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We obtain analytical expressions for the electron self-energy and the electron-phonon coupling in electron-
doped graphene using electron-phonon matrix elements extracted from density functional theory simulations.
From the electron self-energies we calculate angle-resolved photoemission spectra �ARPES�. We demonstrate
that the measured kink at �−0.2 eV from the Fermi level is actually composed of two features, one at �
−0.195 eV due to the twofold-degenerate E2g mode, and a second one at �−0.16 eV due to the A1� mode. The
electron-phonon coupling extracted from the kink observed in ARPES experiments is roughly a factor of 5.5
larger than the calculated one. This disagreement can be only partially reconciled by the inclusion of resolution
effects. Indeed, we show that a finite resolution increases the apparent electron-phonon coupling by underes-
timating the renormalization of the electron velocity at energies larger than the kink positions. The discrepancy
between theory and experiments is thus reduced to a factor of �2.5. From the linewidth of the calculated
ARPES we obtain the electron relaxation time. A comparison with available experimental data in graphene
shows that the electron relaxation time detected in ARPES is almost two orders of magnitudes smaller than that
measured by other experimental techniques.
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I. INTRODUCTION

The recent experimental realization of a single graphene
monolayer has allowed the study of the electronic structure
of a two-dimensional �2D� electron system with Dirac-like
dispersion.1 Despite the fact that the band structure of
graphene is calculated in many solid-state textbooks,2,3 its
experimental verification has been provided only recently by
angular-resolver photoemission spectroscopy �ARPES� mea-
surements on a graphene monolayer deposed on a SiC
substrate.4–6 The peculiar features of the electronic structure
predicted theoretically are qualitatively confirmed by experi-
ments: the carbon � bands �i� cross at the K point in the
Brillouin zone �Dirac point� and �ii� depart linearly with a
slope v f from the Dirac point; �iii� the Fermi velocity ex-
tracted from experiments5 is slightly larger �10–20%� than
that calculated theoretically using density functional theory
�DFT�.

In addition to this encouraging agreement between theory
and experience, recent angular photoemission experiments6,7

performed on graphene revealed remarkable surprises. Two
kinks are seen in the ARPES dispersion: the first one is at
energies of 0.2 eV below the Fermi level �� f� and its energy
position with respect to � f is unchanged as a function of the
doping level, while the second one is closer to the Dirac
point and its energy position with respect to � f decreases
rapidly as the doping level is increased �see Fig. 2 in Ref. 6�.
The first kink has been attributed to a phonon feature,6 while
the second kink has been interpreted as due to a plasmon.6,8

In what follows we focus on the first kink.
The ARPES momentum distribution curves �MDCs� asso-

ciated with the −0.2 eV kink display a puzzling behavior as a
function of doping. Indeed, it is observed that the magnitude
of the jump associated with the MDC linewidth in the −0.5
��−� f �0 eV energy window decreases as a function of
doping �see Fig. 3 in Ref. 6, where from top to bottom the

jump increases�. This is surprising since, if this jump is as-
sociated with the electron-phonon interaction, then it should
reflect the imaginary part of the electron self-energy due to
the electron-phonon interaction. Since the magnitude of this
interaction is usually proportional to the density of states at
the Fermi level, the jump should increase as the doping level
is increased. Thus the opposite behavior should be expected.
This contradiction can be solved by noting that at low doping
the tail of the second peak �attributed to a plasmon� is fairly
close in energy and could affect the low-energy part of the
momentum distribution curve. At larger dopings9 the plas-
mon peak has no effect, and the electron-phonon coupling
does increase as a function of doping. Thus we focus in the
doping region identified by � f �0.3 eV �the energy zero be-
ing at the Dirac point�.

In this work, we calculate the electron-phonon coupling
parameter and the electron-phonon coupling contribution to
the electron self-energy in doped graphene. In particular, we
give an explicit demonstration of Eq. �1� in Ref. 10. From
the electron self-energy we obtain the spectral-weight func-
tion and the ARPES spectra. Finally, we compare the calcu-
lated spectra with available experimental data, discussing in
detail the important finite-resolution effects.

The paper is structured as follows. In Sec. II we obtain an
analytical expression for the electron-phonon coupling in
doped graphene. The electron self-energy is calculated in
sec. III. The ARPES spectra are calculated from the electron
self-energy in Sec. IV, including finite-resolution effects. Fi-
nally, in Sec. V we compare the electron relaxation time
measured by different experimental techniques for both
electron-doped graphene and graphite. Section VI is devoted
to conclusions.

II. ELECTRON-PHONON COUPLING IN DOPED
GRAPHENE

The 2D volume of the graphene Brillouin-zone �BZ� is
�= �2/�3��2� /a�2 with a=2.46 Å. The graphene �* bare
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bands �in the absence of electron-phonon coupling� are linear
with slope �=�v f =5.52 eV Å �within DFT� close to the
Dirac points K= �1/3 ,1 /3 ,0�2� /a and K�=2K. The density
of states per spin at a general energy � above or below the
Dirac point, but still in the region where the �* bands can be
considered linear, can thus be written as

N	��� =
a2�3���
2��2 =

4����
��2 . �1�

Note that in this work energies are always measured with
respect to the Dirac point.

The electron-phonon coupling for a mode 
 at momentum
q due to the �* bands in graphene is given by

�q
 =
2

��q
N	�� f�
�

BZ

dk

�
�gk�*k+q�*


 �2

 ���k − � f����k+q − � f� , �2�

where �q
 is the phonon frequency of the mode 
 at momen-
tum q and gk�*k+q�*


 is the electron-phonon matrix element
for the �* band �k and for the phonon mode 
.

To illustrate how the integral is evaluated, we introduce
the following two regions of space, namely, the sets

FK��� = �k� ��k − K� � � + �� , �3�

FK���� = �k� ��k − K�� � � + �� . �4�

In these definitions, � is a small positive quantity. For �=� f,
since we assume that the Fermi level is not too far from the
Dirac point so that the �* bands are linear, �k−K� or �k
−K�� is a small but finite vector and FK�� f��FK��� f� is
empty. The boundary of each region of space at �=0 �cir-
cumference� is indicated as �FK�� f� and �FK��� f�.

In Eq. �2�, the two � functions restrict the k integrations to
the region of space satisfying the conditions �k=� f and
�k+q=� f. The set of k points such that �k=� f is composed by
the set �FK�� f���FK��� f�. Thus, in the integral in Eq. �2�,
two cases are given �labeling k�=k+q�: �i� k ,k���FK�� f�
or k ,k���FK��� f�, and �ii� k��FK�� f�, k���FK��� f�, or
vice versa.

In case �i�, scattering occurs at q=�+ q̃, with small q̃, and
�* bands can only couple to the twofold-degenerate E2g pho-

non mode. In case �ii�, scattering occurs at q=K+ k̃ or at q
=K�+ k̃, with small k̃, and the �* bands can only couple to
the A1� phonon mode.11 The electron-phonon matrix elements
involved in the two scattering process have been fitted to ab
initio data in Ref. 11 and are

�g
K+k̃�*,K+k̃+q̃�*

E2g �2 = 	g�
2 
�1 ± cos��k̃,q̃ + �k̃,k̃+q̃�� , �5�

�g
K+k̃�*,K�+k̃+q̃�*

A1� �2 = 	gK
2 
�1 − cos��k̃,k̃+q̃�� . �6�

In Eq. �5� � ��� sign refers to the LO �TO� E2g mode,
respectively, 	g�

2 
=0.0405 eV2, 	gK
2 
=0.0994 eV2, and �u,v is

the minimal angle between the two vectors u ,v.
For case �i� one has

�q̃E2g
=

2  2  2	g�
2 
F

��q̃E2g
N	�� f�

�
F���f�

d2k̃

�

 ���K+k̃ − � f����K+k̃+q̃ − � f� =
8	g�

2 
F

��q̃E2g
N	�� f�

Iq̃,

�7�

where

F���� = �k� �k � � + �� . �8�

The prefactor 8 is the result of having two E2g modes and of
having an identical integral over the second Fermi surface
sheet at K�. The integral Iq̃ is the so-called nesting factor,
defined as

Iq̃ = �
F���f�

d2k̃

�
���K+k̃ − � f����K+k̃+q̃ − � f� . �9�

The electron-phonon coupling due to E2g modes is given
by

���� f� = �
F��2�f�

d2q̃

�
�q̃E2g

=
2	g�

2 
F

���E2g

, �10�

where we have used the fact that

�
F��2�f�

d2q̃

�
Iq̃ = N	

2�� f�/4, �11�

and we have replaced the E2g phonon frequency with its
value at �.

Similarly, case �ii� leads to

�K+q̃A1�
=

2  2	gK
2 
F

��K+q̃A1�
N	�� f�

�
FK��f�

d2k̃

�
�1 − cos��k̃,k̃+q̃��

 ���K�+k̃ − � f����K+k̃+q̃ − � f�

=
4	gK

2 
F

��K+q̃A1�
N	�� f�

JK+q̃, �12�

and the additional factor of 2 is a result of having scattering
from FK�� f� to FK��� f� and vice versa. The quantity

JK+q̃ = �
FK��f�

d2k̃

�
�1 − cos��k̃,k̃+q̃��

 ���K�+k̃ − � f����K+k̃+q̃ − � f� �13�

and its integral over the momentum q̃ are evaluated in Ap-
pendix A, so that the contribution of the A1� mode to the
electron-phonon coupling is

�K�� f� = �
FK�2�f�

d2q̃

�
�K+q̃A1�

=
	gK

2 
FN	�� f�
��KA1�

, �14�

where we have approximated �K+q̃A1�
��KA1�

.
The total electron-phonon coupling is thus
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��� f� = N	�� f� 2	g�
2 
F

���E2g

+
	gK

2 
F

��q̃A1�
� �15�

which is Eq. �1� in Ref. 10. Using numerical values of
���E2g

=0.195 eV and ��KA1�
=0.16 eV, we get

��� f� = N	�� f��1.04 eV� =
4�3/2�n

��
�1.04 eV� = 5.55�n

 10−9 cm, �16�

where n is the number of electron per surface area.

III. ELECTRON SELF-ENERGY AND ANGLE-RESOLVED
PHOTOEMISSION

The lowest contribution to the retarded electron self-
energy due to coupling of �* electrons to a phonon mode 
 is
illustrated in Fig. 1. At zero temperature direct calculation12

of the diagram gives:

�
�k,�� = �
�=�−1,1�

�
BZ

d2q

�
�gk�*,k+q�*


 �2

  ���� f − ��k+q�
� + i� − ��k+q� + ���q


� �17�

where ��x� is the Heaviside function. The imaginary part of
Eq. �17� is

�
��k,�� = − � �
�=�−1,1�

�
BZ

d2q

�
�gk�*,k+q�*


 �2

 ���� f − ��k+q���� − �k+q + ���q
�

= − � �
�=�−1,1�

���� f − �� − ��q
�

 �
BZ

d2k�

�
�gk�*,k��*


 �2��� − �k� + ���k�−k
� .

�18�

In angular-resolved photoemission experiments, the
graphene is electron doped, so the Fermi level is larger than
the Dirac point but it is still in the region where �k can be
considered linear. For a given mode 
 and a given value of �,
the � function in Eq. �18� restricts the BZ integration to two
regions, close to K and to K�. The restriction to these regions
of k space and the fact that we are interested in the region of
energy-momentum close to the Dirac point, namely, k=K
+ k̃ with k̃ small, furthermore restricts the integration region.
Indeed, it implies that for small q̃ �i� q= q̃ and �ii� q=K+ q̃.

Case �i� represents scattering to phonons close to the � point
and �ii� to phonons close to the K point. So the situation is
similar to the previous electron-phonon calculation.

The total self-energy ��=�
=�E2g,A1���
� due to the two E2g

phonon modes at � and to the A1� phonon mode at K is
obtained by substituting Eqs. �5� and �6� in Eq. �18�, assum-
ing a constant phonon dispersion around � and K and per-
forming the integration over the BZ, as

���k̃,�� = −
�

2 �
�=�−1,1�

����E2g
���� − ����E2g

�

 ���� f − �� − ���E2g
� + ��KA1�

�K�� − ���KA1�
�

 ���� f − �� − ��KA1�
�� , �19�

where ����−���E2g
� and �K��−��KA1�

� are defined in Eqs.
�10� and �14�, respectively. From Eq. �19� we note that for

small k̃ the imaginary part of the phonon self-energy is mo-

mentum independent, so in what follows we drop the k̃ label.
����� is illustrated in Fig. 2 �black lines�.

The imaginary part in Eq. �19� has to be compared with
the square well model which is obtained from Eq. �19�, as-
suming a constant density of states. This is the commonly
used approximation to interpret ARPES spectra.13,14 The
square well model is illustrated in Fig. 2 �red �dashed� line�.
In graphene this approximation is in principle not allowed
because the density of states is proportional to ��� �see Eq.
�1��. The difference between the two models becomes rel-
evant for energies smaller than or close to the Dirac point.

The real part of the electron self-energy can be obtained
using the Kramers-Kronig relations, namely,

Σ( k, ω)=

FIG. 1. �Color online� Lowest-order contribution to the electron
self-energy due to the electron-phonon interaction. The dotted �con-
tinuous� line represents the phonon �electron� self-energy. -0.01
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FIG. 2. �Color online� Real ���� and imaginary ���� parts of the
electron self-energy in graphene �continuous line�. Dashed lines re-
fer to self-energy parts obtained using a constant density of states.
The Fermi level is � f =0.4 eV.
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����� =
1

�
P�

−�

� ������
�� − �

d��. �20�

If the self-energy in Eq. �19� is used, then ����� diverges at
large ��� due to the ��� dependence of the density of states.
This divergence is unphysical, since the phonons are coupled
to � electrons which have a finite bandwidth. Thus the di-
vergence needs to be regularized with a cutoff compatible

with the finite-bandwidth requirement, as is customary in
graphene �see, for example, Refs. 8, 15, and 16�. We adopted
the following regularization:

�reg� ��� = ������ if ��� � �M ,

����M� if �M � ��� .� �21�

With this assumption, the calculation of the integral in Eq.
�20� leads to

����� = − N	�� f�	g�
2 
�� + ���E2g

��− 2 ln�� + ���E2g
� + ln���M + ���� f − ���E2g

− ���� + �� − ���E2g
�ln� �M − �

� f + ���E2g
− �
��

−
N	�� f�	gK

2 

2 �� + ��KA1�

��− 2 ln�� + ��KA1�
� + ln���M + ���� f − ��KA1�

− ���� + �� − ��KA1�
�ln� �M − �

� f + ���A1�
− ���

− N	�� f�	g�
2 
�� − ���E2g

� +
	gK

2 

2

�� − ��KA1�
��  ln� �M + �

�M − �
�� . �22�

In practical calculations we verified that the results are
unaffected17 by the choice of �M in the range of 1–7 eV. The
results presented in this work are with �M =1.5 eV.

The real part of the electron self-energy is illustrated in
Fig. 2 and is compared with the real part obtained from the
Kramers-Kronig transformation of ����� with a constant
density of states.

In ARPES experiments the spectral weight is measured,
namely,18

A�k,�� =
− 2������ + ��

�� − �k − ������2 + ������ + ��2 , �23�

where we allowed for a small constant imaginary part � to
eliminate numerical instabilities. Typically, �=10−4 eV

IV. RESULTS

In this section we consider a Fermi level of � f =0.4 eV
measured from the Dirac point. Neglecting resolution effects,
the spectral function �Eq. �23�� is shown in Fig. 3 �top�. The
scans presented are fixed photoelectron energy scans �the
energy value is given on the left of Fig. 3 top� while the
photoelectron momentum is varied �MDC scans�. In the
MDC scans two kinks are present �compare scans g and h for
the first kink and scans e and d for the second� in both the
spectral-weight maximum position and linewidth.

The behavior of the MDC maximum position as a func-
tion of energy and momentum is illustrated in Fig. 3 �bot-
tom�. The lower-energy kink corresponds to the twofold-
degenerate E2g mode, while the higher-energy one
corresponds to the A1� mode.

The behavior of the MDC linewidth �half width at half
maximum �HWHM�� as a function of energy is shown in
Fig. 4. Notice that, in the absence of resolution effects, the

linewidth is equal to −������. The behavior of the linewidth
is compared with that of the square well model typically
used to interpret ARPES data. The differences are negligible
at energies larger than −0.2 eV, but they are significant at
lower energies and in particular at the Dirac point.

To test the robustness of the phonon features against ex-
perimental resolution, we introduce the following convoluted
spectral weight:

Aexpt�k,�� = f����
−�

�

d��� d3k�

 A�k�,���G��
��� − ��G�k

�k� − k� , �24�

where G�x
�x� is a Gaussian having full width �x and centered

at x=0. The Fermi distribution is indicated by

f��� =
1

exp��� − � f�/kBT� + 1
. �25�

This form of the experimental resolution assumes that the
momentum and energy resolutions are decoupled.

We chose ��=25 meV and �k=0.01 Å−1, as in recent
ARPES experiments.6,9 The maximum position in Aexpt�k ,��
is plotted in Fig. 5.

As can be seen, the experimental resolution substantially
smears out the two kinks so that a very weak kink is visible
at −0.2 eV while the second one is almost invisible. The kink
is substantially smaller than that detected in experiments.6

The mass enhancement parameter is defined as12,13

� = −� ������
��

�
�=�f

. �26�

Linearizing ������−��, the spectral weight becomes �for
�=0�
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A�k,�� �
− 2�����Z2

�� − Z�k�2 + ������Z�2 , �27�

where

Z =
1

1 + �
�28�

is the quasiparticle weight. From Eq. �27� one sees that the
quasiparticle state has quasiparticle energy Z�k and linewidth

�����Z /2. In graphene the bare bands are linear, with �k

=�k, so that the maximum position in the spectral weight at
energies higher than the kink is given by the relation

�k
max =

�k

1 + �
. �29�

Assuming linear renormalized bands, �k=�phk, for energies
larger than the kink then the following expression for � is
obtained:

� =
�

�ph
− 1. �30�

In experiments, �ph is obtained from a linear fit at energies
higher than the kink but enough below � f so that the effects
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FIG. 3. MDC scans for different energies �top� and ARPES
maximum position as a function of energy and momentum �bot-
tom�. The Fermi level is � f =0.4 eV; the experimental resolution is
not included in the calculation. A 1 meV broadening is used for
illustration purposes.
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of the Fermi function in Eq. �24� are absent. In contrast, the
value of � is not directly measurable in experiments, since it
is not possible to switch off the electron-phonon interaction.
If ����� is well described by a square model �which is not
the case for graphene�, the real part of the self-energy tends
to zero at large energies below the kink �see Fig. 2, lower
panel, red dashed line�, and the slope of the renormalized
bands tends to that of the bare bands. On the contrary, if the
more realistic model for ����� is used, then the slope of the

bands below the kink is also renormalized to a value �̃ �Fig.
2, lower panel, black continuous line�. In ARPES experi-
ments on graphene, the square model is assumed to be valid,
and thus the slope of the bare bands is obtained from a linear
fit to the maximum position in the MDC curves at energies
below the kink �in the range −0.7 to −0.25 eV from the

Fermi level�. This actually measures �̃ and not �.
An additional problem in obtaining � from experiments is

the finite experimental resolution, which affects the value of
�ph. In Fig. 6 we plot the shift of the maximum in the MDC
curves due to the electron-phonon coupling, ���k ,�k

max�, with
�b� and without �a� the experimental resolution. In the ab-
sence of experimental resolution we extract the derivative of
the curve at kf �dotted black line�, while in the presence of a
finite resolution we perform a linear fit �dashed red line� in
the range used in experiments �−0.195��−� f �−0.04 eV�.
The values of �ph extracted in these two ways differ by a
factor of 1.8. Indeed, the nonlinearity of the renormalized
band above the kink, when convoluted with a finite resolu-
tion, results in a quasilinear behavior with an “apparent” en-
hanced electron-phonon coupling.

In Fig. 7 we compare the values of the electron-phonon
coupling determined in experiments9 with the DFT values
obtained by Eq. �15� and that obtained from the equation �

= �̃ /�ph−1 where both �̃ and �ph are fitted from theoretical
MDC taking into account experimental resolution.

Notice that the three determinations of � are in clear dis-
agreement, even if the disagreement between experimental
data and Eq. �15� is significantly reduced by resolution ef-
fects. A possible source of error in the DFT results is the
underestimation of the slope � of the bare bands; the Fermi
velocity extracted from experiments5 is slightly larger �10–
20%� than that calculated theoretically using density func-
tional theory. However, using the experimental �, the dis-
agreement between the ARPES-measured � and the
theoretical values gets even worse. Indeed, assuming that the
DFT electron-phonon matrix elements are correct, � scales
as �n�−1 �Eq. �30��; therefore an underestimation of � results
in an overestimation of �.

For the reasons explained in this section, we believe that
the determination of � using Eq. �30� is affected by large
errors. The errors are due to the difficulties in the determina-
tion of both �ph and the slope of the bare bands.

V. ELECTRON RELAXATION TIMES IN GRAPHITE AND
GRAPHENE

A. Electron-doped graphene

It is interesting to compare the ARPES-measured self-
energy imaginary part with that detected by alternative ex-
perimental techniques. In electron-doped graphene, the elec-
tron relaxation time has been determined experimentally by
conductivity and mobility data19 and by angular-resolved
photoemission measurements.6 The mobility measurement
detects the scattering time of electrons at energies ��−� f �
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�kBT, where kB is the Boltzmann constant and T is the tem-
perature at which the experiment is performed �T�300 K�.
As shown in Appendix B, this leads to an electron scattering
time of the order of

� = 0.35 ps �from mobility� �31�

for � f �0.2 eV. Since the Debye temperature of the optical
phonon in graphene is much larger then 300 K, the scattering
in the mobility measurements is mainly due to defects and
acoustic phonons.

ARPES measures the electron self-energy at photoemitted
electron energies �. The imaginary part of the electron self-
energy is related to the electron scattering time by the rela-
tion ����=� / �2������. From the data in Refs. 6 and 7 for
��−� f��kBT, we obtain

� � 3.5 fs �from ARPES� , �32�

which is two orders of magnitude smaller than Eq. �31�.

B. Graphite

In graphite the electron scattering time has been measured
by two different experimental techniques, �i� femtosecond
time-resolved spectroscopy20 and �ii� ARPES.

From femtosecond time-resolved spectroscopy,20

� ��0.2 ps for �� − � f� = 0.25 eV

0.1 ps for �� − � f� = 0.50 eV
��from femtosecond

time-resolved spectroscopy� . �33�

Similar to what happens in graphene, ARPES
measurements4,5,21,22 lead to a relaxation time two orders of
magnitude smaller than that obtained from the femtosecond
photoemission spectroscopy. For example, from the mea-
sured ARPES linewidth in Ref. 22 �see Fig. 10�c��, we obtain

� ��4.7 fs for �� − � f� = 0.25 eV

3.4 fs for �� − � f� = 0.50 eV
� �from ARPES� .

�34�

VI. CONCLUSIONS

In this work we calculated the electron-phonon coupling
parameter and the electron-phonon coupling contribution to
the electron self-energy in doped graphene. From the elec-
tron self-energy we obtained the spectral-weight function
and the ARPES spectra.

The ARPES spectra as a function of momentum and en-
ergy displays two kinks. The kinks are at energies �−� f �
−0.195 and −0.16 eV, where � f is the Fermi level. The two
kinks are due to coupling to the twofold-degenerate E2g
mode and to the A1� mode, respectively. The MDC linewidth
as a function of energy is discontinuous �jumps� at the E2g
and A1� phonon energies.

Comparing the calculated electron-phonon coupling with
that extracted from ARPES experiments, we found that, for
large enough electron doping, the latter is roughly a factor of
5.5 larger than the former, as suggested in Ref. 9. We par-

tially solved this contradiction by including finite-resolution
effects. Indeed, in experiments the electron-phonon coupling
is determined from the ratio of the electron velocities at
higher and lower energies with respect to the kink. The ve-
locities are obtained from the slopes of the maximum posi-
tion of the ARPES spectra as a function of energy and mo-
mentum. We find that the slope above the kink is
substantially affected by the presence of a finite resolution
and the extracted values of the electron-phonon coupling are
�2.2 larger than is obtained without any resolution effect.
Thus when comparing calculated spectra with the inclusion
of finite-resolution effects to ARPES experiments,6,9 we re-
mark that the measured electron-phonon coupling is still a
factor of 2.5 larger than the calculated one.10 Thus this work
shows once more23 the importance of including resolution
effects to correctly describe ARPES data.

Finally, from the imaginary part of the electron self-
energy, we obtain the electron relaxation time. The calcu-
lated electron relaxation time is in good agreement with mo-
bility data on electron-doped graphene and is of the same
order of magnitude as the electron relaxation time obtained
from conductivity and femtosecond time-resolved spectros-
copy measurements in graphite. However, this is in strong
disagreement with ARPES measurements, the ARPES relax-
ation times, in both graphene and graphite, being almost two
orders of magnitude smaller. This discrepancy essentially re-
flects the disagreement in the measured and calculated
electron-phonon coupling. The aforementioned disagreement
in the electron self-energies is even more surprising when
considering that previous DFT calculations of the phonon
self-energy in graphene, graphite, and nanotubes were found
to be in perfect agreement with experimental data concerning
phonon dispersion and phonon lifetimes.24–26 Since the elec-
tron and phonon self-energies involve the same vertex, and
thus the same matrix elements, a good agreement would be
expected even for the electron self-energies too.

Recently, we became aware of two similar works on the
subject.15,27 The results, based on first-principles DFT calcu-
lations, presented in Ref. 27 are very similar to ours. Instead,
the � values used in Ref. 15 are twice the DFT values found
here or in Ref. 27.
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APPENDIX A: EVALUATION OF THE INTEGRAL JK+q̃

In Eq. �12�, �k̄,k̃+q̃=2�k̃q̃−�, so that 1−cos��k̃,k̃+q̃�
=2 cos2��k̃q̃� and the integral JK+q̃ �see Eq. �13�� can be
evaluated as
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JK+q̃ = �
0

2�

d�k̃q̃� dk̃

�
2k̃ cos2��k̃q̃����k̃ − �kf�  ����k̃ + q̃� − �kf�

=
2� f

��3�
0

2�

d�k̃q̃ cos2��k̃q̃�  �„�kf
2 + q̃2 + 2k̃q̃ cos��k̃q̃� − kf…

=
2kf

��2 �
�=1,2

�
−1

1

d�cos��kq
� ���cos��

k̃q̃

� � +
q̃

2kf
� 

cos2��
k̃q̃

� ��kf
2 + q̃2 + 2kfq̃ cos��

k̃q̃

� �

kfq̃�sin��
k̃q̃

� ��

=
2

��2

q̃/2kf

�1 − q̃2/4kf
2

. �A1�

Furthermore, the integral of such a quantity is

A = �
FK�2�f�

d2q̃

�
JK+q̃ =

2

�2�2�
FK�2�f�

d2q̃
q/2kf

�1 − q2/4kf
2

=
8kf

2

�2�2�
0

2�

d��
0

1

dy
y2

�1 − y2

=
2�8kf

2

�2�2 �−
y�1 − y2

2
+

1

2
arcsin�y��

0

1

=
16�kf

2

�2�2

�

4
=

16�2� f
2

�2�4

1

4
=

N	
2�� f�
4

. �A2�

APPENDIX B: FROM MOBILITY TO ELECTRON
RELAXATION TIME

The conductivity tensor is28

	 = 2e2�


� d2k

�2��2�
�k�v
�k� · v
�k�−
�f

��
�

�=�
�k�
.

�B1�

Equation �B1� should then be divided by 2 since we are
interested in only one component of the conductivity tensor.
Moreover, we consider only intraband transitions since they
are only relevant at low temperature. The graphite bands are
linear so that �k= ±�k= ±�v fk where k measure the distance
from the K point. At zero temperature, only electrons on the
Fermi surface contribute to the integral; thus, assuming a
constant relaxation time, one gets

	 � 2e2�



v f
2��

FK

dk k

�2��2�
0

2�

d� ��� f − �k
�

= e2�



v f
2�

�2v f
2

� f

�
=

e2�� f

�2�
, �B2�

so that

� =
�2�	

e2� f
. �B3�

The conductivity can be written as a function of the mobility
as 	=ne�, where n is the number of electrons participating
in conduction per surface area. Using Eq. �1� in Ref. 25 n
=� f

2 / ���2� and 	=� f
2e� / ���2�. Thus the relaxation time be-

comes

� =
�2�n�

e� f
=

�2� f�

e�2 , �B4�

where � f is expressed in eV and � in cm2/ V s. Expressing
the mobility in m2/ V s one gets

� = 1.47  10−12� f� = 1.47  � f� ps. �B5�

Using the values of Ref. 19 for mobility, one gets at large
doping �� f �0.18 eV� values of the order of 0.35 ps.
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