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The classical theory of ion beam sputtering predicts the instability of a flat surface to uniform ion irradiation
at any incidence angle. We relax the assumption of the classical theory that the average surface erosion rate is
determined by a Gaussian response function representing the effect of the collision cascade, and consider the
surface dynamics for other physically motivated response functions. We show that although instability of flat
surfaces at any beam angle results from all Gaussian and a wide class of non-Gaussian erosive response
functions, there exist classes of modifications to the response that can have a dramatic effect. In contrast to the
classical theory, these types of response render the flat surface linearly stable, while imperceptibly modifying
the predicted sputter yield vs incidence angle. We discuss the possibility that such corrections underlie recent
reports of a “window of stability” of ion-bombarded surfaces at a range of beam angles for certain ion and
surface types, and describe some characteristic aspects of pattern evolution near the transition from unstable to
stable dynamics. We point out that careful analysis of the transition regime may provide valuable tests for the
consistency of any theory of pattern formation on ion sputtered surfaces.
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I. INTRODUCTION

Uniform ion beam sputter erosion of a solid surface often
causes a spontaneously arising topographic pattern in the sur-
face topography1–23 that can take the form of a one-
dimensional corrugation or a two-dimensional array of dots
with typical length scales of 102±1 nm. Periodic self-
organized patterns with wavelength as small as 15 nm �Refs.
3 and 9� have stimulated interest in this method as a means
of nanofabrication at sublithographic length scales.16 Be-
cause the characteristic scale of the patterns can be 3 orders
of magnitude larger than the characteristic penetration depth
of ions into a solid surface, the patterns result from a non-
trivial interplay between the sputter erosion on one hand and
surface relaxation mechanisms on the other hand.

The present understanding of sputter morphology evolu-
tion originates in the Sigmund theory of sputtering.24 Sig-
mund posited that the local erosion rate of the surface is
proportional to the local atom emission rate resulting from
the atomic collision cascade, and that the emission rate at a
point on the surface is proportional to the nuclear energy
deposition density at that point resulting from collision cas-
cades from the ions impinging at all points. Sigmund
subsequently25 recognized the destabilizing influence of the
curvature dependence of the sputter yield �atoms out per in-
cident ion� by modeling the nuclear energy deposition den-
sity as taking the form of Gaussian ellipsoids beneath the
surface and showing that, as a consequence, concave regions
of the surface receive more energy and thereby erode more
rapidly than do convex regions.27

The origin of the characteristic length scale of the self-
organized patterns was identified by Bradley and Harper
�BH�,2 who recognized that destabilization is opposed by
surface diffusion, which operates so as to return the surface
to flatness.28 Expanding Sigmund’s Gaussian ellipsoid re-
sponse in powers of derivatives of the surface height
h�x ,y , t� and superposing classical Herring-Mullins29,30 sur-

face diffusion, BH derived a linear partial differential equa-
tion �PDE�2 that describes the evolution of the surface height
on scales much larger than the characteristic length scales of
the Gaussian response:

�h

�t
= − I + �Sx�xx + Sy�yy − B̂�4�h , �1�

where I�b� is the vertical erosion rate of a flat �unperturbed�
surface, Sx�b� and Sy�b� are the curvature coefficients, b is

the slope of the unperturbed flat surface, and B̂= �1
+b2�−3/2B, with B a material parameter describing relaxation
and containing the surface diffusivity and the surface free
energy. The coefficients I, Sx, and Sy are expressed in terms
of Sigmund’s Gaussian and depend on �=tan−1�b�, the angle
between the beam direction, henceforth denoted as −ẑ, and
the normal to the flat surface n̂ �0���� /2�. For nonzero �,
we denote by x̂ the axis perpendicular to ẑ in the n̂-ẑ plane.31

A term proportional to �xh in Eq. �1� gives rise to propaga-
tion of modulations, but does not affect the linear stability of
the surface and hence has been omitted. The BH linear sta-
bility analysis yields unstable modes whenever Sx or Sy is
negative, whose characteristic length scale arises from a bal-
ance between the destabilizing effect of the second deriva-
tives �xx and �yy and the stabilizing effect of the surface
diffusion term �4. The behavior of Sx��� and Sy��� for char-
acteristic parameter values are shown in Fig. 1. The Bradley-
Harper analysis gives rise to the following predictions: �i�
Below a crossover angle �cross, Sx�Sy �0, implying a faster
growth rate for parallel mode �wave vector parallel to pro-
jected ion beam direction along the surface� than for perpen-
dicular mode �wave vector along ŷ� surface modulations;32

�ii� Sy �0 for all �, implying instability to perpendicular
modes at all incidence angles. For ���cross, the perpendicu-
lar modes are the fastest to grow with dominant wavelength
�8�2B̂ / �−Sy�. The generalization of the BH analysis to the
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nonlinear regime, which is required to account for the ob-
served saturation of ripple amplitude and the emergence of
more complicated patterns �e.g., hexagons, dots, and pits�
was carried out by Cuerno and co-workers,4,13 who expanded
Sigmund’s Gaussian ellipsoid model to higher order in sur-
face height derivatives, resulting in a Kuramoto-Sivashinsky
type equation33 for the surface evolution.

There is growing evidence that although the Bradley-
Harper predictions successfully explain some features of ex-
periments �e.g., exponential growth of ripples at early stage
dynamics, temperature dependence of the wavelength of the
ripples,7 and 90° rotation of ripples in many experiments as �

is increased�, there are also some glaring inconsistencies.
This is clearly demonstrated in, e.g., the recent work of Zi-
beri et al.,20 who found a “window of stability” for Si sur-
faces at room temperature bombarded by �1–2 keV noble
gas ions at an intermediate range of angles �1����2, where
�1�30° and �2�60°. Moreover, Ziberi et al. demonstrated
that when bombarded by some noble ions �Ne+�, a flat sur-
face remains stable at all angles. In addition to the experi-
mental inconsistencies with BH prediction �ii�, there have
also been recent experiments34,35 and atomistic
simulations36,37 that have measured the shape change of a
smooth solid surface in the vicinity of an impingement by a
single energetic monatomic ion or cluster ion. These studies
show significant deviations from the predictions of the ellip-
soidal Gaussian form. For example, the molecular dynamics
studies of Feix et al.17 indicate that for 5 keV Cu+ bombard-
ment of Cu crystals, the collision cascade intensity along the
surface has a maximum along an annulus some distance from
the impact point and its spatial decay is better characterized
by an exponential rather than by a Gaussian function. In this
case, Feix et al. still found linear instability of a flat surface.
Moreover, in many cases,34–36 including low-energy
�0.5 keV� bombardment of an amorphous silicon surface,37

the response of the surface is the formation of craters with
rims. This type of response, involving the accumulation of
matter at some locations, is in clear contradiction to the
purely erosive response predicted by Sigmund’s model using
a Gaussian ellipsoid collision cascade. The occurrence of
craters with rims has been attributed to thermal spikes36 or to
ion-stimulated surface mass transport.37

These observations raise the interesting question of how
robust are the predictions of BH to the precise shape of the
local response to an ion impact. Indeed, the most general
evolution equation based on the accumulation of local re-
sponses to ion impacts is22

�h�x,t�
�t

=� dx�Jion�x���	x − x�,hx�x,t�,hy�x,t�,

hxx�x,t�,hyy�x,t�,hxy�x,t�, . . . 
 , �2�

where x= �x ,y�, Jion�x�� is the ion flux at x�, subscripts x and
y denote partial derivatives, and the kernel �	x−x� , . . . 
, rep-
resenting the change in height at x due to an ion impact at x�,
is expected to decay smoothly to zero at large distances �x
−x��. This equation is more general than that assumed by
Sigmund because the kernel can have any shape whatsoever,
and can depend on the complete local geometry of the sur-
face.

In this paper, we explore whether a more general physi-
cally motivated surface response than those of Bradley and
Harper can change the predictions for linear stability. Our
purpose here is not to perform quantitative comparison be-
tween theory and specific experiments, but rather to deter-
mine how robust the predictions of the Bradley-Harper
theory are with respect to modifications of the ion impact
function �. We demonstrate that, whereas the fundamental
prediction concerning the instability of flat surface to uni-
form ion irradiation results from a wide class of response
functions including Gaussian and non-Gaussian
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FIG. 1. �a� Plot of sputter yield curve I���, normalized by I�0�.
	�b� and �c�
 Plots of Bradley-Harper coefficients Sx��� and Sy���,
normalized by �Sx�0��= �Sy�0��. The parameters used are a=1.5 nm,
�=0.9 nm, and �=0.5 nm.
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distributions—thus explaining the applicability of Bradley-
Harper theory for a wide range of systems—there are certain
classes of modification that have a dramatic effect. Notably,
these modifications render the flat surface stable—in contra-
diction to the classical theory—while imperceptibly affecting
the yield curve I�b�.

The paper is organized as follows: In Sec. II, we extend
the BH approach—of deriving from the microscopic re-
sponse function the coefficients Sx�b� and Sy�b� in Eq.
�1�—to a broad class of purely erosive surface response
functions, of which the Gaussian ellipsoid is a particular ex-
ample and the response of Feix et al.17 is another example.
We show that the BH prediction of linear surface instability
for all incident beam angles is unchanged. Hence, any purely
erosive surface response within this broad class is contra-
dicted by experiments. In the remainder of the paper, we
explore possible physical mechanisms that could resolve this
conundrum. In Sec. III, we demonstrate that a surface re-
sponse that is not purely erosive, but rather consists of the
formation of a crater surrounded by a rim, does allow linear
stability for some range of incidence angles. In Sec. IV, we
demonstrate that impact-induced “downhill” surface cur-
rents, such as those recently found in molecular dynamics
�MD� simulation of C and Si surfaces bombarded by low-
energy ��250 keV� ions,38 can also yield linear stability for
some range of beam angles. There are, thus, multiple physi-
cal mechanisms that could explain the experiments, and the
essential question is to determine which effect is dominant.
Identifying the dominant physical mechanisms is critical to
having a reliable nonlinear theory for pattern formation. In
Sec. V, we discuss how experiments might distinguish the
competing theories. In particular, we argue for a careful
analysis of experiments near the observed critical angle at
which a flat surface becomes stable.

II. BRADLEY-HARPER THEORY REVISITED

The Sigmund theory of sputtering24 posits that the local
erosion of the surface in Eq. �2�, �	x−x�
 /�1+b2 �with b the
local surface slope at x��, is proportional to the local atom
emission rate resulting from the nuclear collision cascade,
which itself is proportional to the nuclear energy deposition
density at (x ,h�x�) from an ion impinging at (x� ,h�x��). To
demonstrate the source of an instability,25 Sigmund modeled
the collision cascade as a Gaussian ellipsoid. Bradley and
Harper’s subsequent expansion of Sigmund’s Gaussian ellip-
soid collision cascade model, combined with smoothening
by fourth-order Mullins-Herring surface diffusion, leads to
Eq. �1�.

To examine the consequences of forms of the erosive re-
sponse that are more general than Gaussian ellipsoids, we
assume

�	x − x�, . . . 
 = �h�r,z� = − Ae−g�r�−f�z�, �3�

where r=��x−x��2+ �y−y��2, z=h�x ,y�−h�x� ,y��, and A is a
length that depends on parameters such as ion energy and ion
and target masses. The first equality in Eq. �3� assumes radial
symmetry about the ion track and no explicit dependence on

the surface slope and curvature, with the kernel depending
only on r and z. The second equality assumes separation of
the variables r and z.

The Gaussian ellipsoid response is a particular case of Eq.
�3�, with

f�z� =
1

2�2 �z − a�2, g�r� =
1

2�2r2, �4�

where a is the average penetration depth of the ion, and �
and � are lengths characterizing the ranges of response in
directions parallel and perpendicular to ẑ, respectively.

Following BH, we substitute in Eq. �2� the response form
�3� and add a relaxation mechanism to the surface dynamics
associated with Herring-Mullins surface diffusion:

�h

�t
= − B̂�4h − 	�

−





dy�
−





dx

�exp	− g��x2 + y2� − f„h�x,y�…
 , �5�

where 	=AJion and B̂= �1+b2�−3/2B, with B=�
2DC /kBT.
Here, C, D, and 
 are the concentration, diffusivity, and
volume, respectively, of the surface-diffusing species; � is
the surface free energy, kB is Boltzmann’s constant, and T is
the absolute temperature. In Eq. �5�, the surface erosion is
evaluated at �r ,z�= �0,0�, thus the notation h which does not
appear under the integral sign is shorthand for h�0,0 , t�.
Also, to avoid cumbersome notation, we omitted the explicit
time dependence of h�x ,y , t� in Eq. �5�. We will continue to
use these conventions throughout the paper, and will use ex-
plicit notations only when confusion may arise.

To study the evolution of surface morphology in the limit
that the surface height h�x ,y , t� varies on scales much larger
than the ion penetration depth, we consider perturbations
about a planar surface �x ,y ,h=bx�, so that

h�x,y� = bx +
1

2
hxxx

2 +
1

2
hyyy

2 + hxyxy + ¯ ,

and expand e−f(h�x,y�) to obtain

exp	− f„h�x,y�…
 � e−f�bx��1 − f��bx�

�
1

2
hxxx

2 +
1

2
hyyy

2 + hxyxy�� . �6�

With the expansion �6�, the integral equation �5� is readily
transformed into the PDE �1� with the coefficients

I�b� = 	�
−





dy�
−





dxe−�b�x,y�,

Sy�b� =
1

2
	�

−





dy�
−





dxe−�b�x,y�f��bx�y2,

Sx�b� =
1

2
	�

−





dy�
−





dxe−�b�x,y�f��bx�x2, �7�

where �b�x ,y�=g��x2+y2�+ f�bx�.
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The question now is how various choices of f�r� and g�z�
can change I�b�, Sx�b�, and Sy�b�. We are primarily interested
in the slope dependence in Sy�b�, because in the Bradley-
Harper theory, Sy�b��0 for all slopes b. Our question is
whether any choice of f�z� and g�r� can stabilize the surface
against perpendicular modes �Sy �0� for some range of b
while not significantly affecting the shape of the yield curve.
The latter requirement is especially significant because the
yield curve predicted by the Sigmund response function
agrees qualitatively with that measured on many
materials—at least for nongrazing incidence.39

All of our analysis proceeds with the same methodology:
the integral for Sy�b� in Eq. �7� is dominated by contributions
near the minimum of �b, which we call �xmin ,ymin�. This is
because the size of the region where energy is deposited �of
the order of the penetration depth a� is much smaller than the
characteristic length scale over which the surface shape var-
ies. The minima of �b satisfy the equations

ymin

�xmin
2 + ymin

2
g���xmin

2 + ymin
2 � = 0, �8�

xmin

�xmin
2 + ymin

2
g���xmin

2 + ymin
2 � + bf��bxmin� = 0. �9�

Depending on the functional forms of g and f , there are two
possible types of solutions to these equations:

ymin = 0, ± g��xmin� + bf��bxmin� = 0, �10�

g���xmin
2 + ymin

2 � = 0, bf��bxmin� = 0, �11�

where the � signs in Eq. �10� correspond to xmin�0 and
xmin�0, respectively. Once the locations of the minima are
determined, we can expand

�b = �b�xmin,ymin� +
�x − xmin�2

2
�gxx + b2f��

+ �x − xmin��y − ymin�gxy +
�y − ymin�2

2
gyy

� �* + Ã�x − xmin�2 + C̃�x − xmin��y − ymin�

+ B̃�y − ymin�2, �12�

where the second equality defines Ã, B̃, C̃, and �*. This ex-
pansion can then be used to evaluate the integral.

We now proceed to use this methodology to establish the
conclusion that Sy �0 is extremely robust. For any kernel of
the form considered here, a perpendicular mode instability
always exists for all slopes b. The characteristic behavior of
the coefficient Sx is more fickle. Obviously, for b→0,
Sx�b� /Sy�b�→1, and therefore, Sx�b� is necessarily negative
for small enough slopes b. However, the observation of BH
that Gaussian ellipsoids imply Sx�Sy �0 for b�1 does de-
pend on the exact shape of the response function. This can be
readily verified by considering Sigmund’s response Eq. �4�
with a��. Hence, we will focus our analysis on the robust

properties of the linear dynamics, associated with the sign of
Sy, and will not further discuss Sx in this section.

A. Shape of the energy distribution does not qualitatively
affect stability

We begin by considering changes in only the shape of the
energy distribution, namely, we consider f�z� and g�r� that
keep the position of maximum energy deposition at a single
point �the average stopping point of the ion�, though we vary
the shape of the distribution. We, thus, assume that the func-
tion f�z� has a minimum at z=a, whereas g�r� increases
monotonically from r=0.

Under these assumptions, the minimum of �b�x ,y� must
be of type Eq. �10�. Moreover, because the minimum of g�r�
along the x axis occurs at x=0 and the minimum of f�bx�
occurs at x=a /b�0, then xmin, determined by g��xmin�
+bf��bxmin�=0, must be in the interval 0�xmin�a /b such
that f��bxmin��0. The expansion of �b in Eq. �12� leads to

the coefficients Ã= �g�+b2f�� /2, B̃=g� /2�xmin�, and C̃=0,
where all derivatives are taken at xmin. Hence, the integral is
approximately

Sy�b� � 	�
−





dy�
−





dxe−�*−Ã�x − xmin�2−B̃y2
f��bxmin�y2.

�13�

Because f��bxmin��0, the integral �13� is necessarily nega-
tive for all b. This demonstrates that the experimentally ob-
served stability of a sputtered surface to perpendicular mode
ripples is not a consequence of the shape of the energy dis-
tribution.

B. Toroidal energy distributions do not qualitatively affect
stability

Another possible modification of the energy distribution is
for the maximum energy deposition to occur away from the
ion trajectory. Indeed, the recent simulations of Cu crystals
bombarded by 5 keV Cu+ ions17 by Feix et al. have demon-
strated energy distributions with a maximum along an annu-
lus surrounding the ion trajectory. Such a response is, thus,
characterized by a g�r� with a minimum at rmin=r0�0.

Consider the sign of Sy�b� under these circumstances.
There are now two different regimes, depending on the
slope. When the slope is small, such that a /b�r0, the mini-
mum must be of type Eq. �10�. Type Eq. �11� is excluded
because if f��bxmin�=0, then we must have xmin=a /b. How-
ever, the equation g��r�=0 cannot be satisfied: this equation
implies that xmin

2 +ymin
2 =r0

2, which cannot be obeyed for any
ymin. In contrast, when the slope is large, so that a /b�r0, the
minima are of type Eq. �11�.

Let us first consider the regime of small slope. Here, the

analysis proceeds as above with the same Ã, B̃, and C̃ de-
fined in Eq. �12�. As before, the sign of the integral hinges on
the value of f��bxmin�=−g��xmin� /b. Because we are assum-
ing that the minimum of f�bx� occurs at x=a /b, which is
larger than the minimum assumed by g�r� along the x axis, at
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x=r0, Eq. �10� implies that f��bxmin��0. Hence, we arrive at
the conclusion that in the small slope regime Sy �0, the lin-
ear instability survives.

The second regime, where b /a�r0, is more subtle, with
two minima being of type Eq. �11�. Assuming the minimum
of g�r� occurs at r0, and the minimum of f�z� occurs at a, it
is easy to see that the x coordinate is the same for both
minima, and we will continue to denote it by xmin, whereas
the y coordinates are opposite in sign and will be denoted by
ymin

± , respectively: �xmin ,ymin
± �= (a /b , ±�r0

2− �a /b�2). We will
omit the � superscript in expressions involving only powers
of �ymin

± �2. The value of Sy�b� is given by the sum of the
contributions to the integral centered around each of these

two minima. For these minima, the values of Ã, B̃, and C̃ are
given by

Ã =
1

2
�g�

xmin
2

r0
2 + b2f��, B̃ =

1

2
g�

ymin
2

r0
2 , C̃± = g�

xminymin
±

r0
2 ,

�14�

where g� is evaluated at r=r0, and f� is evaluated at z=a. We
now must evaluate

Sy�b� � 	�
±
�

−





dy�
−





dx exp	− �* − Ã�x − xmin�2

− B̃�y − ymin
± �2 − C̃±�x − xmin��y − ymin

± �
f��bx�y2.

�15�

The exponential in the integrals is best dealt with by com-
pleting the square, so that it becomes

Sy�b� � 	�
±
�

−





dy�
−





dx

�exp
− �* − Ã��x − xmin� +
C̃±

2Ã
�y − ymin

± ��2�
�exp�− �y − ymin

± �2
B̃ −
�C̃±�2

4Ã
�� f��bx�y2.

�16�

Now, the second exponential decays with y varying away

from ymin
± , because B̃�

�C̃±�2

4Ã
for any b�0. If we now change

variables to x̃=x−xmin+ C̃±

2Ã
�y−ymin

± � and ỹ=y−ymin
± , we obtain

Sy�b� � e−�*
	�

±
�

−





dỹ�
−





dx̃

�exp�− Ãx̃2 − ỹ2
B̃ −
�C̃±�2

4Ã
��

�f�
b�xmin + x̃ −
C̃±

2Ã
ỹ���ymin

± + ỹ�2. �17�

Because now f��bxmin�=0, evaluation of the integrals to lead-

ing order requires expansion of the terms f�	b�xmin+ x̃

− C̃±

2Ã
ỹ�
 around a=bxmin. With this we get the following ap-

proximation to the integral:

Sy�b� � e−�*
	�

±
�

−





dỹ�
−





dx̃ exp�− Ãx̃2 − ỹ2

�
B̃ −
�C̃±�2

4Ã
��
 f��a��bx̃ −

C̃±

2Ã
bỹ� + ¯ �

��ymin
± + ỹ�2. �18�

The contribution of the two integrals is identical, and sums
up to

Sy�b� � − f��a�g��r0�
aymin

2

r0
2Ã

�1, �19�

where we have substituted the formula for C± �14�, have
used bxmin=a, and where

�1 = e−�*
	�

−





dỹ�
−





dx̃e−Ãx̃2
e−ỹ2�B̃−C̃2/4Ã�ỹ2.

The right-hand side �RHS� of Eq. �19� is negative definite,
i.e., Sy�b� is negative for all values of b. Hence, response
functions of the form of Eq. �3� generally cause a perpen-
dicular mode instability for any incidence angle. The quali-
tative conclusions of the original Bradley-Harper analysis
concerning the instability of perpendicular surface modula-
tions at any beam angle are, thus, very robust.

III. EFFECTS OF MASS REDISTRIBUTION

The analysis of the previous section demonstrates that a
broad class of purely erosive response functions gives rise to
linear instability for all beam angles. However, there have
been several recent studies suggesting that the surface re-
sponse is not purely erosive. These studies demonstrate that
after ion impact, a crater forms around the impact point of
the penetrating ion, surrounded by rims elevated from the
original surface.34–37 This behavior, where �h�0 in the rim,
is completely different from the erosive response functions
described above. We investigate whether such response func-
tions can cause the stability of a flat surface.

To carry out this analysis, we introduce a natural gener-
alization of the family of response functions �3�:

�h�r,z� = − � Aje
−gj�r�−f j�z�, �20�

where gj�r� and f j�z� are localized functions as discussed in
the previous section, but the coefficients Aj can be negative
or positive. Negative Aj corresponds to a local height in-
crease associated with ion impact, as in crater rims. A par-
ticularly simple form of a response function is the sum of
two Gaussian ellipsoids:
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�h�r,z� = − A�exp
−
r2

2�1
2 −

�z − a1�2

2�1
2 �

− � exp
−
r2

2�2
2 −

�z − a2�2

2�2
2 �� . �21�

This response function has eight free parameters �including
A and ��, all of which are constrained to be positive. Unlike
the original Sigmund model, the free parameters here are not
directly connected to a microscopic picture. Because our in-
tent is to understand whether small deviations from Sig-
mund’s response function can change the stability character-
istics of the surface, we will consider the case with ��1 and
think of a1, �1, and �1 as corresponding essentially to the
original Sigmund parameters. The parameters a2, �2, and �2
describe the characteristics of the mass redistribution. Simi-
lar to the parameters in Sigmund’s response, ai, �i, and �i
are assumed to be microscopic lengths characterizing the re-
sponse.

With the model so defined, we can evaluate the yield
curve I�b� as well as Sx�b� and Sy�b�, obtaining

I�b� = 2�Jion �
i=1,2

Ai�i
2�i� 1 + b2

b2�i
2 + �i

2e−ai
2/	2�b2�i

2+�i
2�
,

�22�

Sx�b� = − 2�Jion �
i=1,2

Aiai�i
4�i	b2ai

2�i
2 − 2b4�i

4 − b2�i
2�i

2

+ �i
4
� 1 + b2

�b2�i
2 + �i

2�7e−ai
2/	2�b2�i

2+�i
2�
, �23�

Sy�b� = − 2�Jion �
i=1,2

Aiai�i
4�i� 1 + b2

�b2�i
2 + �i

2�3e−ai
2/	2�b2�i

2+�i
2�
,

�24�

where we used the notation A1=A and A2=−�A.
We now want to use this result to address the following

question: Is there a regime of parameter space where the
stability characteristics of the surface are qualitatively differ-
ent from the predictions of Bradley and Harper, but for
which the yield curve is experimentally indistinguishable
from that predicted by the Sigmund response? Indeed, we
have found multiple regions of parameter space where this
occurs. This can be demonstrated simply and analytically by
expanding Eqs. �22�–�24� in the regime of small slopes,
where Sx�Sy. We find that, as b→0,

I�b� � 2�JionA	�1
2e−a1

2/2�1
2

− ��2
2e−a2

2/2�2
2

 , �25�

Sy�b� � Sx�b� � − 2�JionA
a1�1
4

�1
2 e−a1

2/2�1
2

− �
a2�2

4

�2
2 e−a2

2/2�2
2� .

�26�

Here, we see that for small slopes, Sx and Sy can have either
sign, depending on the relative magnitudes of the terms
a1�1

4

�1
2 e−a1

2/2�1
2

and �
a2�2

4

�2
2 e−a2

2/2�2
2
. If the second term dominates

the first, then Sx and Sy are positive at small b and the surface

is stable to all perturbations. Can stability be achieved with-
out significantly affecting I�b�? Obviously, this will be the

case if �1
2e−a1

2/2�1
2
���2

2e−a2
2/2�2

2
. Letting Zi=�i

2e−ai
2/2�i

2
, satis-

faction of the two conditions amounts to finding parameters
where �i� Z1a1�1

2 /�1
2��Z2a2�2

2 /�2
2, while �ii� Z1 /Z2��. We

also would like � to remain small. Such a parameter regime
clearly exists and merely constrains the scale and the geom-
etry of the mass redistribution region.

To demonstrate this explicitly, Fig. 2 shows the behavior
of I�b�, Sx�b�, and Sy�b�, where we have used the same pa-
rameters for a1=1.5 nm, �1=0.9 nm, and �1=0.5 nm as
used for the “normal” BH stability characteristics shown in
Fig. 1, with the additional parameters �=0.03, a2=0.5 nm,
�2=0.5 nm, and �2=1 nm. For these parameters, Z1
=0.06 nm2 and Z2=0.6 nm2, thus a1�1

2 /�1
2=0.46 nm,

a2�2
2 /�2

2=2 nm, and constraint �i� is satisfied, whereas Z1 /Z2
�=0.1� is sufficiently larger than � �=0.03� so that constraint
�ii� is satisfied as well. Indeed, the top row of Fig. 2 shows a
stable region of parameter space for small slopes in both Sx
and Sy, while the qualitative shape of the yield curve is un-
changed. We have also found regions of parameter space
where the two conditions derived above are not met, hence a
flat surface is unstable at small b, but there is still a window
of stability at higher slopes, as shown in the bottom row of
Fig. 2.

The results of this section demonstrate a very significant
conclusion: that small changes in the shape of the surface
response of a single ion can completely change the stability
characteristics of a flat surface from those predicted by Bra-
dley and Harper, but yet not lead to any significant modifi-
cation to the measured yield curve. Further analysis along
this line requires a microscopic theory for the nonerosive
processes or detailed atomistic simulations from which effec-
tive parameters such as �, a�, ��, and �� can be determined.

IV. INDUCED SURFACE CURRENTS

In the previous sections, we considered a surface response
that does not depend explicitly on the incidence angle and is
fully characterized by considering normal incidence �b=0�.
Namely, the response at a point (x ,y ,h�x ,y�) depends only
on the projections of the vector that connects (x ,y ,h�x ,y�) to
the average ion stopping point �0,0 ,−a� in directions parallel
and perpendicular to the beam direction ẑ. Thus, the depen-
dence of the coefficients I�b�, Sx�b�, and Sy�b� in Eq. �1� on
the angle �=tan−1�b� is implicit and purely geometrical,
stemming from the fact that the distribution of values of
these projections ��bx+a� and �x2+y2, respectively� over all
surface points depends on the slope b.

It is possible, however, that the response of a surface point
to ion impact depends explicitly on the incidence angle. Such
behavior was reported by Moseler et al.,38 who used molecu-
lar dynamics to study the ion-enhanced smoothening of dia-
mondlike carbon surfaces bombarded by low energy
�30–150 eV� carbon ions. These authors simulated surfaces
tilted at angles up to 20° and observed transient surface cur-
rents with components along the projection of the ion beam
direction onto the surface, resulting in net displacements
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along the surface of magnitude proportional to the incidence
angle. Their analysis of this effect, neglecting densification
and sputter erosion, and focusing on beam angles near nor-
mal incidence, resulted in an isotropic diffusionlike equation
for the surface height:

�h/�t = �
�2h , �27�

where 
 is the molecular volume of diffusing particles and �
is positive and, consequently, stabilizing 	cf. Eq. �1�
.
Moseler et al. did not pursue the beam angle dependence of
�. As is the case for the erosion coefficients in Eq. �1�, we
expect this smoothening effect to become anisotropic away
from normal incidence, yielding two different coefficients
�x�b� and �y�b�.

Previously, Carter and Vishnyakov5 proposed a similar
smoothening term to explain the absence of linear instability
on silicon bombarded with 10–40 keV Xe+ at incidence
angles between 0 and 45°. They proposed a mechanism
whereby forward recoils move, on average, parallel to the
ion beam before coming to rest. They retained the projection
along the surface, which may be interpreted as a conse-
quence of the incompressibility of the solid: the surplus den-
sity injected into the solid subsequently “pops up” to the
surface along, on average, the shortest path. Specifically, for
an ion flux of magnitude Jion in a plane perpendicular to the
ion beam, the number of ion impingements per unit area of
surface is Jion cos���, where � is the local angle of incidence.
The induced current per ion projected along the surface var-
ies as sin���, resulting in a surface current Jx proportional to
Jion sin���cos��� or Jion sin�2��. This surface current has the

same stabilizing effect on parallel mode instabilities as that
identified in the simulations of Moseler et al. 	Eq. �27�
, but
with �x�cos�2��. Carter and Vishnyakov did not consider �y.

In principle, the low-energy mechanism of Moseler et al.
differs from the high-energy Carter-Vishnyakov mechanism:
in the former case, the projected range is �1 nm and true
surface transport is observed; in the latter case, the projected
range is greater than 10 nm, volume transport is induced, and
it is the component parallel to the surface that results in the
smoothening effect. However, in both cases, an explicit de-
pendence on angle of incidence is apparent, and phenomeno-
logically, they appear virtually indistinguishable. In both
mechanisms, the average net effect of each ion impact is a
displacement along the surface that is proportional to � for
small � and should saturate at large �, as does sin���. In all
cases, the ion impingement rate per unit area of actual sur-
face goes as cos���. Their combination should result in an
induced downhill surface current that approaches zero near
normal and grazing incidences and displays a maximum in
the vicinity of 45°.

To understand the implications of Eq. �27� for linear sta-
bility, it is essential to establish the dependence on incidence
angle of both coefficients �x��� and �y��� for parallel and
perpendicular modes, respectively. To this end, we consider a
simple model in the spirit of those discussed above. The
geometry of the previous sections is assumed, where an ion
flux Jion impinges in the −ẑ direction on a surface slightly
perturbed from the plane h�x ,y�=bx, and � is the angle be-
tween the local normal to the surface and the ẑ axis. We
assume that the component of ion momentum parallel to the
surface causes the displacement of surface target atoms a
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FIG. 2. Normalized yield curve and BH coefficients Sx and Sy for two sets of parameters of the two-Gaussian model, Eq. �21�. The
parameters a1, �1, and �1 are the “Sigmund parameters” taken as in Fig. 1 and the same normalization factors are used. The new parameters
are �top row� 	=0.03, a2=0.5 nm, �2=0.5 nm, and �2=1 nm, and �bottom row� 	=0.03, a2=0.9 nm, �2=0.2 nm, and �2=1.5 nm.
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distance along the surface, proportional to sin���. The con-
tribution of the induced surface current Js= �Jx ,Jy� to
�h�x ,y , t� /�t is −� ·Js, where �= ��x ,�y�. In order to evaluate
Js, let us assume first that the surface is exactly described by
h�x ,y�=bx, where b=tan���. In this case, Jy =0, and with a
momentum component parallel to the surface proportional to
sin���, we obtain Jx�−Jion cos���sin���, where Jion cos��� is
the rate of ion impingement per unit surface area. This be-
havior is consistent with the results of the MD simulations of
Moseler et al.38 In order to write the induced surface flux for
a general surface, represented by the equation z=h�x ,y�, we
must express Jx and Jy in terms of �h. The angle � satisfies
the relation cos���= n̂ · ẑ=1/���h�2+1, where n̂= 	−�h /�x ,
−�h /�y ,1
 /���h�2+1 is the unit vector normal to the surface.
Let us denote by � the angle between the x axis and the
direction within the x-y plane of maximal increase in surface
elevation at �x ,y�: �=tan−1 �h/�y

�h/�x . The fluxes Jx and Jy are
then given by Jx�−sin�2��cos��� and Jy �−sin�2��sin���.

Because our analysis in this paper is restricted to linear
dynamics of the surface, we expand � ·J to linear order, in
deviations of h from the flat surface h=bx �b�0�. Algebraic
manipulation yields the relations

cos��� � 1, sin��� � b−1�h

�y
,

cos��� � �1 + b2�−1/2�1 −
b

1 + b2

�h

�x
� , �28�

sin�2�� �
b

b2 + 1

1 +

1 − b2

b�1 + b2�
�h

�x
� ,

and the linear contributions �x�b� and �y�b� from the induced
surface currents to the coefficients Sx�b� and Sy�b�, respec-
tively, in Eq. �1� are

�x�b� �
1 − b2

�1 + b2�2 , �29�

�y�b� �
1

1 + b2 . �30�

The expression for �x in Eq. �30� is equivalent to the
expression derived by Carter and Vishnyakov.40 Notably, the
mechanism described by Eq. �27� corresponds to a conserved
surface current and, thus, does not have any effect on the
yield curve I�b�. The effect of induced surface currents on
the stability is evident in Fig. 3. The effect stabilizes both
modes from normal incidence up to incidence angles of 45°,
whereupon it becomes a destabilizing influence on only the
longitudinal mode. The magnitudes of �x and �y must equal
each other at normal incidence, but their relationship to the
magnitudes of Sx and Sy depends on the relative strengths of
the mechanisms. If the induced surface current mechanism is
sufficiently strong, as illustrated in Fig. 3, then starting with
normal incidence and going to increasing angles, one should
observe a regime of absolute stability; the dominance of par-
allel modes and the dominance of perpendicular modes. For
further insight, it is essential to estimate the strength of the

induced surface current and how it depends on materials and
ion beam parameters, e.g., by methods such as atomistic
simulations.

V. EXPERIMENTAL SIGNATURES

We have described several mechanisms by which surface
dynamics of the form of Eq. �1� can account for regions of
ion beam angle where a flat surface can be stable or unstable.
The mechanisms suggested in the previous two sections pro-
vide some scenarios leading to modifications of the BH co-
efficients in Eq. �1�, and thereby, causing stability of the
bombarded surface at various ranges of angles; there are also
potentially other such mechanisms.

The critical question now is to determine which of the
potential physical effects is operating in experiments; the an-
swer to this question almost certainly depends on the mate-
rial, the ion mass, energy, etc. Beyond the linear stability
analysis itself, this issue is of central importance for devel-
oping a quantitative nonlinear theory of pattern formation; it
is well known33 that accurately identifying the linear disper-
sion relation is critical for deriving a nonlinear theory which
can predict the fully developed pattern.

How can experiments discern the dominant linear �in�sta-
bility mechanism? Here, we present one method for ruling
out some of the possibilities: in particular, we point out the
relevance of the stability-instability transition not only as an
interesting dynamical phenomenon, but as a conceptual tool
to gain valuable information on the general character of the
dynamics of ion sputtered surfaces further away from the
transition.

In general, the linear stability analyses discussed in this
paper result in a dispersion relation of the form13,41

Rq � Re��q� = − Sx
ef fqx

2 − Sy
ef fqy

2 − Bxxqx
4 − Byyqy

4 − Bxyqx
2qy

2

+ ¯ , �31�

which describes the growth rate of a Fourier mode of
h�x ,y , t�:

ĥqx,qy
�t� = ĥqx,qy

�0�ei�qxx+qyy�+�qt. �32�

In Eq. �31�, we have lumped the two quadratic contributions
into Sx,y

eff =Sx,y −�x,y. We focus on the transition between stable
and unstable perpendicular �parallel� modes described by Eq.
�31� as Sy

eff �Sx
eff� changes sign. This is depicted in the left

column of Fig. 4. Here, we assume for simplicity that the
only parameters in Eq. �31� that change appreciably with the
beam angle are Sx

eff and Sy
eff.

The most important feature of this schematic plot is that it
predicts divergence of the pattern wavelength upon reaching
the transition to stable surface dynamics. To see this more
clearly, notice that a condition for the existence of linearly
unstable modes is that max�Rq�, the maximal value of Rq

over all wave vectors q= �qx ,qy�, is positive. Assuming a
smooth dependence of all coefficients on the beam angle, a
transition between stable and unstable surface dynamics cor-
responds to a beam angle for which max�Rq�=0. For simplic-
ity, let us assume that max�Rq� is achieved for q= �qmax,0�.
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Then qmax=�−Sx
eff /2Bxx and max�Rq�=R�qmax,0�=−Sx

eff /4Bxx

=0, implying Sx
eff���→S*=0 and, hence, qmax→0 at the tran-

sition.
A diverging length scale is a strong characteristic signa-

ture of the stability-instability transition, and it is, thus, natu-
ral to ask whether this prediction is valid if other physical
processes, not accounted for in this paper, influence the sur-
face dynamics and, thus, modify the dispersion relation �31�.
We argue that this divergence is expected as long as the
following assumptions are satisfied:

�1� The beam-angle dependence of all coefficients in the
equation is smooth.

�2� The linear dynamics is analytic, ruling out terms like
��h�.

�3� The dynamics is first order in time.
�4� Linear surface dynamics is local, implying it can be

described by a PDE.
Assumption �1� is required because, as can be seen easily

from Fig. 4�a�, a discontinuous “jump” between negative and
positive values of Sx

ef f and Sy
ef f at some beam angle �* may

yield a transition to stable dynamics at �q��0. Physically, a
discontinuous change of parameters is associated with abrupt
changes in material properties, such as amorphization of a
crystalline surface. For such a scenario to be associated with
a smooth change of the beam angle is sufficiently unlikely as
to be a rare occurrence. Assumption �2� is required in order

to make a linear stability analysis meaningful. If this as-
sumption is violated, then the early stage surface dynamics
of an initially flat surface is not described by the dynamics of
independently evolving Fourier modes �32�. Assumption �3�
is expected to hold as long as inertia is neglected. Assump-
tions �3� and �4� together imply that the amplification rate Rq,
which is the real part of the complex eigenfrequency �q,
contains only even positive powers of q. Namely, local pro-
cesses, by which a change of surface height is related to the
variation of erosion or flux rates between a surface point and
its nearest neighbors, can be described by spatial derivatives
of the function h�x ,y , t�. In a dynamics that is first order in
time, the eigenfrequency �q in Eq. �32�, thus, equals a poly-
nomial in q, where all spatial derivatives with odd order �i.e.,
�h and �3h� have imaginary coefficients, and thus, do not
contribute to the amplification rate Rq=Re��q�. Notice also
that the locality assumption rules out the existence of a con-
stant term �i.e., �q0� in Eq. �32�. This is a consequence of the
invariance h→h+const. Therefore, a term �h�x ,y , t� �i.e.,
without spatial derivatives� can appear in the surface dynam-
ics only as a combination respecting this invariance such as

h�x ,y , t�− h̄�t�, where h̄�t�=�dxh�x , t�, and thus, must be as-
sociated with some nonlocal processes.

Thus, under these general assumptions �and neglecting the
possibility that spatial derivatives of order 6 or higher are
dominant in the dynamics�, the amplification rate Rq satisfies
Eq. �31�, the stability-instability transition is depicted by Fig.
4�a�, and the characteristic wavelength at the transition is
predicted to diverge.

Recently, Ziberi42 and George43 have measured the pat-
tern wavelength at several values of beam angles near the
transition to the stable region in silicon, irradiated by noble
gas ions at temperatures where the surface should be amor-
phous and isotropic. The measurements indicate that the
wavelength at the transition remains finite, and may, thus, be
a strong indication that one of the above assumptions is vio-
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FIG. 3. Normalized coefficients Sx, �x, Sy, and �y, comparing the
effect of induced surface currents 	�, Eq. �27�
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length. �c� With Asaro-Tiller nonlocal elastic energy mechanism,
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lated. Anticipating that assumptions �1�–�3� are still valid, we
will discuss here two nonlocal terms, whose introduction
may render the wavelength at the transition finite.

A. Facsko “damping” term

First, let us consider the effect of including a linear term

−K̄	h�x ,y , t�− h̄�t�
, with h̄�t�=�dxh�x , t�, in the surface dy-
namics 	Eq. �1�
. Such a term was recently introduced by
Facsko et al.15 as a possible way to obtain long range ordered
patterns observed in the fully nonlinear regime. The term is
suggested to be a placeholder for a model of redeposition.

With such a term, a constant −K̄ is added to the right-hand
side of the dispersion relation �31�. This is consistent with
the dispersion relation measured by Brown and Erlebacher18

on Si�111� at temperatures where it should remain crystal-
line, with singular surface energetics 	making the validity of
assumption �2� questionable
. The effect of this term on the
transition between stable and unstable dynamics is depicted
in Fig. 4�b�, where it is demonstrated that the characteristic
wavelength does not diverge at the transition, as can be ob-
tained from the following analysis: Again, for simplicity, we
assume that max�Rq� is achieved for q= �qmax ,0�. Here,
again, qmax=�−Sx

ef f /2Bxx but max�Rq�=R�qmax,0�=−K
−Sx

ef f /4Bxx=0, implying Sx
ef f���=S*�0 and, hence, �qmax�

�0 at the transition.

B. Asaro-Tiller mechanism

The Asaro-Tiller elastic energy driven mechanism44,45

gives rise to the instability of solid surfaces under biaxial
in-plane stress. Biaxial compressive stresses are known to
develop in the bombarded solid,46–52 and this effect could be
important in the surface dynamics. Assuming a sinusoidal
modulation of a free surface under biaxial compressive
stress, the tangential stress increases at the troughs �compres-
sion� and decreases at the peaks �dilation� by an amount
proportional to the wave number of the modulation and to
the applied stress �0 in the solid. This increases the chemical
potential at the troughs compared to the peaks and drives a
surface current from the troughs to the peaks that further
amplifies the modulation, thus leading to instability. Includ-
ing this effect in the surface dynamics gives rise to a term
�M�q�3 on the RHS of Eq. �31�,53 where M ��0

2. This term
does not stem from local effects but rather from nonlocal
effects associated with reducing elastic energy throughout
the whole solid. The effect of such a term on the transition
from stable to unstable surface dynamics is depicted in Fig.
4�c�. As usual, we simplify the analysis by assuming that
max�Rq� is achieved for q= �qmax ,0� and solve the two equa-
tions �i� Rq=0 and �ii� �Rq /�q=0, from which we get
Sx

ef f���=S*=M2 /4Bxx�0 and �qmax�=M /2Bxx�0 at the tran-
sition.

In this analysis, we have implicitly assumed that the tran-
sition from stable to unstable dynamics is “supercritical,”
namely, that it is triggered by infinitesimal perturbations, and
thus, associated with a change of sign of max�Rq�. It is also
possible that the transition is “subcritical,” and occurs at pa-
rameters for which the linear stability analysis 	Eq. �31�


yields max�Rq��0. If the transition is subcritical, then the
characteristic wavelength may not diverge even if the linear
dispersion is of the form of Eq. �31�. It is possible to discern
supercritical from subcritical transitions by probing signa-
tures of hysteretic behavior �associated with subcritical but
not with supercritical transitions� and by carefully analyzing
the kinetics of pattern formation. A necessary condition for
the existence of a subcritical transition is that the leading
nonlinear contributions to the dynamics have a destabilizing
effect �unlike the stabilizing nonlinear terms derived in Ref.
13�. Because our analysis is restricted to the linear dynamics,
we will not pursue this possibility further here.

VI. CONCLUSIONS

While the possibility of producing patterned surfaces has
attracted significant attention recently, few experiments have
focused on regions in parameter space where dynamically
stable, smooth surfaces are observed. The existence of these
stable regions contradicts the Bradley-Harper stability analy-
sis, but this is only part of the reason for their importance:
we have argued in this paper that the emergence of stable
surfaces provides important insights into the surface dynam-
ics that are critical for the development of a nonlinear theory
of pattern formation in any parameter regime of ion sputter-
ing. Our major findings are the following.

�1� The Bradley-Harper prediction regarding the instabil-
ity of ion-bombarded surfaces to perpendicular mode ripples
follows from a broad class of purely erosive response func-
tions. This robustness may explain why the Bradley-Harper
picture seems to describe correctly many observations of pat-
tern evolution on ion sputtered surfaces.

�2� Various types of nonerosive response can change the
sign of the coefficient of the second spatial derivative and,
thereby, change the stability of surfaces to the emergence of
large scale patterns. In particular, modifications of the re-
sponse can lead to linear stability of smooth surfaces at vari-
ous ranges of beam angles. These changes can be accompa-
nied by no observable modification of the yield curve.
Evidence for such modifications should, thus, come from
atomistic simulations or from experiments that are capable of
probing the local surface response to a single ion impact.

�3� Careful analysis of qualitative features of the pattern
near the transition between stability and instability of a flat
surface, in particular, the existence or lack of divergence of
the pattern wavelength at the transition, enables us to deter-
mine conclusively whether nonlocal mechanisms signifi-
cantly affect the surface dynamics. The outcome of this
analysis is extremely important: because the existence of
nonlocal terms qualitatively changes the linear dispersion re-
lation, they must be included in the surface dynamics, even
away from the transition regime.

This paper focused on the linear dynamics of ion sput-
tered surfaces. In order to predict and control the fully de-
veloped patterns, it is necessary to extend this to a nonlinear
analysis. The existence of a stable-unstable transition at a
critical beam angle �c presents an excellent opportunity for
quantitative predictions about pattern formation. Typically,
near such a transition, only a few Fourier modes are unstable,
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and the morphology of evolving patterns can generally be
described by a weakly nonlinear “amplitude equation,”
whose form is universal and is determined almost solely by
symmetry considerations.33 In other contexts, such amplitude
equations have been enormously successful at predicting the
shape of the selected patterns and many more features of
their dynamics. Such an approach has not been tried so far
for ion sputtered surfaces, apparently because it has been
assumed that there is no continuous control parameter whose
variation may change the stability of flat surfaces. Recogniz-
ing that the beam angle is exactly such a parameter, at least
for certain surfaces and ion types and energies, may enable
the application of this invaluable theoretical tool to quantita-
tively study pattern formation on ion sputtered surfaces.

We hope that the theoretical directions outlined in this
paper will trigger experimental and computational works that
will lead to a better understanding of the surface response to
ion impact and its relevance to large scale surface dynamics,
and to a better characterization of the transition from stability

to instability of flat surfaces. We believe that such insights
will be important to the development of a quantitative theory
that will predict whether and what types of patterns are
formed on a sputtered surface for a given set of material and
ion beam parameters.
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