i.e.,

fk = fk�t��r,t� . �1�

Looking at time scales shorter than the lifetime of the qua-
siparticles, the number of quasiparticles in the state k is con-

served. Via the continuity equation ḟk+�r · jk=0 with jk
=vkfk denoting the particle current, one arrives at the

collision-free Boltzmann equation. With k̇=e�r�, where � is
the scalar potential of the internal electrical field, this reads
in Fourier space as26

�− i� + iq · vk�fk�q,�� = ieq · vk�−
�fk

��k
���q,�� . �2�

To investigate screening properties, an external potential
�ext�q ,�� is assumed. To linear order in the total potential �,
the induced density is then given by

�ind�q,�� =
4

A
�

k

q · vk

� − q · vk
�−

�fk
0

��k
��− e��q,��� , �3�

where A is the area of the graphene sheet and spin and valley
degeneracies have been included.

The induced potential is obtained by �−e��ind�q ,��
=Vq�ind�q ,�� with Vq= 1

2�0q the two-dimensional Fourier
transform of the Coulomb potential. For the dielectric func-
tion ��q ,��=�ext�q ,�� /��q ,��, one then obtains in the long-
wavelength limit vFq�� the following expression:

��q,�� 	 1 −
Vq

�2

4

A
�

k
�q · vk�2�−

�fk
0

��k
� = 1 −

Vq

�2

q2�F

�
.

�4�

Plasmon excitations are given by ��q ,��=0, which leads to
the plasmon dispersion

� =
 e2

2��0
�Fq . �5�

This relation including the prefactor is also obtained from a
standard tight-binding model of graphene, where the dielec-
tric function is calculated within the random-phase
approximation.24,25 Our subsequent results should thus be
valid even close to the neutrality point as long as kF�	1 ��
the mean free path�, i.e., the chirality of the Dirac fermions
only enters in the expression for the transition rate �see Eq.
�21��. For a quantitative analysis starting from a two-band
model, see Ref. 27.

B. Collision term

We now include the possibility of changing the quantum
state k by introducing a collision term which is usually fa-
cilitated by the relaxation-time approximation,28

− � �fk

�t
�

scatt
→

gk


k
, �6�

where fk− fk
0=gk.

Applying an electric field E to the sample, the solution of
the linearized Boltzmann equation then reads

gk = −
�f0��k�

��k
e
kvk · E , �7�

and the electric current reads

J =
4

A
�

k
evkgk. �8�

Since at low temperature the following relation −f0��k� /��k

→��vF��k−kF�� holds, we obtain for the conductivity with
the Fermi velocity vF the well-known formula9


 =
e2vF

2

2
��EF�
kF

. �9�

In the following, we will give expressions for the density of
states ��E� and the relaxation time 
k. We then discuss the
electrical conductivity in the low- and high-density limits.

III. DENSITY OF STATES

The density of states per unit area of clean graphene is
given by

�0�E� =
2�E�

���vF�2 , �10�

where spin and valley degeneracies have been included.
Due to potential disorder, this linear behavior becomes

sublinear,29 though the density of states at the Dirac point is
still zero. More important are local defects in the form of
vacancies, which were first discussed in Ref. 30. Within the
coherent phase approximation �CPA�, it was shown that the
relaxation time depends linearly on the mean free path, i.e.,

�� /vF. For the mean free path, we have ��1 /
ni, where
ni stands for the impurity density due to vacancies, cracks,
etc. In order to obtain a universal minimal conductivity, the
density of states close to the Dirac point must be given by
��1 / ���vF�.

This behavior is also obtained from a phenomenological
approximation. For this, it is important to note that vacancies
give rise to localized states which decay algebraically.19

These states hybridize due to the overlap with localized
states of other vacancies. The energy scale is given by the
mean distance between vacancies and approximated by the
gain of energy due to the boundary conditions.

This energy scale is approximated as follows. The linear-
ized tight-binding Hamiltonian for a graphene sheet with cir-
cular symmetry is given by

Hs =
 0 eis��− is�r +
1

r
���

e−is��− is�r −
1

r
��� 0 � ,

�11�

where s=± denotes the two valleys. At nonzero energy, the
general solution is given by the Bessel and Hankel functions.
Considering only one valley s=1 and the conduction band,
the general wave function in graphene at low energies is thus
given by
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�k�R,�� = A� J0�kR�
− iJ1�kR�ei� � + B� Y0�kR�

− iY1�kR�ei� � . �12�

A simple model of surface states at vacancies of radius R0
which are localized on the radius R1 now assumes that the
first component becomes zero at the inner boundary R0 and
the second component at the outer boundary R1, thus assum-
ing zigzag edges on different sublattices. This leads to the
following quantization condition for k:

J0�kR0�Y1�kR1� − Y0�kR0�J1�kR1� = 0. �13�

For kR1�1, the lowest momentum is then given by

k �
1

R1

1

�ln�kR0��

, �14�

which defines the width of the localized band

Eloc =
�vF

R1

�ln�R0/R1��

. �15�

The density of states at zero energy is thus approximated by

��0� =

�ln�R0/R1��

�vFR1
. �16�

Since R1 is related to the average distance between the va-
cancies, we have ��0���ni�ln ni��1/2. Notice that the CPA cal-
culation of Ref. 30 does not capture the logarithmic correc-
tion. We will therefore approximate the density of states as

��E� = �

ni

�vF
gc�Eloc − �E�� +

2�E�
���vF�2 , �17�

where � is a dimensionless constant of order one and gc�E�
is a cutoff function, e.g., gc�E�=��E�. We note again that
we assume a coherent impurity scattering at work, i.e.,
��E→0��
ni. For clean samples, we would expect the stan-
dard scaling behavior, i.e., ��E→0��ni.

The density of states of Eq. �17� characterizes two re-
gimes. For high carrier density EF�Eloc, the conductivity of
Eq. �9� reads


 =
2e2

h
vFkF
kF

. �18�

Close to the Dirac point EF�Eloc, we obtain the minimal
conductivity


min =
2�e2

h
vF��
ni�
kF

. �19�

Notice that we obtain the same formula as for high electronic
densities by introducing a minimal Fermi wave vector kmin
�
ni. The minimal Fermi wave vector with kF�	1 can be
related to self-doping effects induced by the very same
mechanism which invokes midgap states30 and we will show
in the following that a crossover from a linear to constant
behavior of the conductivity versus gate voltage takes place.

If one believes that close to the neutrality point the system
also behaves in a diffusive way, i.e., that the experimentally
observed negatively and positively charged puddles form a

macroscopic network,31 then even for low impurity densities
ni�1010 cm−2 with kF�	1, one can use our estimates �up to
a constant of order 1�. Still, we cannot rule out the existence
of another regime where the Boltzmann approach is invalid
and, e.g., percolation models are at work.32

Having established the typical behavior of the density of
states at the Dirac point due to midgap states, we will discuss
several scattering mechanisms.

IV. RELAXATION TIME AND dc CONDUCTIVITY

The collision rate 1 /
k due to impurity scattering is usu-
ally given by33

1


k
= Ni�

k�

��k,k���1 − cos �k,k�� , �20�

where Ni is the number of impurities and the transition rate
from the quantum state k to k� is approximated by Fermi’s
golden rule

��k,k�� =
2�

�
��k�Vscatt�k���2��Ek − Ek�� . �21�

It is only in the scattering matrix ��k ,k�� where the chirality
of the Dirac fermions enters within the Boltzmann formal-
ism. If the scattering potential does not break the sublattice
symmetry, this will only lead to a numerical factor. With the
Fourier transform of the scattering potential Vscatt�q�, the col-
lision rate can then be written as

�


kF

=
ni

scatt

8
��EF� � d��Vscatt�q��2�1 − cos2 �� , �22�

where ni
scatt is the impurity density of the scattering potential

and q=2kF sin�� /2�. Notice that the argument of the integral
vanishes for both �=0 and �=�, a situation that does not
occur in normal metals.

The effect of vacancies or local impurities with a high
potential difference with respect to the graphene layer cannot
be treated with the above formulas since they do not capture
the change in phase space due to midgap states. We thus
determine the relaxation time via the phase shift induced by
the scattering center. Assuming elastic scattering and only
considering s-wave scattering, the transition rate is then ex-
pressed as33

�


k
=

8ni

���Ek�
sin2��k� , �23�

where �k is the phase shift of the s-wave channel.
In the following, we will consider various scattering

mechanisms, i.e., we will discuss the effect on the electronic
conductivity due to �a� local substitutions �short-range “con-
tact” potential�, �b� charged impurities in the SiO2 substrate
�long-range �screened� Coulomb potential�, and �c� acoustic
phonons, where Eqs. �20� and �21� have to be slightly modi-
fied. In Sec. IV D, we introduce the scattering mechanism
due to midgap states.

Due to the unusually high energies of optical phonons of
the order of 0.1–0.2 eV in graphene-related materials, opti-

ELECTRONIC TRANSPORT IN GRAPHENE: A… PHYSICAL REVIEW B 76, 205423 �2007�

205423-3



cal phonons cannot be treated within the Boltzmann formal-
ism since they induce interband transitions for usual densi-
ties n�5�1012 cm−2. For a discussion on transversal optical
phonons in graphene sheets within the Kubo formalism, see
Ref. 34.

A. Contact potential

We will first discuss the scattering behavior from
Vscatt�r�=v0���r��. This yields a relaxation time


k =
8�

ni
contact�v0

2

1

��Ek�
→

4�2vF

ni
contactv0

2

1

k
, �24�

where ni
contact is the impurity concentration and the right hand

side resembles the high carrier density limit.
Equation �24� can also be obtained from calculating the

phase shifts. From Ref. 21, we obtain �k=v0k / �4�vF� in the
limit of small k and by expanding Eq. �23� up to linear order
in �k, we obtain the above result.

The conductivity does not depend on doping35 and we
obtain


contact = 
min
contact =

8e2

h

��vF�2

ni
contactv0

2 . �25�

Equation �25� does not depend on an energy scale nor does it
lead to a significant contribution for the total conductivity.
This is more generally known as the Klein paradox.22

B. Long-range Coulomb potential

Let us now discuss the influence of the long-range Cou-
lomb potential. Charged impurities reside in the isolating
SiO2 layer and are screened by the conduction electrons of
the graphene sheet. This yields for the potential in momen-
tum space36

��q� =
1

2�0�

1

q
�ind�q� +

Ze

2�0�

1

q
e−q�zc�, �26�

where �ind�q� is the induced charge density, � the permeabil-
ity of the substrate, and zc denotes the shortest distance of the
external charged impurity to the two-dimensional graphene
sheet.

Since we are employing a semiclassical approach, it is
consistent to approximate the induced charge density within
the Thomas-Fermi �TF� approach,

�ind�r� = − e
4

A�
k

�f��k − e��r�� − f��k��

	 − e2��r�
4

A
�

k
�−

�fk
0

��k
� = − e2��r����F� . �27�

The last equality follows by assuming a Fermi liquid char-
acterized by a sharp Fermi “surface.” For a discussion on
nonlinear screening, see Ref. 37.

The TF approach thus gives the following form for the
screened potential inside the graphene sheet:

��q� =
Ze

2�0�

e−q�zc�

q + �
, �28�

with �=��EF�e2 /2�0� and the density of states given by Eq.
�17�.

At large doping, we have �= �̃kF and from Eq. �22� with
Vscatt�q�=e��q� and zc	0, we obtain


kF
=

�2vFkF

u0
2 with u0 =


ni
CZe2

4�0��1 + �̃�
, �29�

where ni
C is the density of charged impurities in the sample.

This leads to the following conductivity:


Coulomb =
2e2

h

��vFkF�2

u0
2 . �30�

Equations �29� and �30� are slightly modified for zc�0.14

At zero doping, we obtain the minimal conductivity


min
Coulomb →

4e2

h

ni

ni
C �2��2. �31�

We thus find a universal behavior at low doping if ni	ni
C.

For �=1 /2, we obtain the experimentally observed value of

=4e2 /h.

Now, we want to determine the numerical values of the
relaxation times due to charged impurities and later compare
them to the ones due to acoustic phonon scattering. Let us
assume that the electronic density in the graphene sample,
induced by the gate voltage, has the typical value �gate volt-
age of 100 V�1

n = 7.2 � 1012 cm−2. �32�

The Fermi momentum is given by n=kF
2 /�, where contribu-

tions from both spins and both Dirac points were included;
this leads to a value for kF given by

kF = 4.8 � 108 m−1. �33�

With e2 /4��0=14.4 eV Å and �vF=3at /2=5.75 eV Å,
where a=1.42 Å and t=2.7 eV, we find for large densities
�=10kF /�. For Z=1 and zc	0, we set �=2.4, which is the
average of the dielectric constant of SiO2 and vacuum since
the graphene layer is sandwiched by these two layers. For
large carrier densities, we thus have �= �̃kF with �̃	4.2.

Using Eq. �29� and the above value for kF, we obtain


kF
� 6 � 10−17�n̄i

C�−1 s, �34�

where n̄i
C is the concentration of impurities per unit cell.

Since it has been experimentally determined that the mean
free path � of electrons in graphene can be as large as
0.3 �m, the experimental relaxation time is seen to be of the
order of


 �
�

vF
� 3 � 10−13 s. �35�

This last result implies that the concentration of impurities
per unit cell has a value of the order of
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n̄i
C � 2 � 10−4, �36�

if one only assumes the Coulomb scattering mechanism. This
corresponded to a density of ni

C=4�1011 cm−2 and a mobil-
ity of 11 100 cm2 /V s. However, note that graphene nor-
mally exhibits lower mobilities for which a higher impurity
density is necessary.1 Also, finite zc and a higher dielectric
constant, e.g., �=3.9 which holds for SiO2, lead to a larger
relaxation time and thus imply higher impurity concentra-
tions to match the experimental results. In summary, we
strongly believe that the Coulomb scattering mechanism is
only capable to explain a marginal fraction of the observed
data.

C. Phonons

The relaxation time 
k for phonon scattering is defined as

1


k
= �

k
��k,k���1 − cos �� , �37�

where the transition rate ��k ,k�� is given by

��k,k�� =
2�

�
�Hk�,k�2��vF�k� − vF�k − ��� , �38�

where vF�k is the dispersion of Dirac fermions in graphene,
�� the phonon energy, and Hk�,k is defined as

Hk�,k =� d2r�k�
* �r�US�r��k�r� , �39�

with US�r� the scattering potential and �k�r� is the electronic
wave function of a clean graphene sheet.

If the potential is due to the propagation of phonons, it has
the form38

US = KqAqei�q·r−�t�, �40�

where38

�Kq�2 = DA
2q2, �41�

�Aq�2 =
�

2�A�q
N��q� , �42�

N��q� =
1

e��q/�kBT� − 1
�

kBT

��q
, �43�

where � is the density of graphene and DA is the electron
acoustic deformation potential, estimated to be of the order
of 3t, where t is the first neighbor hopping matrix in
graphene of the order of 3 eV.39 A similar estimate for the
deformation potential is obtained by relating the bond length
with the hopping amplitude.40

The matrix element Hk�,k is easily obtained as

Hk�,k = cos��/2�KqAq�k+q,k�e
−i�t. �44�

Using Eq. �44� in Eq. �38�, the transition rate ��k ,k�� reads

��k,k�� =
�

�
�Kq�2�Aq�2�1 + cos ���k+q,k�

���vF�k� − vF�k − ��q� . �45�

The form of ��k ,k�� represents the absorption of a phonon
of momentum q and energy ��q. Since we want to describe
the absorption of acoustic phonons, we write the dispersion
�q as

�q = vSq , �46�

where vS is the sound velocity. The conservation of momen-
tum, k+q=k�, leads to

q = 
k�2 + k2 − 2k�k cos � , �47�

which allows us to write the product of the Kronecker sym-
bol and the Dirac delta function as a single delta function,
which reads

��vF�k� − vF�k − �vS

k�2 + k2 − 2k�k cos �� . �48�

Since vF	vs, the argument of the delta function �Eq. �48��
can be approximated by vF�k�−vF�k, i.e., the absorption of
acoustic phonons can be seen as a quasielastic scattering pro-
cess.

The final result for the scattering time is


k �
8�2�vS

2vF

DA
2kBT

1

k
, �49�

which is formally similar to the relaxation time produced by
a contact potential �Eq. �24�� except for the temperature de-
pendence which is absent in the latter case.

Let us now concentrate on the numerical values of the
relaxation time due to phonons. The phonon spectrum of
graphene has two acoustic branches named LA, with a veloc-
ity of 7.33�103 m /s, and TA, with a velocity of 2.82
�103 m /s.41 At the temperature of 1 K, the relaxation times
of these two modes are


LA � 2.7 � 10−10 s, �50�


TA � 4.0 � 10−11 s, �51�

which are clearly much larger than the estimated value of
3�10−13 s. Therefore, at this low temperatures, the scatter-
ing is mainly dominated by impurities. At temperatures
around 100 K, the scattering lifetime diminishes by a factor
of 100, leading to values comparable to that obtained from
the scattering from charged impurities. Considering only
charged impurities as the scattering mechanism, the effect of
phonons on the transport properties of graphene must be
taken into account if the calculations of the transport coeffi-
cients are extended to temperatures of the order of or above
100 K.

Let us finally discuss the effect of temperature on the need
of taking into account thermal excitations of the valence
band into the conduction band. For the value of the Fermi
momentum given above, the Fermi energy has a value of
�vFkF=0.3 eV. This energy value corresponds to a tempera-
ture of the order of 3600 K. Therefore, as long as the tem-
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perature is much smaller than this value, the valence band
can be considered as inert and therefore we can perform the
calculations by neglecting the effect of the valence band al-
together.

D. Vacancies

Vacancies, cracks, or boundaries in the graphene sheet
give rise to bound states at the Dirac point, so-called midgap
states. This is also true for corrugated graphene. There is thus
inherent disorder in the system that has to be treated ad-
equately. The influence of midgap states is not captured in
Eqs. �20� and �21�, where the reference point is given by the
unperturbed system described by plane �spinor� waves, i.e.,
�k�r�= �x �k� is the electronic wave function of a clean
graphene sheet. This is also the reason why the Klein para-
dox is not at work, which would render scattering from local
impurities �i.e., vacancies� irrelevant.

In order to incorporate the effect of midgap states in the
calculation of the relaxation time, we depart from Eq. �23�.
Scattering from vacancies leads to the following phase
shift:21

�k = −
�

2

1

ln�kR0�
. �52�

This means that for kR0�1,


k =
���Ek�
2�ni

�ln kR0�2. �53�

For large carrier densities, ��Ek��k, and apart from the loga-
rithmic correction, this is the scattering behavior coming
from long-range Coulomb potentials.9,10,42 Explicitly, one
obtains


k =
k

�2vFni
�ln kR0�2. �54�

The logarithmic correction leads to a sublinear density de-
pendence of the conductivity


vacancies =
e2

h

2

�
kF

2�ln kFR0�2. �55�

We note that the same behavior is obtained if one includes
wiggles and thus a random magnetic field in the graphene
sheet.23 The relation between midgap states and corrugated
graphene was investigated in Ref. 20.

The vacancies induce midgap states.43 In the presence of
terms which break the electron-hole symmetry, these states
become completely filled or are empty, leading to self-
doping effects.30 Hence, the carrier density, n�kF

2 , is
bounded by the concentration of vacancies, ni. When the gate
voltage is tuned near the neutrality point, the conductivity
then becomes almost independent of the gate voltage, 

� ln�kFa�� ln�n̄i�, with a prefactor of order e2 /h. Note that
this argument relies on the existence of a finite carrier den-
sity n�ni, and since the mean free path ��kF

−1 ln�kFa� can
be longer than kF

−1 due to �ln�kFa��	10, the Boltzmann equa-
tion remains valid.

The previous argument breaks down when the gate volt-
age is such that the localized states induced by the vacancies
become partially filled. The formation of charge puddles will
limit the validity of our analysis near the neutrality point.

To summarize our analysis in the limit of low carrier den-
sities, we obtain with kmin�ni

1/2 the following result for the
minimal conductivity �ni= n̄i /Ac and R0

2�Ac�:


min
vacancies =

e2

h
���ln n̄i��2. �56�

Notice that there is no “linear” dependence of the impurity
density n̄i. Having a typical impurity density per unit cell of
n̄i=10−4, which matches well the experimentally observed
mobility, the logarithmic correction can be approximated as
�ln n̄i�	8. For �=1 /4, we obtain the experimentally ob-
served minimal conductivity 
min=4e2 /h.

For cleaner samples, the logarithmic correction has to be
taken into account. This is in accordance to experimental
findings which show higher conductivity for cleaner
samples.15,44

V. OTHER TRANSPORT QUANTITIES

In Ref. 42, predictions were made on how the ac conduc-
tivity, the thermal conductivity and the thermopower depend
on the carrier density if one assumes the scattering behavior

k�k. The scattering mechanism from vacancies, cracks, or
boundaries yields a different scattering behavior, i.e., 
k
�k�ln kR0�2. In the following, we give the density depen-
dence in terms of the Fermi energy EF=�vFkF for the above
quantities assuming this scattering mechanism at work �n
=EF

2 /��. Measuring these quantities may then disclose which
scattering mechanism dominates.

A. Optical conductivity

Here, we want to obtain the electronic density dependence
of the optical conductivity of a doped graphene plane. Since
the Boltzmann approach does not include interband transi-
tions, the expressions obtained below are only valid as long
as ���EF with EF=�vFkF the Fermi energy, where the
above mentioned transitions are blocked by the Pauli prin-
ciple.

Our aim is to obtain the response of the electronic system
to an external electric field of the form

E = E0ei�q·r−�t�. �57�

The Boltzmann equation has, for this problem, the form

−
�f0��k�

��k
evk · E =

gk


k
+ vk · �rgk +

�gk

�t
. �58�

The solution of the linearized Boltzmann equation �Eq. �58��
is well known,28 which reads

gk = −
�f0��k�

��k
�q��,k�ei�q·r−�t�, �59�

with
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�q��,k� =
e
kvk · E0

1 − i�
k + i
kq · vk
. �60�

The Fourier component J�� ,q� of the current is given by

J��,q� =
1

�2 � d2kevk�q��,k��−
�f0��k�

��k
� , �61�

leading in the long-wavelength limit to an optical conductiv-
ity of the form


��� = 2
e2

h

EF
2

ũ0
2 �ln EF/ṽ0�2

1 + i
��EF

ũ0
2 �ln EF/ṽ0�2

1 + ���EF

ũ0
2 �ln EF/ṽ0�2�2

.

�62�

In the above equation, we defined the two energy scales ũ0
2

=�2ni�
2vF

2 and ṽ0=�vF /R0. What should be stressed about
Eq. �62� is its density dependence n=EF

2 /�.

B. Thermal conductivity and thermopower

In the presence of a temperature gradient in the sample,
the linearized Boltzmann equation has the form

−
�f0��k�

��k
vk · ��−

�k − EF

T
��rT + eEobs� =

gk


k
, �63�

where the measured electric field is given by Eobs=E
−�rEF /e. In this situation, we have, in addition to the elec-
tric current, a heat current �flux of heat per unit of area�
given by

U =
4

A
�

k
vk��k − EF�gk. �64�

Both the electric and the heat currents can be written as28

J = e2K0 · Eobs +
e

T
K1 · �− �rT� ,

�65�

U = eK1 · Eobs +
1

T
K2 · �− �rT� ,

where Ki, i=0,1 ,2 are second order tensors. In this problem,
the tensors are diagonal, i.e., Ki=1ki, and by a well estab-
lished procedure,28 one obtains

k0 =
2

h

EF
2

ũ0
2 �ln EF/ṽ0�2, �66�

k1 =
4

3

�2

h
�kBT�2EF

ũ0
2 �ln EF/ṽ0�2�1 + �ln EF/ṽ0�−1� , �67�

k2 =
2

3

�2

h
�kBT�2EF

2

ũ0
2 �ln EF/ṽ0�2. �68�

In the above equations, we defined the two energy scales
ũ0

2=�2ni�
2vF

2 and ṽ0=�vF /R0.

From the results �Eqs. �66�–�68��, it is easy to derive both
the thermal conductivity � and the thermopower Q. These
are given by

� =
1

T
�2

3

�2

h
�kBT�2EF

2

u0
2 �ln EF/ṽ0�2

−
8

9

�4

h
�kBT�4 1

u0
2 �1 + ln EF/ṽ0�� �69�

and

Q =
1

eT

2

3

�2

EF
�kBT�2�1 + �ln EF/ṽ0�−1� . �70�

Again, what should be emphasized in these results is the
dependence of both � and Q on the particle density, which is
different from that of the usual two-dimensional electron gas
and from the graphene sheet with only charged impurities in
the substrate. Since it is experimentally feasible to control
the carrier density in the graphene plane,1 it is possible to
check experimentally the dependence of the transport coeffi-
cients on the particle density. Finding the logarithmic correc-
tions compared to the Coulomb scattering mechanism will be
a strong indication for scattering due to midgap states.

Normally, the second term of Eq. �69� can be safely ne-
glected and one obtains the well-known Wiedemann-Franz
law

� =
�2

3

kB
2

e2 T
 . �71�

However, due to the logarithmic correction in the scattering
time, there is an additional term in k1, usually not present and
thus a modified second term in Eq. �69�. So, even though our
analysis is only valid for EF / ṽ0�1, we expect the
Wiedemann-Franz law to be modified for large carrier den-
sities.

VI. NUMERICAL RESULTS

A. Phonon contribution

We now use the obtained values for the relaxation times
of phonon scattering to compute the conductivity at finite
temperatures including scattering from charged impurities.
Since there are two different mechanisms, the total relaxation
time is

1


kF

=
u0

2

vF�2kF
+

DA
2kBT

8�2�vS
2vF

kF =
�1

kF
+ �2kF, �72�

where u0 was defined in Eq. �29� with Z=1, �=2.4, and �̃
=4.2.

The conductivity, including the contribution from two
Dirac cones, reads


 = 2
e2

h

EF
2kF

4kBT
�

0

� x2dx

�1 + �2kF
2x2 cosh−2�EFx − �

2kBT
� , �73�

where EF=vF�kF. The integral has a maximum around x=1
and can be done numerically. The chemical potential de-
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pends on the temperature and in the temperature range of T
�1–300 K is well described by the asymptotic expression

� � �F −
��kBT�2

6EF
. �74�

In Fig. 1, the conductivity as a function of the electronic
density is shown for different values of temperature and for
two impurity concentrations n̄i=2�10−4 �left hand side� and
n̄i=2�10−3 �right hand side�. In Fig. 2, the conductivity as a
function of temperature is shown, for two impurity concen-
trations n̄i=2�10−3 �upper panels� and n̄i=2�10−4 �lower
panels�, and for two different electronic densities n=7.2
�1012 cm−2 �left hand side� and n=1.2�1012 cm−2 �right
hand side�.

For low impurity density, i.e., for realistic parameters,
there is a striking temperature effect on the conductivity
which is not seen in the experiment. We, therefore, conclude
once again that charged impurity cannot resemble the main
scattering mechanism.

B. Influence of midgap states

There are different estimates for the density of �charged�
impurities. Preparing the Si-SiO2 wafer by oxidizing the
n-doped silicon wafer produces no relevant impurity density,
which would affect the transport properties of graphene. This
is because charges due to dangling bonds are mainly local-
ized between the Si-SiO2 interface and thus exponentially
suppressed due to the 300 nm thick SiO2 layer.17,45 Placing
the graphene sheet by micromechanical cleavage on top the
wafer might produce ionization of the OH groups, which
neutralize the SiO2 surface. We estimate a �relevant� charged
impurity concentration of ni

C�1011 cm−2.46

The estimates for the impurity density of vacancies are
even lower, having in mind the high energy cost of three
missing bonds. Nevertheless, the main observation of this
work is that midgap states give rise to a similar scattering
behavior as long-range Coulomb scatterers. Midgap states
can also occur from cracks or boundaries. Another realiza-
tion comes from impurities with large potential difference
with respect to the graphene sheet or corrugated graphene.
We summarize all these effects in the impurity density ni
�1011 cm−2 and set R0�1.4 Å.

Figure 3 shows the mobility �=
 /ne at a carrier density
of 7.2�1012 cm−2, which corresponds to a gate voltage of
Vg=100 V. The upper three curves show the mobility due to
Coulomb scattering, where the dielectric constant � and the
average distance to the graphene sheet are varied. The lower
curve �full line� shows the mobility due to vacancies. Vacan-
cies yield the lowest mobility for comparable impurity den-
sities and thus represent the dominant scattering process.
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FIG. 1. �Color online� Conductivity as a function of the elec-
tronic density, for different values of temperature and for two im-
purity concentrations: �left� n̄i=2�10−4 and �right� n̄i=2�10−3.
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purity concentrations �up� n̄i=2�10−3 and �down� n̄i=2�10−4 and
for two different electronic densities �left� n=7.2�1012 cm−2 and
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FIG. 3. �Color online� The mobility �=
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In Fig. 4, the conductivity is shown as a function of the
carrier density n. The left hand side shows the conductivity
due to Coulomb scattering with �=2.4, zc=0, and ni

C=2
�1010 cm−2 �dashed line�, vacancies with ni=2�1010 cm−2

�dotted line�, and due to both contributions �full line�. The
right hand side shows the same plots with different Coulomb
scatterers, i.e., with �=1, zc=5 nm, and ni

C=2�1011 cm−2.
The conductivity of the cleaner sample �left hand side� is

not affected by the Coulomb scattering mechanism and
shows a sublinear behavior in the electronic density. For the
dirty sample �right hand side� with zc=5 nm, i.e., the charged
impurities are well inside the substrate, the Coulomb scatter-
ing mechanism leads to a superlinear behavior, which in total
yields the linear behavior of the combined conductivity
with respect to the carrier density n. The above parameters
yield mobilities of �	12 000 cm2 /V s �left� and �
	8800 cm2 /V s �right�.

VII. CONCLUSIONS

In summary, we presented a phenomenological theory for
transport in graphene based on the semiclassical Boltzmann
theory, first proposed by Nomura and MacDonald.9 We
pointed out that local point defects in the form of vacancies,
cracks, etc., yield a similar k dependence of the relaxation
time as long-range Coulomb potentials. Moreover, they lead
to a finite density of states at the Dirac point, which can
account for the observed minimal conductivity. The scatter-
ing mechanism due to midgap states has been widely ignored
so far but actually represents the dominant contribution to
the total conductivity.

For dirty samples, this scattering mechanism yields a uni-
versal minimal conductivity, whereas for cleaner samples,
the minimal conductivity increases logarithmically in the im-
purity density. It also leads to a sub-linear behavior with
respect to the carrier density. In combination with Coulomb
scattering, this behavior may become linear.

Regarding the numerical values, the major uncertainty lies
in the impurities densities of charged or neutral defects.
Cleaning the SiO2 surface in a hydroxyl bath46,47 would re-
duce charged impurities close to the graphene sheet and thus
estimate their effect to the conductivity. Another way of re-
ducing a possible source of impurities is by interchanging the
mechanical cleavage by “printing” the graphene sheet on top
of the substrate.48
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