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The honeycomb lattice in the cylinder geometry with zigzag edges, bearded edges, zigzag and bearded edges
�zigzag-bearded�, and armchair edges are studied. The tight-binding model with nearest-neighbor hoppings is
used. Edge states are obtained analytically for these edges except the armchair edges. It is shown, however, that
edge states for the armchair edges exist when the system is anisotropic. These states have not been known
previously. We also find strictly localized states, uniformly extended states, and states with macroscopic
degeneracy.
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I. INTRODUCTION

Monolayer graphite, called graphene, was fabricated
recently1–3 and novel physical properties have been expected
to be seen. In fact, integer quantum Hall effect1,2 has been
observed.

In this paper, we report a systematic study of the zero
modes and the corresponding edge states of the honeycomb
lattice which is shown in Fig. 1. The cylindrical geometry is
taken and thus two edges are present. We consider three
types of edges, zigzag, bearded, and armchair, which are
shown in Fig. 2. Two edges of the same type can form a
cylinder. In addition, zigzag and bearded edges can form a
cylinder. We call these zigzag, bearded, armchair, and
zigzag-bearded, respectively. An armchair edge and a zigzag
edge �or a bearded edge� cannot form a pair of edges for a
cylinder. When only nearest-neighbor hoppings are taken,
the zero-energy edge states for zigzag, bearded, and zigzag-
bearded are obtained. They are localized near the edges with
the localization length

� =
1

2�log t�
, �1�

where

t = �2�1 + cos ky� = 2�cos
ky

2
� �2�

and ky is the reciprocal lattice vector in the y direction. We
find the uniformly extended states at �ky�=

2�
3 , as well as the

strictly localized states at �ky�=�. In addition, the origin of
the states with macroscopic degeneracy at �ky�=� with E
= ±1 is explained.

The localization length of armchair diverges and there are
no edge states if it is isotropic. We find edge states, however,
if the system is anisotropic, i.e., three hoppings ta, tb, and tc
are not equal.4,5

Some of our results have been reported previously in the
tight-binding model,6–13 the effective Dirac equation,14–16

and the first principles calculations.17–22 For the isotropic
tight-binding model, Klein6 has obtained the condition for
the existence of the edge states for the bearded edge. Fujita et
al.7 obtained the conditions for the zigzag and armchair
edges. However, there have been no studies of the aniso-

tropic cases. Due to the massless Dirac model, the Jahn-
Teller effect could take place in this system. The spontaneous
breaking of the lattice symmetry would give rise to the an-
isotropic cases.

II. TIGHT-BINDING MODEL

Zigzag, bearded, zigzag-bearded, and armchair are shown
in Figs. 2�a�–2�d�. We pair a site on sublattice A and a site on
sublattice B and denote the wave functions of a pair as �n,m
and �n,m, as shown in Fig. 1, where n and m are both integers
or both half-integers. Then, nearest-neighbor hoppings give a
tight-binding model,

− ta�n,m − tb�n+1/2,m−1/2 − tc�n+1/2,m+1/2 = E�n,m,

− ta�n,m − tb�n−1/2,m+1/2 − tc�n−1/2,m−1/2 = E�n,m, �3�

where ta is an intrapair hopping between �n,m and �n,m and tb
and tc and are interpair hoppings.

III. ZIGZAG AND BEARDED

The zigzag edge and bearded edge can appear in the left
edge or right edge. If the left edge is formed by sublattice A
or B, it is bearded or zigzag, respectively. If the right edge is
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tc
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FIG. 1. �Color online� The honeycomb lattice. The open and
closed circles show sublattices A and B, respectively. The wave
functions are �n,m, �n+1/2,m+1/2, �n,m, and �n+1/2,m+1/2, where n and
m are both integers or both half-integers. Hoppings are ta, tb, and tc.
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formed by sublattice A or B, it is zigzag or bearded, respec-
tively.

We have edges in the y direction, as shown in Figs.
2�a�–2�c� and impose the periodic boundary conditions
�n,m+Ly

=�n,m and �n,m+Ly
=�n,m in the y direction, where Ly

is an integer. Then, one can write

�n,m = exp�ikym��n

�n,m = exp�ikym��n, �4�

where ky = 2�j
Ly

and j=1, . . . ,Ly and Eq. �3� is written as

�n + t1�n+1/2 = −
E

ta
�n,

�n + t2�n−1/2 = −
E

ta
�n, �5�

where

t1 =
tbe−i�ky/2� + tce

i�ky/2�

ta
, �6�

t2 = t1
* =

tbe−i�ky/2� + tce
i�ky/2�

ta
. �7�

We define

t = �t1� = �t2� =
�tb

2 + tc
2 + 2tbtc cos ky

ta
. �8�

When tb= tc, we have

t1 =
2tb

ta
cos

ky

2
. �9�

A. Macroscopically degenerate states and the strictly localized
states at tb= tc and �ky�=�

If tb= tc and �ky�=�, Eqs. �6� and �7� vanish. Then Eq. �5�
is

�n = −
E

ta
�n,
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FIG. 2. �Color online� The
honeycomb lattices with �a� zig-
zag �Lx=4�, �b� bearded �Lx=4�,
�c� zigzag-bearded �Lx=4�, and
�d� armchair �Ly =6� edges, which
we call zigzag, bearded,
zigzag-bearded, and armchair,
respectively.
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�n = −
E

ta
�n. �10�

There is no interpair coupling and each pair is decoupled
from others. This leads to macroscopic degeneracy. These
are bulk states which appear at �ky�=� and E= ± ta for zigzag,
bearded, and zigzag-bearded, as shown in Figs. 3, 5, and 6,
respectively.

If we have E=0 in addition, pairs ��n ,�n� vanish, as seen
from Eq. �10�. The only nonvanishing wave functions are the
unpaired ones at the edges. For zigzag, the unpaired wave
functions are �1/2 and �Lx+1/2, as shown in Fig. 2�a�. Thus,
we have strictly localized states �1/2 at the left edge and
�Lx+1/2 at the right edge. �These states are extended in the y
direction.� For bearded, there is no unpaired state, as shown
in Fig. 2�b�, and there is no strictly localized state. For
zigzag-bearded, �1 is unpaired, as shown in Fig. 2�c�. This is
the strictly localized state at the left edge. �This state is ex-
tended in the y direction.�

B. Edge states

In the following, we implicitly assume the appropriate
thermodynamic limit. If E=0, Eq. �5� is reduced to

�n = − t1�n+1/2,

�n = − t2�n−1/2. �11�

There is no intrapair coupling, namely, �n’s on sublattice A
and �n’s on sublattice B are decoupled.

1. Zigzag

As shown in Fig. 2�a�, the left edge has �1/2 on sublattice
B and the right edge has �Lx+1/2 on sublattice A. The bound-
ary condition on the left edge is to add fictitious sites with

�1/2=0. In the same manner, the boundary condition on the
right edge is to add fictitious sites with �Lx+1/2=0. Thus, the
boundary conditions for zigzag are

�1/2 = 0, �12�

�Lx+1/2 = 0. �13�

From Eqs. �10� and �11�, we obtain

�Lx−n = �− t1�2n+1/2�Lx+1/2, �14�

�n = �− t2�2n−1�1/2. �15�

For the system with finite Lx, the solutions above are not
exact. If t�1, however, Eqs. �14� and �15� satisfy the bound-
ary conditions in the limit Lx→� and these give the right
edge states on sublattice A and the left edge states on sublat-
tice B, respectively. Even if the system size is finite, we have
the edge states with exponentially small E, when the edge
states on sublattices A and B coexist with negligibly small
mixing to satisfy the exact boundary conditions.

The localization lengths for both sublattices are the same
and given by

� =
1

2�log t�
. �16�

From Eq. �8�, the condition for the existence of the edge
states, t�1, is given by

cos ky �
ta
2 − tb

2 − tc
2

2tbtc
. �17�

Thus we have edge states for all the values of ky if tb+ tc
� ta. There are no edge states if �tb− tc�� ta.

For ta= tb= tc, edge states exist if �ky��
2�
3 . The zero en-

ergy modes for these edge states are seen in Fig. 3. An ex-
ample of edge states are shown in Fig. 4.

2. Bearded

As shown in Fig. 2�b�, the left edge has �1 on sublattice A
and the right edge has �Lx

on sublattice B. The boundary
conditions are given by

�Lx+1/2 = 0,

�1/2 = 0. �18�

In this case, we write Eq. �11� as

�n = �−
1

t1
�2n−2

�1,

�Lx−n = �−
1

t2
�2n

�Lx
. �19�

If t�1, these are edge states with the same localization
length

� =
1

2 log t
. �20�
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FIG. 3. �Color online� Energy spectrum of zigzag for Lx=14.
The edge states are on the blue lines.
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For ta= tb= tc, edge states exist if �ky � �
2�
3 .The energy

spectrum for the isotropic case is plotted in Fig. 5.

3. Zigzag-bearded

As shown in Fig. 2�c�, the left edge is zigzag with �1/2 on
sublattice B. The right edge is bearded with �Lx

also on
sublattice B. The boundary conditions are given by

�1/2 = 0, �21�

�Lx+1/2 = 0. �22�

These boundary conditions give �n=0. Thus, there are no
edge states on sublattice A.

For the �n, we have no boundary conditions. From Eq.
�11�, we have

�n = �− t2�2n−1�1/2, �23�

This is the left edge states if t�1. On the other hand, we
write

�Lx−n = �−
1

t2
�2n

�Lx
, �24�

This gives the right edge state if t�1.
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FIG. 4. �Color online� An example of the edge states.
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FIG. 5. �Color online� Energy spectrum for bearded. The energy
mode for the edge states are on the blue line.
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FIG. 6. �Color online� Energy spectrum for zigzag-bearded for
Lx=40. The zero energy mode for the edge states are on the blue
line.
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FIG. 7. �Color online� Energy spectrum for armchair in the iso-
tropic case. Neither Eq. �31� nor Eq. �33� is satisfied in this case.
There is no edge state.
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The energy spectrum in the isotropic case, ta= tb= tc, is
shown in Fig. 6. The edge states are on the blue line which
has the full length from −� to �.

IV. ARMCHAIR

We have the periodic boundary conditions in the
x-direction, �n+Lx,m=�n,m and �n+Lx,m=�n,m, as shown in Fig.
2�d�. So, we write

�n,m = exp�ikxn��m,

�n,m = exp�ikxn��m, �25�

where kx= 2�j
Lx

and j=1, . . . ,Lx. The boundary conditions at
the edges are

�1/2 = �1/2 = 0,

�Ly+1/2 = �Ly+1/2 = 0. �26�

Let us consider the case where E=0 in which �’s and �’s
are decoupled and satisfy

− ta�m − ei�kx/2��tb�m−1/2 + tc�m+1/2� = 0,

− ta�m − e−i�kx/2��tb�m+1/2 + tc�m−1/2� = 0. �27�

We set

�m = z2m. �28�

Then, from Eq. �27�, we have two solutions for z which
satisfy

z± =
1

2
	−

ta

tc
e−ikx/2 ±�� ta

tc
�2

e−ikx − 4
tb

tc

 ,

z±z− =
tb

tc
,

z+ + z− = −
ta

tc
e−ikx/2, �29�

In terms of these, the solution of Eq. �27� with the boundary
condition �1/2=0 is given by

�m =
z+

2m−1 − z−
2m−1

z+ − z−
�1. �30�

This satisfies the boundary condition in the limit Ly→� if

�z+� � 1 and �z−� � 1. �31�

They are edge states localized near the bottom. In order Eq.
�31� be satisfied,

tb � tc, �32�

is required as seen from Eq. �29�.
In a similar manner, edge states localized near the top are

possible if

�z+� � 1 and �z−� � 1 �33�

As seen from Eq. �29�

tb � tc, �34�

is required.
For analysis of �’s we only need to replace kx by −kx and

tb and tc. This symmetry can be seen in Fig. 1 an also in Eq.
�27�. Thus we obtain essentially the same conditions. See
Figs. 7 and 8 for examples of the energy spectrum.
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