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Based on spin-charge-coupled drift-diffusion equations, which are derived from kinetic equations for the
spin-density matrix in a rigorous manner, the electric-field-induced nonequilibrium spin polarization is treated
for a two-dimensional electron gas with both Rashba and Dresselhaus spin-orbit coupling. Most emphasis is
put on consideration of the field-mediated spin dynamics for a model with equal Rashba and Dresselhaus
coupling constants, in which the spin relaxation is strongly suppressed. Weakly damped electric-field-induced
spin excitations are identified, which recall space-charge waves in crystals.
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I. INTRODUCTION

Spin-dependent transport phenomena are of great interest
to both basic research and device applications. In particular,
semiconductor-based spin electronics has been the subject of
numerous investigations. In this field, spin rather than charge
is exploited for signal processing. The spin-orbit interaction
�SOI� opens the possibility of manipulating the spin of car-
riers using purely electrical means. Unfortunately, the very
same SOI has the undesired effect of causing spin relaxation
due to precession in a wave-vector-dependent effective mag-
netic field, which is traced back to the SOI. For a quantum
well grown on a �001� substrate, the Dyakonov-Perel spin
relaxation1 is the dominant effect. In general, however, spin
relaxation depends on the details of the band structure and
the relevant scattering mechanisms �see Ref. 2 and refer-
ences therein�. For an asymmetric quantum well, bulk-
inversion asymmetry and structure-inversion asymmetry give
rise to Dresselhaus and Rashba spin-orbit contributions to
the Hamiltonian, respectively. The interplay between the lin-
ear Rashba and Dresselhaus terms causes a spin relaxation
anisotropy that has been treated in a number of theoretical
works.3–7 For a quantum well grown along the �001� direc-
tion, the main axes of the spin-relaxation-time tensor are

given by �110� and �11̄0�. Most interesting is the observation
that, under idealized conditions and when the linear Rashba
and Dresselhaus terms have equal strength, the relaxation of
spin oriented along the �110� axis is totally suppressed.3 In
this particular case, a conserved quantity exists, which hin-
ders spin randomization.5,6 This remarkable behavior of the
spin-relaxation time led to the proposal of a nonballistic spin
field-effect transistor.5 Other studies of the combined
Rashba-Dresselhaus model referred to the spin- and charge-
Hall effects.8–13

Recently, the field received a fresh impetus by the identi-
fication of an exact SU�2� symmetry of the model, when
reaching the condition of equal Rashba and Dresselhaus cou-
pling strengths.14,15 From a theoretical point of view, an
equivalent system is the Dresselhaus �110� model. The re-
vealed symmetry gives rise to a massless mode with infinite
lifetime at nonzero wave vector. Qualitative features of the

associated spin pattern have been experimentally confirmed16

by optical techniques that probe spin relaxation rates. Fur-
thermore, it has been predicted17,18 that coherent spatial os-
cillations of the spin polarization develop in such a system
under appropriate injection conditions.

In this paper, we extend these interesting studies by treat-
ing spin effects under the influence of an applied in-plane
electric field. For the combined Rashba-Dresselhaus model
with a SOI that is linear in k, spin-charge-coupled drift-
diffusion equations are derived in a systematic manner. Re-
sults are presented and discussed for the special model with
equal Rashba and Dresselhaus coupling strengths.

II. SPIN-CHARGE-COUPLED DRIFT-DIFFUSION
EQUATIONS

The effective Hamiltonian of our approach,

H0 =
�2k2

2m
+ ��ky�x − kx�y� + ��kx�x − ky�y� , �1�

includes the Rashba spin-orbit term, which is due to the in-
version asymmetry of the confining potential of the quantum
well. In addition, there is the Dresselhaus coupling, which is
present in semiconductors lacking bulk-inversion symmetry.
The model Hamiltonian refers to a two-dimensional semi-
conductor nanostructure grown along the �001� direction. In
Eq. �1�, k, m, and �i �i=x ,y ,z� denote the in-plane wave
vector, the effective electron mass, and the usual Pauli ma-
trices, respectively. � and � are the strengths of the Rashba
and Dresselhaus spin-orbit couplings. Our total Hamiltonian
encompasses also contributions stemming from the short-
range spin-independent elastic scattering on impurities and
the in-plane electric field E= �Ex ,Ey ,0�. Its explicit form to-
gether with related kinetic equations for the spin-density ma-
trix has been published recently.19 It should be noted that, for
the combined Rashba-Dresselhaus model, the field-induced
spin polarization depends on the orientation of the in-plane
electric field.12,13

The main quantity for the theoretical analysis of spin-
related phenomena is the spin-density matrix f��

� �k ,k� , t�,

PHYSICAL REVIEW B 76, 205326 �2007�

1098-0121/2007/76�20�/205326�6� ©2007 The American Physical Society205326-1

http://dx.doi.org/10.1103/PhysRevB.76.205326


which is calculated from quantum kinetic equations.20 From
this set of equations, spin-charge-coupled drift-diffusion

equations are derived for the physical components f̄ =Tr f̂ and

f̄=Tr� f̂ , which are integrated over the polar angle of k �de-
noted by the overbar�. In the case of weak SOI ��kF� /�,
�kF� /��1, with kF and � being the Fermi wave vector and
elastic scattering time, respectively�, the following ansatz is
justified:21

f̄�k,q,t� = − F�q,t�
dn�	k�/d	k

dn/d	F
,

f̄�k,q,t� = − F�q,t�
dn�	k�/d	k

dn/d	F
, �2�

where n�	k� denotes the Fermi function and 	k=�2k2 / �2m�.
Furthermore, we introduced the electron density n
=�d	 
�	�n�	�, with 
�	� being the density of states of the
two-dimensional electron gas. Applying this straightforward
calculational scheme,21 spin-charge-coupled drift-diffusion
equations are obtained, which read in spatial coordinates rj

�Fi

�t
+

�Jij

�rj
+ MijFj =

2m�

�3�s
LiF , �3�

with the expression for the spin flux

Jij = ��Ej − D
�

�rj
�Fi +

4Dm

�2 	iklQkjFl −
4mD�

�3 ��2 − �2�

��2m

�2 Qij − 	ijk
�Ek

2D
�F . �4�

The diffusion coefficient D and the mobility � satisfy the
Einstein relation �= �eD /n�dn /d	F. Other quantities that en-
ter Eqs. �3� and �4� are defined by

L =
2m

�2 �s„− ���Ey + ��Ex�,���Ex + ��Ey�,0… ,

1

�s
= 4D

m2

�4 ��2 + �2� , �5�

Mij =
Aij

�s
+

1

�s
	ikjLk +

2��

��2 + �2��s
Sij , �6�

AJ = �1 0 0

0 1 0

0 0 2
	, QJ = � � � 0

− � − � 0

0 0 0
	, SJ = �0 1 0

1 0 0

0 0 0
	 .

�7�

	ijk is the totally antisymmetric tensor in three dimensions.
The spin flux Jij, which gives the ith component of the
particle flow with spin polarization along the axis j
�i , j=x ,y ,z�, has a general form that is in accordance with
symmetry requirements.22 Neglecting the spin-charge cou-
pling and the influence of the electric field, we obtain the
result

�Fi

�t
= −

m

�2Qjl	 jikJkl, Jkl =
4Dm

�2 	kmnQmlFn, �8�

in which the spin flux Jkl appears as a source of nonequilib-
rium spin polarization.22,23 The set of basic equations �3� and
�4�, which restore published results14 in the case of vanishing
electric field, are solved and discussed in the Fourier space
with respect to spatial coordinates. For the sake of a better
readability of the paper, these equations are summarized in
the Appendix.

III. RESULTS AND DISCUSSION

A number of quite interesting electric-field effects on the
spin polarization occurring in systems with Rashba and
Dresselhaus SOI can be studied on the basis of the coupled
spin-charge drift-diffusion equations �3� and �4� �or �A1� and
�A2��. To keep the presentation transparent, we restrict our-
selves to spatially infinite systems by omitting any boundary
effects.

A. Charge current

The current density of charge carriers is defined by the
time derivative of the dipole moment, which can be ex-
pressed by

j�t� = − ie��

�

�t

F��,t�
�=0. �9�

As we are mainly interested in the charge transport along the

�110� and �11̄0� directions, the spatial coordinates are rotated
by introducing new wave vectors ±= �x±y� /�2. In these
coordinates, the charge current along the + direction is
given by

j+�t� = − ie
�2

�t�+

F�+,− = 0,t�
+=0. �10�

Taking into account Eq. �A1�, we immediately obtain for the
Laplace-transformed current density

j+�s� = e�E+
F

s
+

e

�
�� + ��F−�s� −

2me�

�3 ��2 − �2��E−Fz�s� ,

�11�

where E±= �Ex+Ey� /�2 and F±= �Fx±Fy� /�2. The compo-
nents of the density matrix, which enter this equation, refer
to a spatially homogeneous system. The related ��=0� drift-
diffusion equations �A1� and �A2� are easily solved. Insert-
ing the solution into Eq. �11� and taking into account only
contributions linear in the electric field, we get

j+��� = e�E+F�1 +
�2�

�2D

1 − �2

i��s − �1 − ��2/�1 + �2�� ,

�12�

with �=� /�. As the current is aligned along the electric-field
direction, there is no Hall current, the appearance of which
would require the treatment of the nonlinear field term in Eq.
�11�, which is of higher order in the spin-orbit coupling con-
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stant. In Eq. �12�, the pure charge current e�E+F is comple-
mented by a spin contribution, which exhibits a Drude-like
frequency dependence governed by the spin relaxation time
�s, which may be much larger than the elastic scattering time
�. Consequently, the frequency dispersion of the spin-
mediated current contribution can set in at lower frequencies
as in the ordinary Drude formula. The spin-induced current
contribution disappears, when the Rashba and Dresselhaus
coupling constants are equal ��=��. For the Rashba model
��=0�, Eq. �12� resembles the results derived previously for
small polarons.24

B. Out-of-plane spin polarization for �=�

As another application of the spin-charge drift-diffusion
equations �A1� and �A2�, we treat the evolution of an initial
spin lattice produced at t=0 along the + direction,

fz0�+� =
1

2
fz0��+ − 0� +

1

2
fz0
* ��+ + 0�, fz0 = 
fz0
ei�,

�13�

with 0 being a given wave vector. Restricting ourselves to
the special case �=�, we obtain the exact solution

Fz�+,s� = fz0�+�
�

�2 + 2�+

2 , �14�

with the effective Laplace variable

� = s − i�E++ + D+
2 + 2/�s �15�

and the frequency

�+
= 2�2

m�

�2 ��E+ + 2iD+� . �16�

The inverse Laplace and Fourier transformations of Eq. �14�
are easily calculated, and we obtain for the asymptotic dy-
namics at large times

Fz�r+,t� =

fz0


2
exp�− D�0 − 2K�2t�

�cos�0r+ + � + �E+�0 − 2K�t� . �17�

For 0=2K, the original static spin lattice survives and re-
tains its shape in the steady state. Under this excitation con-
dition, a long-lived spin pattern is expected to occur. If 0
slightly deviates from 2K, the electric field drives a propa-
gating spin wave, the amplitude of which diminishes with
time exponentially. The frequency of this wave is given by
�E+�0−2K�.

C. Field-induced spin accumulation and Hanle effect

In this section, the electric-field-induced out-of-plane spin
accumulation is studied for a different initial spin prepara-
tion. First, we focus on the contribution that appears in a
homogeneous electron gas ��=0�. From Eqs. �A7�–�A10�
given in the Appendix, we obtain the steady-state solution

Fz = − 4��
m�

D�3

�2�Ex
2 − Ey

2�
2/�s + ��E�2/D

F , �18�

which applies for a semiconductor with different Rashba and
Dresselhaus SOI constants �����. This field-mediated spin
accumulation depends on the orientation of the electric field
within the plane and has the character of a second-order field
effect. Spin accumulation, which is proportional to the elec-
tric field, occurs only in the plane.12 The quadratic field
effect in Eq. �18� disappears for the pure Rashba ��=0�
and Dresselhaus ��=0� systems as well as under the
condition 
Ex
= 
Ey
. For sufficiently high electric fields
�2 /�s� ��E�2 /D�, the out-of-plane spin polarization
approaches the constant field-independent value
Fz=−4��m� cos�2��F /�3, with � being the polar angle of
the electric field.

In addition to this field contribution of a homogeneous
system, we study the response to a permanent harmonic spin
generation of the form

G�r+,t� = Gei�t+i+r+. �19�

Disregarding the spin-charge coupling, the drift-diffusion
equations �A8�–�A10� are analytically solved by

Fz�+,�� = G
�i� + 2/�s+��i� + 2/�s−�

�i� + 2/�s+��i� + 2/�s−��i� + 2/�s� + T+
2�i� + 2/�s−� + T−

2�i� + 2/�s+�
, �20�

where the shorthand notations

i� = i� − i�+E+ + D+
2, T+ = 2K+��E+ + 2iD+� ,

T− = 2K−�E−, K± = �� ± ��
m

�2 �21�

were used. This solution becomes more transparent for the
special case �=�, where we obtain

Fz�+,�� = G
i� − i�+E+ + D+

2 + 2/�s

N+N−
,

N± = i� − i�E+�+ ± 2K� + D�+ ± 2K�2. �22�

The dispersion relation of eigenmodes �=�E+�+−2K� is
derived from the denominator N−. This mode has the char-
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acter of free carrier oscillations complemented by a spin part
that gives rise to a soft mode at +=2K.

Further information about the solution in Eq. �20� is ob-
tained for ��� and ��1 /�s. Two limits can be distin-
guished in this case. Under the condition ��1 /�s−, which
applies to the steady state, Eq. �20� simplifies to

Fz =
G

2/�s + ��E�2/D
, �23�

which can be interpreted as the electric-field analogy of the
Hanle effect.21,25 Another result is obtained in the opposite
case 1 /�s−��, when the out-of-plane spin polarization de-
pends on the orientation of the electric field,

Fz =
G

2/�s + ���Ex + Ey��2/�2D�
. �24�

This solution dictates the behavior of the spin polarization in
the limit �→�. Both results agree for the special field con-
figuration Ex=Ey =E /�2.

D. Spin remagnetization waves for �=�

Finally, we treat the relaxation of an initial homogeneous
spin moment F0. In this case, we use �=0 in our basic equa-
tions so that spin and charge degrees of freedom decouple
from each other. Most interesting results are expected when
the Rashba and Dresselhaus SOI couplings coincide ��=��.
The set of equations �A8�–�A10� is easily solved for the
Laplace-transformed functions. The result,

Fx�t� =
Fx0 − Fy0

2
+ e−2t/�s�Fx0 + Fy0

2
cos��Et�

−
Fz0

�2
sin��Et�� , �25�

Fy�t� = −
Fx0 − Fy0

2
+ e−2t/�s�Fx0 + Fy0

2
cos��Et�

−
Fz0

�2
sin��Et�� , �26�

Fz�t� = e−2t/�s�Fx0 + Fy0

�2
sin��Et� + Fz0 cos��Et�� ,

�27�

describes spin rotations with the frequency �E=�2K��Ex

+Ey�. Such rotations of the magnetic moment were studied
previously both for hopping of small polarons24,26 and for
extended states in a two-dimensional electron gas.27,28 In
analogy to space-charge waves, these eigenmodes are called
spin-remagnetization waves. Typically, the amplitudes of
these excitations exponentially decrease with increasing
time. It is a peculiarity of the special Rashba-Dresselhaus
model that the in-plane magnetic moment is conserved:
Fx�t�−Fy�t�=Fx0−Fy0. This observation provides a further
example of the occurrence of undamped spin excitations,

whenever the coupling constants � and � are equal.

IV. SUMMARY

Both for the Rashba-Dresselhaus model with equal cou-
pling constants and for the Dresselhaus �110� model, it has
recently been realized that the relaxation of spin oriented
along the �110� axis is totally suppressed. As the spin lifetime
becomes arbitrarily long within these models, the existence
of a persistent spin grating has been predicted. Recent
experiments16,29,30 indeed revealed evidence supporting this
interesting peculiarity of slow spin relaxation rates. The ex-
treme suppression of spin relaxation in the special theoretical
models for semiconductor nanostructures with SOI is due to
a spin symmetry that gives rise to a soft mode at =2K. This
weakly damped eigenmode leads also to interesting phenom-
ena in the biased spin-orbit-coupled system that was studied
in this paper. Based on rigorous spin-charge-coupled drift-
diffusion equations for the components of the spin-density
matrix, a number of field-mediated spin effects were consid-
ered.

�i� A Drude-like spin-induced contribution was identified
in the longitudinal charge current, that disappears in the spe-
cial Rashba-Dresselhaus model with equal coupling
strengths. The frequency position and the width of the reso-
nance are determined by the spin relaxation time and the
coupling constants � and �.

�ii� A persistent spin pattern created at =2K is not de-
stroyed by the electric field. However, under the condition of
slightly off resonance, the field forces the pattern to move.

�iii� In a homogeneous electron gas with Rashba and
Dresselhaus SOI, an out-of-plane spin polarization develops,
which has a nonlinear field character. In addition, long-lived
remagnetization waves can be excited, whose frequency is
given by �=�E+�+−2K�. These eigenmodes can be studied
in a similar manner as space-charge waves in crystals. In
addition, the electric-field analogy of the Hanle effect
changes its character at ���.

�iv� The in-plane spin polarization of the special Rashba-
Dresselhaus model with �=� is conserved and the spins ro-
tate due to the electric field with the frequency �E
=�2K��Ex+Ey�.

The experimental confirmation of the field-mediated spin
effects predicted here would stimulate further progress in
both basic research and technological innovations.
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APPENDIX: FOURIER-TRANSFORMED DRIFT-
DIFFUSION EQUATIONS

The Fourier-transformed version of our basic spin-charge-
coupled drift-diffusion equations �3� and �4� has the form
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� �

�t
− i�E� + D2�F + i�� · F

−
2im�

�3 ��2 − �2���� � �E� · F� = 0, �A1�

� �

�t
− i�E� + D2 +

TJ

�s
�F − �H � F� −

i�

�
�� � �E�F

+ �HF = 0, �A2�

with the abbreviations

Hx =
2m

�2 ����Ey + 2iDy� + ���Ex + 2iDx�� , �A3�

Hy = −
2m

�2 ����Ex + 2iDx� + ���Ey + 2iDy��, Hz = 0,

�A4�

TJ =� 1
2��

�2 + �2 0

2��

�2 + �2 1 0

0 0 2
	 , � =

2m�

�3 ��2 − �2� .

�A5�

For the Rashba model ��=0�, these equations agree with
results derived previously.21

Let us treat these equations in another representation char-
acterized by the components

± =
x ± y

�2
, F± =

Fx ± Fy

�2
. �A6�

For excitations of the spin polarization that propagate exclu-
sively along the + direction �−=0�, Eqs. �A1� and �A2� are
written in the form

� �

�t
− i�E++ + D+

2�F −
i

�
�� + ��+F−

+
2im�

�3 ��2 − �2��E−+Fz = 0, �A7�

� �

�t
− i�E++ + D+

2 +
2

�s+
�F+ +

2m

�2 �� + ����E+ + 2iD+�Fz

−
4m2�

�5 �� − ��2�� + ���E−F = 0, �A8�

� �

�t
− i�E++ + D+

2 +
2

�s−
�F− +

2m

�2 �� − ���E−Fz

+
4m2�

�5 �� + ��2�� − ����E+ + 2iD+�F = 0, �A9�

� �

�t
− i�E++ + D+

2 +
2

�s
�Fz +

2im�

�3 ��2 − �2��E−+F

−
2m

�2 �� + ����E+ + 2iD+�F+ −
2m

�2 �� − ���E−F− = 0,

�A10�

with E±= �Ex±Ey� /�2 and

2

�s+
=

�� + ��2

�s��2 + �2�
,

2

�s−
=

�� − ��2

�s��2 + �2�
. �A11�

For the particular case �=�, the coupling between spin and
charge degrees of freedom disappears and the secular equa-
tion for the spin components gives the following dispersion
relations for eigenmodes of the biased spin system:

�1 = − �E++ − iD+
2 ,

�2,3 = − �+ ± 2K���E+ + iD�+ ± 2K�� , �A12�

with K=2m� /�2. This result implies that there appears a
field-induced undamped soft mode at +=2 K, which reflects
the presence of the spin rotation symmetry.14
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