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We investigate, analytically and numerically, the effects of disorder on the density of states and on the
localization properties of relativistic two-dimensional fermions in the lowest Landau level. Employing a su-
persymmetric technique, we calculate the exact density of states for the Cauchy �Lorentzian� distribution for
various types of disorder. We use a numerical technique to establish the localization-delocalization �LD�
transition in the lowest Landau level. For some types of disorder, the LD transition is shown to belong to a
different universality class, as compared to the corresponding nonrelativistic problem. The results are relevant
to the integer quantum Hall plateau transitions observed in graphene.
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I. INTRODUCTION

Recent experiments1 have unraveled a fascinating set of
phenomena in the atomically thin layer of hexagonally ar-
ranged carbon atoms known as graphene.2 The quasiparticles
of graphene are �2+1�-dimensional massless Weyl fer-
mions.3,4 In the context of condensed matter physics, their
properties are strikingly different from those of nonrelativis-
tic fermions; and phenomena that are hard to realize for the
relativistic case, such as the Klein paradox or the Zitter-
bewegung, are accessible in graphene.5 It is perhaps not an
exaggeration to remark that many subtleties and a rich set of
phenomenology are waiting to be discovered.

A. Quantum Hall effect

A highlight has been the observation of an unconventional
quantum Hall effect6–8 and the corresponding theoretical
development.9–18 In graphene the filling fractions are �f

= ±4�n+ 1
2

� for magnetic field B�9 T, where n is an inte-
ger.6–8 The factor of 4 comes from the twofold spin degen-
eracy and the twofold nodal degeneracy of the Landau lev-
els. The Zeeman splitting is negligible compared to the cy-
clotron frequency and the disorder broadening of the Landau
levels. The factor of 1 /2 is due to a zero mode in the Landau
level spectrum of Dirac fermions.9–11

For stronger magnetic fields, 20�B�45 T, plateaus ap-
pear at �f=0 , ±1 , ±2q, where q is an integer.8 The plateaus
at �f=0 , ±1 can be explained by the lifting of both the spin
and the nodal degeneracies in the lowest Landau level
�LLL�, but those at �f= ±4, ±6, . . . reflect only the removal
of spin degeneracy in higher Landau levels. The removal of
nodal degeneracy requires electron-electron interaction.
Mechanisms suggested include SU�4� ferromagnetism,14,15

sublattice symmetry breaking due to short-range inter-
actions,16 and the generation of a mass gap by magnetic
catalysis.17–19 SU�4� quantum Hall ferromagnetism predicts
plateaus at all odd integer filling fractions. However, apart
from �f= ±1, the plateaus at �f= ±3, ±5, . . . have not yet
been observed.

B. Localization-delocalization transition

The special quantization rules in graphene are explained
by the relativistic Landau levels, modified perhaps by inter-

actions, but for the existence of Hall plateaus the Laughlin
argument is necessary.20 According to this argument, the ex-
tended states at the center of a Landau band are separated by
the localized states elsewhere. If the Fermi energy falls in the
mobility gap, the plateaus are explained by a gauge invari-
ance argument that is remarkably robust. The underlying
phenomenon, therefore, is a localization-delocalization �LD�
transition at the band center.20–23 The conventional integer
quantum Hall �IQH� plateau transition has been widely stud-
ied, and it is known that the localization length exponent �
� 7

3 .24–31 Can we prove that the same argument applies to
graphene, and, if so, does the LD transition belong to the
same universality class?

C. Disorder and Dirac fermions

In the absence of a magnetic field, Dirac fermions in the
presence of disorder have been widely studied in systems as
varied as gapless semiconductors,32 gapless supercon-
ductors,33,34 and IQH plateau transitions.35,36 As compared to
nonrelativistic fermions, the localization problem of Dirac
fermions is richer because of a number of discrete symme-
tries. More specifically, if the disorder is particle-hole sym-
metric, for example a random gauge field, the LD transition
takes place at zero energy and is reflected in the single-
particle density of states �DOS�, in contrast to the conven-
tional metal-insulator transition where the DOS is smooth
through the LD transition. Surprisingly, there is a line of
fixed points with continuously varying exponents depending
on the disorder coupling constant.33,34,36–38 Some of the un-
usual behaviors of disordered Dirac fermions may be ex-
pected to be realized in graphene. One such effect that has
received considerable attention is the weak �anti�localization
phenomenon.39–44 However, relativistic Landau levels in the
presence of disorder have not yet received much atten-
tion.11,45–48 Here we provide a reasonably complete study of
the possible effects.

There is another important reason why LD transitions in
the relativistic Landau level should be carefully analyzed. In
the conventional IQH effect, the spin-degenerate plateau
transition corresponds to ��4.6 when it is assumed that the
LD transition takes place at a single energy at the band
center.49–52 This has led to intense theoretical investigation of
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the LD transition in the spin-degenerate Landau band.53–57

When spin-orbit scattering is included, the LD transition is
found to occur at two distinct energies, away from the band
center. Scaling analysis about these distinct energies shows,
once again, that ��7/3, as in the spin-polarized system. The
scaling about a single energy at the band center leads to the
effective exponent ��4.6. One should anticipate a similar
discrepancy between the spin- and the nodal-polarized IQH
effect and the fourfold-degenerate IQH effect in graphene.

D. Graphene in the lowest Landau level

For simplicity we shall concentrate on the spin-polarized
lowest Landau level of graphene and analyze the LD transi-
tion both in the presence and in the absence of nodal degen-
eracy. An interesting example of a controlled analytic calcu-
lation in the disordered Landau level problem is the DOS in
the LLL. This was first computed exactly by Wegner58 by
examining the Euler trails of the impurity diagrams for white
noise disorder and was subsequently extended by Brezin et
al.59 by using a supersymmetric �SUSY� technique. Here we
also obtain some exact results for the DOS in the disordered
relativistic LLL using SUSY techniques.

The most general model of disorder consists of a random
potential, a random mass, a random gauge field, and a ran-
dom internode scattering; however, the random gauge field
leaves the LLL unperturbed. After projection to the spin-
polarized LLL, we study the following Hamiltonian:

ĤLLL = m�3 + �
j=0

3

Vj�r��� j , �1�

where V0�r�� and V3�r�� represent potential and mass disor-
ders, respectively, and V1�r�� and V2�r�� describe internode
scattering effects. The mass m of the fermions has been in-
cluded to study the effect of the removal of the nodal degen-
eracy. For simplicity we have omitted the constant Zeeman
energy. The 2�2 matrix �0 is the identity matrix and �1, �2,
and �3 are the three Pauli matrices.

E. Summary of results

Because of the large number of cases involved, it is useful
to summarize the results for the LD transition. Let g0, g3, g1,
and g2 denote the widths of the Gaussian random distribu-
tions corresponding to the random potential, random mass,
and random internode scatterings, respectively.

1. m=0

The list of possible cases is as follows. �1� g0�0, g3
=g1=g2=0; �2� g3�0, g0=g1=g2=0; �3� g2�0, g0=g3=g1
=0; �4� g1�0, g0=g3=g2=0; �5� g0�0, g3�0, g1=g2=0;
�6� g0�0, g2�0, g3=g1=0; �7� g0�0, g1�0, g3=g2=0; �8�
g3�0, g2�0, g0=g1=0; �9� g3�0, g1�0, g0=g2=0; �10�
g2�0, g1�0, g0=g3=0; �11� g0�0, g3�0, g2�0, g1=0;
�12� g0�0, g3�0, g1�0, g2=0; �13� g0�0, g2�0, g1�0,
g3=0; �14� g3�0, g2�0, g1�0, g0=0; and �15� g0�0, g3
�0, g2�0, g1�0.

In the cases 1 and 2, when disorder does not mix the two
nodes, the LD transitions belong to the conventional IQH
universality class with ��7/3. It is interesting to note that
mass disorder produces a LD transition in the LLL, whereas
for zero magnetic field random mass is known to be an irrel-
evant perturbation for the �2+1�-dimensional Dirac
fermions.36 The Hamiltonians for cases 2, 3, and 4 involve
only a single Pauli matrix at a time, related to each other by
unitary transformations. Thus, cases 2, 3, and 4 are equiva-
lent to each other and have ��7/3. Because unitary trans-
formations leave the identity matrix invariant, the same ar-
gument implies that cases 5, 6, and 7 are equivalent to each
other and once again ��7/3.

Cases 8, 9, and 10 involve a pair of Pauli matrices and are
equivalent to each other. In case 8 the Hamiltonian has a
discrete symmetry �1H�1=−H, often called particle-hole
symmetry. Cases 9 and 10 have the same discrete symmetry
with respect to �2 and �3. Case 10 has been analyzed by
Hikami et al.60 for a spin-degenerate nonrelativistic LLL.
When g1=g2, the DOS diverges at the band center and has
two symmetrically located peaks away from it. The LD tran-
sition takes place at these three distinct energies. Away from
the band center the LD transition has the exponent ��2.98
and the transition at the band center corresponds to a differ-
ent exponent. If g1�g2, the divergence of the DOS at the
band center disappears, but the two symmetrically placed
peaks away from the band center still exist. We find that the
LD transitions at these two energies have continuously vary-
ing exponents depending on the ratio g2 /g1.

Cases 11, 12, and 13 are equivalent. The Hamiltonians in
these cases are, respectively, the Hamiltonians for cases 8, 9,
and 10, augmented by the identity matrix corresponding to
the potential disorder. Potential disorder breaks the discrete
symmetry mentioned above, and there is no divergence of
the DOS at the band center. The DOS is still peaked at two
symmetrically placed energies away from the band center.
The LD transitions occur at energies away from the band
center. If g0 is much smaller than the two remaining coupling
constants, � follows trends similar to those in cases 8, 9, and
10. If g0 is comparable or larger, we find ��7/3.

In case 14 all three Pauli matrices are present. The dis-
crete symmetry of cases 8, 9, and 10 are absent, and the LD
transitions take place at two symmetrically placed energies
away from the band center. When all the coupling constants
are equal, the exponent ��3.6. Depending on the relative
strengths of the coupling constants, the exponents vary con-
tinuously. If any particular coupling constant is significantly
larger than the rest, ��7/3. By adding g0 we obtain case 15.
If g0 is smaller than the rest, the situation is similar to case
14. If g0 is larger than the rest, ��7/3.

2. mÅ0

When m�0, the LD transitions occur at two symmetri-
cally placed energies about the band center, and these ener-
gies are greater than or equal to m. In the absence of intern-
ode scattering, the transitions occur at E= ±m and the
exponent ��7/3. If the strength of the intranode scattering
is larger than m, the bands at ±m overlap and effectively
correspond to the nodally degenerate case.
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If g0=g3=0 and only one of the internode couplings is
present, the DOS diverges at E= ±m with an exponent of 0.5
and is identically zero for �E��m. The LD transitions occur
at E= ±m and have a continuously varying exponent. When
the disorder is strong compared to m, ��7/3, and, in the
opposite limit, � approaches unity. If we include small intra-
node scattering the situation is similar. If the intranode scat-
tering strength is greater than the internode scattering, �
�7/3.

When g0=g3=0 and both internode couplings are present,
the DOS diverges at E= ±m with an exponent ��0.47.
However, the LD transitions occur at energies larger than
�m�. We have analyzed the case where g1=g2. The exponent
varies continuously. If the internode scattering strength is
larger than m, ��3.8, and in the opposite limit � approaches
unity. This behavior is stable against intranode scattering if
its strength is smaller than both m and the internode scatter-
ing. If the intranode scattering strength is larger than the
internode scattering, ��7/3.

F. Road map

Our paper is organized as follows: In Sec. II we describe
the Dirac fermion model. In Sec. III we describe various
possible disorders and their forms when projected to the
LLL. In Sec. IV we calculate the averaged density of states
using supersymmetry. In Secs. V–VII we describe the nu-
merical studies of the LD transition projected to the lowest
Landau level. Section VIII is a brief concluding section. In
Appendix A we provide some mathematical details of the
density of states calculation. In Appendix B we describe the
recursive Green function technique used for numerical cal-
culations, and finally in Appendix C we outline the proce-
dure of data collapse involved in the finite-size scaling of the
localization length.

II. DIRAC FERMIONS AND LANDAU LEVELS OF
GRAPHENE

The low-energy quasiparticles in graphene are well de-
scribed by the Lorentz-invariant form as the sum over two
inequivalent nodes �the Fermi velocity vF�106 m/s�

H0 = − i�vF� d2r �̄	�
1Dx + 
2Dy��	, �2�

where �̄	=�	
†
0 and the summation over spin 	= ±1 is

understood. The four-component Dirac spinor �	
†

= ��KA	
† ,�KB	

† , i�K�B	
† ,−i�K�A	

† �, where the component �KA	

is constructed by superposing Bloch functions close to one of
the two inequivalent nodes �K ,K�� of the Brillouin zone,
corresponding to one of the two sublattices �A ,B� of the
hexagonal graphene lattice. The notation D= ��− i�e /c�A	
stands for the covariant derivative, A being the vector poten-
tial. The 
 matrices are defined by 
�= �3 , i1 , i2� ��3; the
Pauli matrix  operates on the two components correspond-
ing to the sublattice indices, and the Pauli matrix � operates
on the components corresponding to the nodal indices. To be
explicit,


0 = 
3 0

0 − 3
�, 
1 = 
i1 0

0 − i1
�, 
2 = 
i2 0

0 − i2
� .

�3�

To include a Zeeman term, we add

Hz = Ez� d2r �̄	

0	3
		��	�, �4�

where Ez=g�BB is the Zeeman energy and 	 j is a Pauli
matrix operating on the spin indices. The Zeeman term
breaks the SU�2� symmetry of the spin space down to U�1�.
The energy eigenvalues of the Hamiltonian operator

Ĥ0 = − i�vF

0�
1Dx + 
2Dy� + Ez	3 �5�

are well known:

Ens	 = s�2n�eB��vF
2/c − 	Ez, n = 1,2, . . . , �6�

En=0,	 = − 	Ez, �7�

where s= ±1 refer to the particle and the hole branches. In
the presence of disorder, the Landau levels get broadened
into a band, and the amount of broadening depends on the
strength of the disorder. When the disorder is very strong, the
half-width of the broadened band can be larger than Ez, and
experimentally this corresponds to the spin degeneracy of the
Landau bands. In the spin-degenerate situation, the observed
filling factor is given by �f=4�n+ 1

2
�.9,10

The LLL wave function in the absence of disorder in the
symmetric gauge A= �−By /2 ,Bx /2 ,0� can be written as

U�z, z̄� = e−zz̄/4lB
2

f1�z�
0

f2�z�
0
� , �8�

where eB�0. The functions f1�z� and f2�z� are holomorphic
functions of the complex coordinates z=x+ iy, z̄=x− iy, and
lB=��c / �eB� is the magnetic length. Hence, in the zero
mode, the first and the second nodes have nonzero ampli-
tudes coming only from the sublattices A and B, respectively.

Two distinct on-site energies on the two sublattices corre-
spond to a charge density modulation at the lattice scale. As
a result, the particle and hole branches acquire an energy
gap. When linearized about the inequivalent nodes, this en-
ergy gap appears as a parity-preserving mass of the Dirac
fermions. To be explicit, the linearized Hamiltonian will
have two new terms: the chemical potential term ��VA

+VB� /2	�̄
0� and the mass term ��VA−VB� /2	�̄�, where
VA and VB are the site energies at the sublattices A and B.

Although the noninteracting quasiparticles are massless in
the absence of site modulation, they can acquire a parity-
conserving mass due to interaction effects. This spontaneous
symmetry breaking is facilitated by the presence of the mag-
netic field, a phenomenon known as “magnetic catalysis” of
chiral symmetry breaking.61,62 The effect has been argued to
be the reason for quantum Hall plateaus at � f =0, ±1 ob-
served in strong magnetic fields.17,18 Though it is beyond the
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scope of the present paper to consider electronic interactions,
we will pay some attention to the noninteracting problem
with a finite mass. Our philosophy is to analyze the conse-
quences of having a mass �possible in an interacting theory�
on the LD transition. So we shall include the term m�†
0�
in the effective Hamiltonian to examine the effect of mass. In
the presence of such a mass term, the nodal degeneracy of
En=0,	=−	Ez is removed and it splits into four levels: ±m
−	Ez. Each of these levels has the degeneracy �eB� /2��c. If
the applied chemical potential is smaller than �Ez−m�, there
will be a plateau at �f=0. If �Ez−m�� ����Ez+m, �f= ±1
plateaus will appear depending on the sign of �.16,61 The
next possible values of the quantized plateaus are �f= ±2.
The introduction of the mass term does not, however, lift the
nodal degeneracy of the higher Landau levels, and the energy
levels En�1,s,	=s�m2+2n�eB��vF

2 /c−	Ez have the degen-
eracy �eB� /��c. Therefore, when a mass is included, quan-
tized plateaus appear at �f=0 , ±1 , ±2q, where q is an inte-
ger.

III. RANDOMNESS

There are many sources of disorder in graphene: vacan-
cies, interstitials, substrate disorder, and lattice distortions
due to dislocations. In principle, there could also be random
spin-orbit coupling. However, due to the small atomic mass
of carbon, spin-orbit coupling is very weak compared to
other energy scales. For simplicity, we shall primarily be
interested in the spin-polarized limit and ignore the random
spin-orbit coupling.

Point defects and substrate disorder can be described by
introducing random site energies in the tight-binding model.
In the presence of substrate disorder there can also be a ran-
dom modulation of the charge densities between the two sub-
lattices. These effects can be described by a random chemi-

cal potential V0�r��̄
0� and a random mass V3�r��̄� in the
continuum limit.

Because true long-range crystalline order is not possible
in two dimensions at any finite temperature, topological de-
fects, dislocations, and disclinations will be present. The ef-
fects of these topological defects will result in random hop-
ping amplitudes �tAB, and hence intranode as well as
internode scattering. However, these scattering processes
will take place between states on different sublattices. The

two bilinears V2�r��̄
3� and V1�r��̄
5� describe the inter-
node scattering terms arising from random hopping. The two
mutually anticommuting matrices


3 = i
0 I

I 0
�, 
5 = 
0 − I

I 0
� �9�

also anticommute with 
�; I is the identity matrix.
In the continuum limit, the most general impurity Hamil-

tonian is a 4�4 matrix:

Himp =� d2r�	
†
D11�r� D12�r�

D21�r� D22�r�
��	, �10�

where Dij�r� are 2�2 matrices. Here D11=D11
† and D22

=D22
† represent intranode scattering at nodes 1 and 2, respec-

tively; D12=D21
† represent internode scattering.

After projecting to the LLL, the disorder matrix reduces
to a 2�2 matrix and can be represented by the Pauli matri-
ces �. The most general disorder matrix projected to the LLL
then takes the form

ĤLLL
imp = �

j=0

3

Vj�r��� j , �11�

where we have denoted the I matrix by �0.

IV. AVERAGE DENSITY OF STATES

Using a four-component bosonic spinor � and a four-
component Grassmann spinor �, the average retarded Green
function for a noninteracting problem can be written as

ḠR�E;r,r�� = − i�
j=0

3 � D��*	D��	D��*	D��	

�D�Vj	P�Vj	�*�r���r��eSR
, �12�

where P�Vj	 is the probability distribution of Vj and

SR = i� d2r��†�E − Ĥ0 − Ĥimp + i���

+ �†�E − Ĥ0 − Ĥimp + i���	 . �13�

The average density of states is given by

�̄�E� = −
1

�
Im ḠR�E;r,r� . �14�

After performing the disorder averages, we can write

ḠR�E;r,r�� = − i� D��*	D��	D��*	D��	�*�r���r��eAR
,

�15�

where the action AR involves interactions among the fields
generated by the disorder averaging procedure. After projec-
tion to the LLL, the action AR can be expressed in terms of
a two-component holomorphic bosonic spinor

��z� = 
v1�z�
v2�z�

� �16�

and a two-component holomorphic Grassmann spinor

��z� = 
w1�z�
w2�z�

� . �17�

In terms of these fields the action is given by

AR = A f
R + �

j=0

3

A j
D,

A f
R = i�� d2z e−zz̄/2lB

2
��†� + �†�� ,
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A j
D =� d2z hj�e−zz̄/2lB

2
��†� j� + �†� j��	 , �18�

where �=E+ i� and

hj��� = ln
� e−i�VjP�Vj	DVj� �19�

is the effective interaction of the fields generated by averag-
ing over the random variable Vj. For the Cauchy distribution,
defined by

P�Vj�r��	 =
gj

�

1

gj
2 + Vj

2�r��
, �20�

we have

hj��� = − gj��� . �21�

If the disorder distribution is Gaussian white noise, defined
by

P�Vj�r��	 = N exp
−
1

2gj
� d2r Vj

2�r��� , �22�

we get

hj��� = −
1

2
gj�

2. �23�

The above action is invariant under translation followed
by a gauge transformation. Due to this invariance, the spatial
dependence of the average retarded Green function is the
same as the spatial dependence of the pure system’s Green
function,

Gpure
R �E,z1,z2� =

exp�− ��z1�2 + �z2�2� − 2z1z̄2	
2�lB

2�E + i��
. �24�

The disorder-averaged Green function can be written as

ḠR�E,z1,z2� = C�E + i�,gj�exp�− ��z1�2 + �z2�2� − 2z1z̄2	 ,

�25�

where the gj’s are coupling constants of various types of
disorder and C�E+ i� ,gj� is a gauge-invariant proportionality
constant which depends on the energy and disorder strengths.
This gauge-invariant proportionality constant is what we
need to calculate to find the average density of states.

For the calculation of the average Green function’s depen-
dence on the energy and disorder coupling constants, we

introduce two new Grassmann variables � and �̄ and enlarge
the Euclidean coordinate space into a superspace of coordi-

nates �x ,y ,� , �̄�. Integrals over the Grassmann coordinates

are normalized as ��d� d�̄ �̄�=1. The norm of a coordinate

vector is defined as x2+y2+ �̄�. This norm is invariant under
superspace rotations. In addition to the ordinary rotations in
the Euclidean subspace and the symplectic transformations
in the Grassmann subspace, the superspace rotations involve

transformations that mix �x ,y� and �� , �̄� in the following
manner:

r� → r� + 2l�1�� + 2l�2��̄ ,

�→ � + 4�l�2 · r��� , �̄→ �̄ − 4�l�1 · r��� . �26�

In the above set of transformations l�1,2 are two arbitrary Eu-
clidean vectors and � is a Grassmann number. We also de-
fine two holomorphic superfields and their conjugates as

��z,�� = ��z� +
�

�2lB

��z� ,

�̄�z,�� = �†�z� +
�†�z�
�2lB

�̄ . �27�

In terms of these superfields the pure part of the action
can be expressed as

A f
R = 2i��lB

2 � d2z d� d�̄ e−�zz̄+��̄�/2lB
2
�̄� , �28�

which is manifestly invariant under superspace rotations. Af-
ter the disorder contributions to the action are expressed in
terms of these new superfields, we have to demonstrate these
to be invariant under superspace rotations. In order to be
supersymmetric, the A j

D’s have to be local in the supercoor-
dinate space and this is possible only if they do not involve
any quartic fermionic interactions. We note that

hj�e−zz̄/2lB
2
��†� j� + �†� j��	

= hj�e−zz̄/2lB
2
�†� j�� + hj��e

−zz̄/2lB
2
�†� j��e−zz̄/2lB

2
�†� j�

+
1

2
hj��e

−zz̄/2lB
2
�†� j��e−zz̄/lB

2
��†� j��2, �29�

where hj� and hj� correspond to the first and second deriva-
tives of hj with respect to its argument. The Taylor series
truncates at the quadratic order as the higher powers of
�†� j� are identically zero according to the anticommutation
rules. We also note that ��†� j��2=−2w1

†w1w2
†w2 for j

=1,2 ,3 and ��†�0��2=2w1
†w1w2

†w2. If hj� does not vanish, we
get four-fermion interactions.

If there were one bosonic and one Grassmann field in-
stead of spinors, as in the problem solved by Brézin et al.,59

no four-fermionic terms would be generated, and the action
for an arbitrary disorder distribution would be local in the
superspace coordinates. For the case under consideration,
such a simplification is not possible in general. However, for
a Cauchy distribution the disorder-averaged action is qua-
dratic and can be made manifestly supersymmetric. Thus, the
calculation of the DOS reduces to a calculation of a zero-
dimensional field theory over two complex bosonic fields.
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A. Cauchy distribution

1. m=0

The action is given by

AR =� d2z e−zz̄/2lB
2
i���†� + �†�� − �

j=0

3

gj��†� j� + �†� j��� .

�30�

Using the superfields � and �̄, the action can be written as

AR = 2�lB
2 � d2z d� d�̄ e−�zz̄+��̄�/2lB

2
i��̄� − �
j=0

3

gj��̄� j��� ,

�31�

which is manifestly invariant under rotation and magnetic
translation in superspace. Because of this symmetry, the
DOS can be reduced to a simple expression involving inte-
grals over two ordinary complex variables. Expressed in
terms of two radial and two angular variables, it is

�̄�E� =
1

2�2lB
2 Im

�

��
ln
�

0

�

d�r1
2/2��

0

�

d�r2
2/2��

0

2�

d�1

��
0

2�

d�2 exp�i��r1
2 + r2

2� − g0�r1
2 + r2

2�− g3�r1
2 − r2

2�

− 2g1r1r2�cos��1 − �2��− 2g2r1r2�sin��1 − �2��	� .

�32�

For simplicity, consider the cases where we keep only one
of the internode scattering terms, or the random mass term,
along with the potential disorder.

�i� For g1=g2=0, we get

�̄�E� =
1

2�2lB
2 
 g0

g0
2 + E2 +

g0 + g3

�g0 + g3�2 + E2� . �33�

�ii� For g3=g2=0,

�̄�E� =
1

2�2lB
2 
 g0

g0
2 + E2 +

g0 + g1

�g0 + g1�2 + E2� . �34�

The answer for the case �iii� g3=g1=0 is identical to the case
�ii�. The DOSs obtained for these three cases are identical, as

the Hamiltonian involves only one Pauli matrix at a time,
and these matrices are related by unitary transformations.

Consider now g1=g2=gIN and g3=0. We obtain, defining
by I the expression within the large parentheses in Eq. �32�,

I = −
�

�a2 − 2gIN
2 ��� − 4

gIN

�a2 − gIN
2

tan−1
 gIN

�a2 − gIN
2 �

− 2�2�
gIN

a
+ 2�

gIN

�a2 − gIN
2 � , �35�

where a=g0− i�. The details of the evaluation of the multiple
integrals are provided in Appendix A. The expression for the
DOS obtained from this expression is lengthy and not very
illuminating, but it is important to note that, because of the
presence of the term tan−1�gIN /�a2−gIN

2 �, we obtain a ln E
divergence at the band center when g0=0. Based on symme-
try, similar behavior will be obtained when a combination of
two Pauli matrices is considered. This should be contrasted
with the �ln E�2 divergence obtained by Hikami et al.60

2. mÅ0

When the fermion is massive, we will ignore the mass
disorder part. The density of states is given by

�̄�E� =
1

2�2lB
2 Im
 �

��1
+

�

��2
�ln
�

0

�

d�r1
2/2��

0

�

d�r2
2/2�

��
0

2�

d�1�
0

2�

d�2 exp�i�1r1
2 + i�2r2

2 − g0�r1
2 + r2

2�

− 2g1r1r2�cos��1 − �2��− 2g2r1r2�sin��1 − �2��	� ,

�36�

where �1,2=E±m+ i�. Again, if we take only one of the in-
ternode scattering terms �g2=0� for simplicity, the expression
within the large parentheses in Eq. �36�, I, becomes

I = −
�2

ab + g1
�ab

. �37�

The density of states is then given by

�̄�E� =
1

4�2lB
2 �
	=±1

g0

g0
2 + �E + 	m�2 +

1

2�2lB
2

g0�R cos � + g1
�R cos��/2�	 + E�R sin � + g1

�R sin��/2�	
R2 + g1

2R + 2g1R3/2 cos��/2�
, �38�

where R=��g0
2+m2−E2�2+4g0

2E2 and tan �=2g0E / �g0
2+m2−E2�. The above expression takes a particularly simple form when

g0=0. It becomes
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�̄�E2� m2� =
1

4�2lB
2 
��E + m� + ��E − m�

+
2Eg1

�E2 − m2 + g1
2��E2 − m2� ,

�̄�E2� m2� = 0. �39�

If both internode scatterings are present and g1=g2=gIN,
the integral is given by

I = −
�

�ab − 2gIN
2 ��� − 4

gIN

�ab − gIN
2

tan−1
 gIN

�ab − gIN
2 �

− 2�2�
gIN

�ab
+ 2�

gIN

�ab − gIN
2 � . �40�

The expression for the DOS is tedious. However, for g0=0,
the feature that the DOS is zero for E2�m2 is still valid. In
this case, for energies close to ±m, �̄�E�� ln�E−m� /��E−m�.

V. HALL PLATEAU IN THE LOWEST LANDAU
LEVEL

Similar to the method described in Ref. 63, we generate
the matrix elements of the Dirac Hamiltonian after projecting
to the lowest Landau level. In our problem, the element
�k�H�k�� itself is a 2�2 matrix:

�k�H�k�� =� dx dy �k
*�x,y��HLLL

imp �x,y� + m�3	�k��x,y�

= m�3�k,k� + V�k,k�� , �41�

where �k�x ,y� is the lowest Landau level wave function in
the Landau gauge. We choose all the Vj’s to follow indepen-
dent Gaussian white noise distributions such that
Vj�x ,y�Vj��x� ,y��=gj

2� j,j���x−x����y−y��. Then the ele-
ments of the 2�2 matrix V�k ,k�� can be computed
explicitly—for example,

V�k,k��11 =
1

��Ly

e−lB
2 �k − k��2/4� d�e−�2�g0u0
lB�

+
k + k�

2
lB
2 ,k� − k� + g3u3
lB� +

k + k�

2
lB
2 ,k� − k�� ,

�42�

where uj�x ,k� is a complex random variable defined to be the
Fourier transform of Vj�x ,y� along the y direction normal-
ized by the width gj, namely,

uj�x,k� =
1

gj
�Ly

� dyVj�x,y�eiky . �43�

Because each of the disorder fields has zero correlation
length, and there are no correlations between them,

ui�x,k�uj�x�,k�� = �i,j��x − x����k + k�� . �44�

It is straightforward to compute the statistical properties
of the matrix elements. The averages are

V�k,k��i,j = 0, i, j = 1,2. �45�

As to correlations, the only nonvanishing pairs are

V�k1,k2�11V�k3,k4�11

= V�k1,k2�22V�k3,k4�22

=
g0

2 + g3
2

�2�Ly

exp
−
lB
2

2
��k1 − k2�2 + �k4 − k1�2	��k1−k2,k4−k3

,

V�k1,k2�11V�k3,k4�22

= V�k1,k2�22V�k3,k4�11

=
g0

2 − g3
2

�2�Ly

exp
−
lB
2

2
��k1 − k2�2 + �k4 − k1�2	��k1−k2,k4−k3

,

V�k1,k2�12V�k3,k4�12

= V�k1,k2�21V�k3,k4�21

=
g1

2 − g2
2

�2�Ly

exp
−
lB
2

2
��k1 − k2�2 + �k4 − k1�2	��k1−k2,k4−k3

,

V�k1,k2�12V�k3,k4�21

= V�k1,k2�21V�k3,k4�12

=
g1

2 + g2
2

�2�Ly

exp
−
lB
2

2
��k1 − k2�2 + �k4 − k1�2	��k1−k2,k4−k3

.

�46�

For numerical implementation, we discretize and use the
integer l to label the x coordinate. We then generate a set of
complex random variables uj�l ,k�, that are � correlated as in
�44�. Finally, we approximate the integrals by sums. Explic-
itly, the matrix elements are

V�k,k + k��11

=
e−a2k�2

�MA
�

j

�g0u0�2k + j,k�� + g3u3�2k + j,k��	e−a2j2,

V�k,k + k��22

=
e−a2k�2

�MA
�

j

�g0u0�2k + j,k�� − g3u3�2k + j,k��	e−a2j2,

V�k,k + k��12

=
e−a2k�2

�MA
�

j

�g1u1�2k + j,k�� − ig2u2�2k + j,k��	e−a2j2,

V�k,k + k��21

=
e−a2k�2

�MA
�

j

�g1u1�2k + j,k�� + ig2u2�2k + j,k��	e−a2j2,

�47�

with A=� je
−2a2j2 and a2=� /2M2. Here M is the length of
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the system in the y direction, the unit being �2�lB, that is,
M =Ly /�2�lB, chosen to be an integer. The integers k and k�
label the wave vectors. Since the matrix elements decay ex-
ponentially, we can neglect them for k��2M. A cutoff is also
necessary for the recursive Green function technique63 that
we use.

We compute the density of states ��E� by directly diago-
nalizing the Hamiltonian. We have checked that ��E� is in-
dependent of M, for sufficiently large M �M =32 seems to be
sufficient�; the total number of momentum states Nk is cho-
sen to be 1000, which is half the dimension of the Hamil-
tonian matrix to be diagonalized, as there are two fermions
for each k. Typically, an average over 100 disorder realiza-
tions is used.

The recursive Green function technique, similar to that in
Ref. 63, is used to explore the localization properties. The
details are described in Appendix B. We first compute the
localization lengths for a finite system, �M�Ei�, at a set of
energies, �Ei�i=1

NE , in systems with transverse dimensions
�Mj� j=1

NM. Since there are two types of fermions, in general
there can be two distinct localization lengths; however, in
most cases discussed below, they are identical within our
numerical accuracy, and we will not generally distinguish
them. Assuming finite-size scaling, �M�E� /M = f(M1/��E
−Ec�), where f�x� is a universal function, the data are col-
lapsed to obtain the localization length exponent � and the
critical energy Ec. Strictly, scaling holds only for large
enough systems in the vicinity of the critical energy. Here the
energies �Ei� are chosen close to the critical energy Ec, and
the validity of the scaling law is verified by the success of
the data collapse. For the details of the procedure involving
data collapse, see Appendix C.

The numerical calculations about the localization proper-
ties were mostly performed for a quasi-one-dimensional sys-
tem with the transverse dimensions M =8,16,32,64. The to-
tal number of momentum states is Nk=5�104. Because of
the 2�2 character of the Hamiltonian matrix elements, the
numerical calculations are more demanding than those in
Ref. 63. The data are typically averaged over 100 disorder
configurations to reduce fluctuations. Energies �Ei� were cho-
sen close to the critical energy and measured in units of
2�� j=0

3 gj
2�1/2, as in Ref. 63.

Our program is also validated by the case g0=0.5, g1
=g2=g3=0, and m=0. In this case, the two types of fermions
are independent. Because the LLL wave function is identical
to the nonrelativistic one, the properties should be the same
as in Ref. 63. Numerical computations show a single peak in
the density of states and a localization length exponent of
�=2.41±0.08; both agree well with the previous results.

VI. LD TRANSITION FOR THE MASSLESS CASE

A. One disorder field

Consider first the cases where only one type of disorder
has nonzero strength. Numerically, we considered �1� g3
=0.5, g0=g1=g2=0, �2� g1=0.5, g0=g2=g3=0, and �3� g2
=0.5, g0=g1=g3=0. In all of these cases, the �-function den-
sity of states in the pure system is broadened into a simple

bell-shape function due to disorder. The results of successful
data collapse, not shown here, yield critical exponents �
=2.46±0.09, 2.48±0.11, and 2.45±0.08 for cases 1, 2, and
3, respectively, that is, they are the same within the error
bars.

The critical exponents are all equal to that of a single type
of fermion subject to potential disorder. This can be under-
stood as follows. The original Hamiltonian matrix is in the
basis ��k1 ,1� , �k1 ,2� , �k2 ,1� , �k2 ,2� , . . . �, where 1 and 2 label
the type of fermion. If we reorder the basis as
��k1 ,1� , �k2 ,1� , . . . , �k1 ,2� , �k2 ,2� , . . . �, the Hamiltonian be-
comes a 2�2 block matrix with diagonal blocks represent-
ing intranode parts, and the off-diagonal blocks representing
internode scatterings. Explicitly, it is in the form

H = 
g0U0 + g3U3 + mI g1U1 − ig2U2

g1U1 + ig2U2 g0U0 − g3U3 − mI
� �48�

where Ui, i=0, . . . ,3, are statistically independent random
Landau matrices, and I is the identity matrix. The case with
only g3 nonzero has the same structure, and hence the same
statistical properties, as the case when only g0 is nonzero.
When only g1 is nonzero, we can, by a unitary transforma-
tion given by

T = B
I I

I − I
� , �49�

where B is a normalization constant, bring the Hamiltonian
back to the block-diagonal form, resulting in a structure cor-
responding to two types of independent fermion in the pres-
ence of mass disorder. Thus, the critical exponent is the same
as the case when only g0 is nonzero. The same argument also
applies to the case when only g2 is nonzero.

B. Two disorder fields

If one of the two disorder fields is V0�x ,y�, and the other
is V1�x ,y�, or V2�x ,y�, or V3�x ,y�, an appropriate unitary
transformation about an axis by � /2 will map one possible
case to the other. For instance, the transformation in Eq. �49�
will transform the case with V0�x ,y� and V2�x ,y� to V0�x ,y�
and V3�x ,y�. It is therefore sufficient to consider only the
case with just V0�x ,y� and V3�x ,y�. However, from Eq. �48�,
the Hamiltonian is block diagonal, and the blocks g0U0
+g3U3 and g0U0−g3U3 are statistically equivalent to a new

block �g0
2+g3

2U, with U a new random matrix satisfying the
same statistical properties as the Ui’s; see Eq. �46�. That is,
the Hamiltonian for g0�0 and g3�0 is statistically the same

as that corresponding to a potential disorder g0̃=�g0
2+g3

2.
Our numerical computations confirm this argument. The

data collapse was found to be successful, assuming Ec=0,
and the critical exponents are �=2.45±0.06 for g0=g3=0.5,
g1=g2=0, and �=2.45±0.11 for g0=g1=0.5, g2=g3=0.

Next, we choose two disorder fields from V1�x ,y�,
V2�x ,y�, and V3�x ,y�. There are three possible combinations.
In fact, these three cases are not independent; we can map
one case to another by an appropriate unitary transformation
corresponding to a rotation by � /2 about a certain axis.
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Therefore, it is sufficient to consider only one of the three
cases; for example, let us choose V3�x ,y� �mass disorder�,
and V1�x ,y� �internode coupling�.

We set g1=g3=0.5, g0=g2=0. The density of states and
the localization lengths are plotted in Fig. 1 for E�0; there
is symmetry under E→−E. The extended states are no
longer at E=0 but shifted to E=Ec� ±0.42. At Ec� ±0.42,
we study the localization properties using the data in the
range of �E��Ec, since data in the range �E��Ec are close to
both critical points and are likely to lead to inaccurate re-
sults. The maximum system size used is M =64. Because we
do not have a priori knowledge of Ec, the statistical proce-
dure discussed in Appendix C is employed to determine Ec
and hence the critical exponent �. The data collapse is shown
in Fig. 2. The critical exponent for this parameter set is found
to be �=3.23±0.26, distinct from the nonrelativistic case of
��7/3.

The present problem can be exactly mapped onto the
spin-orbit scattering involving the two-state Landau level
problem discussed in Ref. 66; our results are in full agree-
ment. From Fig. 1, there appears to be a divergence in the
DOS at the band center, corresponding to a possible LD tran-
sition at E=0. As shown above, the Cauchy distribution does
lead to a ln E divergence, but such a weak divergence is
difficult to detect numerically; note, however, that the nu-
merical calculation involves Gaussian disorder. A semiclas-
sical explanation67 of the existence of an extended state at
the band center for the two-state Landau level problem is
known. However, this argument is delicate and fails if a the
third kind of disorder is present, which is likely in graphene,
where potential disorder cannot be avoided. Thus, we shall

not consider further the possible extended state at the band
center.

It is interesting to study the behavior as the ratio g1 /g3 is
varied. The result for the DOS is shown in Fig. 3. Note that
the energy E is in units of 2�g1

2+g3
2. So the extent of the

band increases, as g1 increases. The divergence of the DOS
at the band center is a unique feature when g1 and g3 are
equal, while in the extreme limits there may be a slight dip at
E=0.

As to �, a continuously varying exponent is suggested in
Fig. 4. In the limit g3�g1 or g3 g1, only one type of dis-
order dominates; hence the value ��7/3 is plausible. The

FIG. 1. �Color online� DOS �top� and localization length in fi-
nite systems �bottom� for g1=g3=0.5, g0=g2=0. The dashed line
shows the LD transition.

FIG. 2. �Color online� Scaling curve for the case g1=g3=0.5 and
g0=g2=0. Inset: Dependence of �M /M on the energy E for different
system sizes M. The shaded area is used for scaling and the critical
exponent is found to be �=3.23±0.26.

FIG. 3. DOS when mass disorder g3 and internode coupling g1

are both present. Parameters are �top� g3=10g1=0.15; �middle� g3

=g1=0.15; �bottom� g3=0.1g1=0.15.
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deviation from this value is largest when g1�g3, although
the data collapse becomes insensitive to the value of � in the
same regime, resulting in larger error. Nonetheless, the re-
sults are suggestive of a continuously varying critical expo-
nent.

In the Hamiltonian, the mass disorder V3�x ,y� and the
internode scattering disorder V1�x ,y� are accompanied by the
Pauli matrices �3 and �1. If we apply a unitary transforma-
tion

T = C
I − I

I I
� , �50�

corresponding to a rotation of � /2 about the y axis, where C
is a normalization factor, the disorder Hamiltonian �48� will
be transformed such that g3→g1, g1→−g3. Because we are
studying the statistical properties of the system, and all dis-
tribution functions are symmetric about zero, the negative
sign in front of g3 is of no importance. This means that this
unitary transformation effectively interchanges g1 and g3,
and hence maps the regime g3�g1 to the regime g3�g1.
Note the symmetry between the two regimes in Figs. 3 and 4.

C. Three disorder fields

The important case in this category is when g1�g2�g3;
other cases can be roughly understood in terms of the cases
discussed above. For numerical computation, we take g1
=g2=g3=0.5. The DOS is shown in Fig. 5. Compared to the
case when only g1=g3=0.5, discussed above, the divergence
of the DOS at E=0 is missing, but the two peaks at E
= ±0.46 survive. This is suggestive of nonexistence of ex-
tended states at the band center, but a LD transition at E
� ±0.46, which is confirmed by the scaling curve shown in
Fig. 6, and a critical exponent of �=3.6±0.3 is obtained. The
error bar is large due to a substantial degree of disorder, but
the exponent is distinctly different from the value �=7/3,
indicating a new universality class.

D. Four disorder fields

Finally, we have also examined the case g0�0, g1�0.
g2�0, g3�0. We have found that, when g0 is small, the

potential disorder simply broadens the density of states, and
results in a value of � as though it did not exist; on the other
hand a large value of g0 drives � to a value close to 7/3.

VII. LD TRANSITION FOR THE MASSIVE CASE

The constant-mass term results in new physics when com-
bined with the internode coupling, and the resulting phenom-
ena are different from the case when the mass disorder and
the internode coupling are combined, as in the previous sec-
tion.

A. One disorder field

Consider first the case m�0 when either g0 or g3 is non-
zero. From Eq. �48�, the random Hamiltonian matrix is block
diagonal; hence the two types of nodal fermions are un-
coupled. The energies of the two fermions are shifted by the
amount of ±m, and the DOS is simply a superposition of two
bell-shaped functions centered at ±m. As to localization
properties, because the two fermions will have different criti-

FIG. 4. Dependence of the exponent � on g1 /g3. The parameters
are g0=g2=0, g3=0.15, and m=0. The dashed line corresponds to
�=7/3.

FIG. 5. DOS as a function of energy E in the case g1=g2=g3

=0.5, g0=0.

FIG. 6. �Color online� Scaling curve for the case g0=0, and
g1=g2=g3=0.5. Inset: dependence of �M /M on the energy E for
different system sizes M. The shaded area is used for scaling. The
critical exponent � is found to be 3.6±0.3.
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cal energies, namely, Ec= ±m, at a particular energy E these
localization lengths will be different from each other. The
data collapse for the fermion with Ec=m once again gives a
critical exponent of ��7/3.

Consider now finite mass m�0 and only one internode
coupling, for example, g1�0. The calculated DOS with E
�0 region is shown in Fig. 7 for the parameter set g0=g2
=g3=0, g1=0.5, and m=0.5. Qualitatively the results are
similar to those of analytical calculations involving the
Cauchy distribution, even though the numerical computation
is for the Gaussian distribution of disorder. First, the DOS
vanishes in the region �E��m. Second, the analytical calcu-
lation shows that ��E���E−m�−1/2, E→m+, independent of
the value of g1. The inset of Fig. 7 yields an exponent of
−0.523±0.003. We have checked that this value does not
vary with g1, within our numerical accuracy.

As to the LD transition, we perform data collapse with
Ec=m. The critical exponent turns out to be �=1.82±0.06
for the parameters g0=g2=g3=0, g1=0.4, and m=0.15 �see
Fig. 8�, which is significantly different from the usual case
corresponding to ��7/3. This striking result implies that the
system belongs to a new universality class. We now vary g1,
keeping m fixed to 0.15, and the result for the exponent � is
shown in Fig. 9. It appears that the exponents continuously
vary with the ratio g1 /m.

B. Two disorder fields

The most relevant case corresponding to graphene is the
one with two types of internode scattering of comparable
magnitude. Therefore, we choose g1=g2=m=0.5. The DOS
is shown in Fig. 10. Note that the energy is now measured in
units of 2�g1

2+g2
2=�2, so that the divergence is located at

E=m, which is m=0.5/�2=0.354. From the inset in Fig. 10,
we find a slope of −0.47±0.01, which is consistent with the
analytical result for the Cauchy distribution, namely, ��E�
� ln�E−m� /��E−m�. Also note the gap in the DOS.

The crossing point in Fig. 10 indicates Ec�0.55 instead
of Ec=m. The data collapse is shown in Fig. 11 with a criti-
cal exponent of �=3.8±0.2. This critical exponent is not
close to any of the values found for a finite mass with a
single internode coupling, as in Fig. 9. However, it is reason-
ably close to the exponent for m=g0=g2=0 and g1�g3 �see
Fig. 4�, which is also equivalent to the case m=g0=g3=0 and
g1�g2, as discussed above. Note that m=0.5 is much
smaller than the bandwidth 2�g1

2+g2
2=1.414, and this critical

exponent indicates that the presence of small finite mass will
have little effect on the critical exponent as long as two in-
ternode couplings are finite.

At the other limit, when m is large enough compared to
the bandwidth, the critical exponent �→1. Thus, it is reason-
able to believe that the exponent also varies continuously, as
a function of g1 /m, provided that g1=g2, and the behavior is
similar to that in Fig. 8, except that �→3.8 in the limit m
→0.

FIG. 7. �Color online� DOS as a function of energy E. In the
case g0=g2=g3=0, g1=0.5, and m=0.5, the DOS vanishes when
�E��m. Inset: Logarithmic plot of the DOS around E=m, and m
=0.5. The best fit gives a slope of −0.523±0.003.

FIG. 8. �Color online� Scaling curve for the case g0=g2=g3=0,
g1=0.4, and m=0.15. Inset: Dependence of �M /M on energy E for
different system sizes M. The shaded area is used for scaling. Criti-
cal exponent is found to be �=1.82±0.06, with the choice of Ec

=m.

FIG. 9. Dependence of the critical exponent � on g1 �normalized
by the mass m�. The parameters are g0=g2=g3=0 and m=0.15. The
dashed line indicates the level of �=2.33.
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C. Three disorder fields

Because potential disorder is always present in experi-
ments on graphene, we would like to discuss the case when
g0�0, m�0, and g1=g2�0.

First, when m is the smallest parameter, it can be ne-
glected, and hence the massless case discussed above is re-
covered. Our numerical computations gave a critical expo-

nent of ��3.8 when m g0 g1=g2, and ��2.3 in the limit
m g1=g2 g0, because now the potential disorder is more
important than the rest.

When g0 is the smallest, it will have little effect. There-
fore, as discussed in the previous section, there will be a
continuously varying exponent from ��1.0 for g0 g1=g2
 m to ��3.8 for g0 m g1=g2.

Finally, if g1=g2 are smaller than the rest, the internode
scattering is no longer important, and hence the two nodal
fermions will be decoupled. The exponent will therefore al-
ways be ��2.3 regardless of the relationship between m and
g0.

VIII. CONCLUSIONS

We have analyzed the effects of disorder on the LD tran-
sition in the LLL of graphene. Because both types of intern-
ode scattering, present in the LLL, arise from the random
hopping, they will have roughly the same strength. Because
the sources of the mass disorder and internode scattering are
different, their strengths will be generically different. In
some special cases of disorder combinations we have found
new universality classes of LD transition in contrast to the
conventional IQH.

Our results for the LD transitions in the LLL have direct
experimental relevance for the plateau transitions in
graphene. Consider first the cases where both the spin and
the nodal degeneracies are completely removed. A number of
authors have shown that the inclusion of a finite mass and
Zeeman energy can explain the appearance of plateaus at
� f =0, ±1, ±2q.

Because experiments resolve the spin and nodal splitting,
intranode scattering, which always broadens the Landau lev-
els, is weak compared to Ez and m. If the internode scattering
strength is larger than the intranode scattering strength, we
expect that in the lowest Landau level 0→ ±1, 1→2, and
−1→−2 plateau transitions can have different universality
classes, in contrast to the conventional IQH effect. In the
opposite limit, when the intranode scattering is considerably
stronger, the plateau transitions will fall into the conventional
IQH universality class with ��2.3.

For the spin and nodally degenerate plateaus, the potential
scattering is strong compared to the Zeeman energy and the
mass gap. Theoretically, from our analysis of the massless
cases we can infer the plateau transitions to be of the con-
ventional IQH type. However, in experiments, if scaling with
respect to the band center is invoked, an effective exponent
for these plateau transitions will be observed.

Plateaus at �f= ±4, ±6, . . . involve higher Landau levels.
In the higher Landau levels, both the random potential at the
lattice scale and the random hopping will have nonzero in-
tranode as well as internode scattering contributions. This
will complicate the analysis of LD transitions in these levels.
Because inclusion of a finite mass does not lift the nodal
degeneracies of higher Landau levels, the effect of internode
scattering can be strong. In view of the degeneracy factor,
there is the possibility of observing an effective exponent for
these higher plateau transitions.

FIG. 10. �Color online� DOS �top� and localization length in
finite systems �bottom� for g1=g2=m=0.5, g0=g3=0. Inset in top
panel: Logarithmic plot of the DOS around E=m. The best fit gives
a slope of −0.47±0.01.

FIG. 11. �Color online� Scaling curve for the case g1=g2=m
=0.5, g0=g3=0. Inset: Dependence of �M /M on the energy E for
different system sizes M. The shaded area is used for scaling.
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APPENDIX A: INTEGRAL

For the Cauchy distribution, in the absence of mass dis-
order, the calculation of the DOS in Eq. �36� involves the
integral

I =
1

4
�

0

�

dx�
0

�

dy�
0

2�

d�1�
0

2�

d�2 exp�− ax − by

− 2g2
�xy�sin��1 − �2�� − 2g1

�xy�cos��1 − �2��	 ,

�A1�

where a=g0− i�1 and b=g0− i�2. In the massless case a=b
=g0− i�. After performing the integrals over one of the
angles, the double integral over the angles is reduced to

Iang = 8��
0

�/2

d�1 exp�− 2!�xy cos��1 − ��	 , �A2�

where !=�g1
2+g2

2 and tan �=g2 /g1. Now, expanding the ex-
ponential in a power series, integrals over x and y can be
easily performed. For the angular integral we use the relation

�
0

�/2

d�1 cosl��1 − ��

= −
1

l + 1
�sinl+1 � 2F1
 l + 1

2
,
1

2
,
3 + l

2
,sin2 ��

+ cosl+1 � 2F1
 l + 1

2
,
1

2
,
3 + l

2
,cos2 ��� , �A3�

where 2F1 is Gauss’s hypergeometric function, and obtain

I = −
2�

!ab
�
j=1

2

�
l=0

�
"2��l/2� + 1	
"�l + 2�

gj
− 2gj

�ab
�l

� 2F1
 l + 1

2
,
1

2
,
3 + l

2
,gj

2/!2� . �A4�

The summation over l can be performed by the following
trick: �1� use the integral representation of 2F1, �2� perform a
power series summation, which is simple in these cases, and
�3� complete the integration over the auxiliary variable intro-
duced for the integral representation. For simplicity we will
specialize to the cases �i� g1�0,g2=0 and �ii� g1=g2=gIN.

�i� g1�0,g2=0. In this case we have

I = −
2�

ab
�
l=0

�
"2��l/2� + 1	
"�l + 2� 
− 2g1

�ab
�l

2F1
 l + 1

2
,
1

2
,
3 + l

2
,1� .

�A5�

We now use the following two relations:

2F1
 l + 1

2
,
1

2
,
3 + l

2
,1� =

��"��3 + l�/2	
"��l/2� + 1	

, �A6�

�
l=0

�

�− x�l"��l/2� + 1	"��3 + l�/2	
"�l + 2�

=
��

2 + x
, �A7�

to obtain Eq. �37�.
�ii� g1=g2=gIN. In this case we have

I = −
2�2�

ab
�
l=0

�
"2��l/2� + 1	
"�l + 2� 
− 2gIN

�ab
�l

�2F1
 l + 1

2
,
1

2
,
3 + l

2
,1/2� . �A8�

Using the integral representation

2F1
 l + 1

2
,
1

2
,
3 + l

2
,
1

2
� =

"��3 + l�/2	
"�1/2�"��l/2� + 1	�0

1

dt t−1/2

� 
 1 − t

1 − t/2
�l/2
1 −

t

2
�−1/2

�A9�

and Eq. �A7�, we get

I = − ��2�ab�
0

1 dt
�ab�t�1 − �t/2�	 + gIN

�t�1 − t�
.

�A10�

After performing the integral over t we get Eq. �40�. After
setting m=0 one recovers Eq. �35�.

APPENDIX B: RECURSIVE GREEN FUNCTION

Because there are two types of fermion in our problem,
the recursive Green function technique is a little more com-
plicated than that introduced by Huckenstein.63 All the ma-
trix elements, such as those in Eq. �6.9� in Ref. 63, become
2�2 matrices; hence, all the operations, such as multiplica-
tion and inversion are matrix operations.

Denote the 2�2 matrix �i�G�j� simply by G�i , j�. Suppose
G�K��i , j�, i , j=1, . . . ,K and, the Green function containing K
momentum states is available, then as we add another mo-
mentum state, the recursion relations for G�K+1��i , j� are

G�K+1��K + 1,K + 1� = 
E − V�K + 1,K + 1� − �
i,j

V�i,K + 1�†

�G�K��i, j�V�j,K + 1��−1
,

G�K+1��i,K + 1� = 
�
j

G�K��i, j�V�j,K + 1��
�G�K+1��K + 1,K + 1�, i# K ,

G�K+1��i, j� = G�K��i, j� + G�K+1��i,K + 1�G�K+1��K + 1,K + 1�−1

�G�K+1��K + 1, j�, i, j# K . �B1�

These matrix inversions can be accurately computed be-
cause the sizes are small. Corresponding to the two types of
fermion, we are interested in G�K��1,K�n,n, n=1,2, because
the localization length of a system of width M for the nth
fermion, �M,n, is related to this quantity by
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�M,n
−1 = −

M

K�2�lB

ln�G�K��1,K�n,n� = −
M

K�2�lB
�
k=1

K

ln�qn
�K�� ,

�B2�

where qn
�K�=G�K��1,K�n,n /G�K−1��1,K−1�n,n. Furthermore, if

we define a set of 2�2 matrices g�K��j�, j=1, . . . ,K, such
that their elements g�K��j�m,n=G�K��1, j�m,n /G�K��1,K�m,m,
from the recursion relations �B1�, we obtain

qn
�K+1� = �
�

j

g�K��j�V�j,K + 1��G�K+1��K + 1,K + 1��
n,n

,

g�K+1��i�m,n =
1

qm
�K+1��g�K��i�m,n + 
�

j

g�K��j�V�j,K + 1�

�G�K+1��K + 1,i��
m,n
�, i# K ,

g�K+1��i�m,n =
1

qm
�K+1� 
�

j

g�K��j�V�j,K + 1�

�G�K+1��K + 1,i��
m,n

, i = K + 1. �B3�

APPENDIX C: DATA COLLAPSE

In this appendix, we describe how we can extract the
exponent �, and the critical energy Ec, if necessary, based on
the computed localization lengths in finite systems �M�E�
assuming a single-parameter-scaling assumption.

Suppose we have obtained ��M�E� /M� in systems with
�Mi�i=1

NM for �Ej� j=1
NE , each with a standard deviation �	Mi,Ej

�.
Our goal is to find the proper values of � and Ec such that all
the NE�NM data points collapse onto a single curve:

�M�E�
M

= f„M1/��E − Ec�… . �C1�

Since f�x� is unknown, it is difficult to characterize the qual-
ity of the data collapse. To overcome this difficulty, we pro-
ceed as follows. Suppose that we are given a pair of values
�� ,Ec�; we can attempt to represent the unknown function
f�x ;� ,Ec� by a polynomial of degree N by simply perform-
ing a general fit to Eq. �C2� given below, based on a total
of NE�NM data points ��x ,y ,	y� : �ln�Mj

1/��Ei−Ec�	 ,
ln��M�Ei� /Mj	 ,	Mj,Ei

��:

ln
�M�E�

M
= �

k=0

N

ak�ln�M1/��E − Ec�	�k, �C2�

where �ai�i=0
N are the coefficients to be fitted. In the computer

implementation, the order of polynomials was chosen to be
N=5, since no significant changes were noted by increasing
N to 9. The quality of this fit,64,65 is represented by the vari-
able S defined as

S��,Ec� = �
i=1

NE�NM 
 yi − f�xi;�,Ec�
	i

�2

. �C3�

If the preset values �� ,Ec� are not correct, the data points
will be scattered, resulting in a large value of S, which in
turn indicates a poor data collapse. However, when �� ,Ec�
attain the correct localization length exponent and the correct
critical energy, respectively, S will be minimized. Following
this procedure, by minimizing S with the standard gradient
descent method, we are able to determine correctly both the
critical energy Ec and the localization length exponent �.
Because the scaling law is valid only in the close vicinity of
the critical energy, once Ec is obtained from the above pro-
cedure, we have to check, for the purpose of self-consistency,
that all energies used in the data collapse are indeed close to
Ec.

As for the statistical error of �, the usual procedure is to
assume that the minimized Smin follows a �2 distribution, and
hence the error bar can be drawn corresponding to a certain
confidence probability. However, this is not the case in this
problem, since Smin does not follow the �2 distribution due to
the nonlinear form of the estimated parameters � and Ec in
�C2�.65 To draw an error bar for � statistically correctly, re-
call that we have the original data ��xi ,yi ,	yi

��. We generate
a large number of data sets synthetically ��xi

�k� ,yi
�k� ,	yi

�k���, for

k=1,2 , . . . ,Ns, such that xi
�k�=xi, 	yi

�k�=	yi
, and yi

�k� is a vari-
able randomly distributed in the Gaussian form with a mean
of yi and a standard deviation of 	yi

. Next, we perform ex-
actly the same procedure to get ��k� for each synthetic data
set ��xi

�k� ,yi
�k� ,	yi

�k��� as was performed in the actual data set
��xi ,yi ,	yi

�� for estimating � and Ec. Finally, the error bar for
� is drawn as the estimated standard deviation

	� = 
 1

Ns − 1�
k=1

Ns

���k� − ��k��2�1/2

, �C4�

where Ns is the number of synthetic data sets and ��k� is the
average of ��k�. Ns=104 in computer implementation.
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