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A theory of collective states in a magnetically quantized two-dimensional electron gas �2DEG� with half-
filled Landau level �quantized Hall ferromagnet� in the presence of magnetic 3d impurities is developed. The
spectrum of bound and delocalized spin excitons as well as the renormalization of Zeeman splitting of the
impurity 3d levels due to the indirect exchange interaction with the 2DEG are studied for the specific case of
n-type GaAs doped with Mn, where the Landé g factors of impurity and 2DEG have opposite signs. If the sign
of the 2DEG g factor is changed due to external influences, then impurity related transitions to new ground
state phases, presenting various spin-flip and skyrmionlike textures, are possible. Conditions for the existence
of these phases are discussed.
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I. INTRODUCTION

In a strong magnetic field, the two-dimensional electron
states in semiconductor heterostructures1 transform into Lan-
dau states with a completely discrete energy spectrum. This
diamagnetically quantized two-dimensional electron gas
�2DEG� possesses many remarkable features including quan-
tum Hall effect.2 The role of impurities in the thermody-
namic, optical, and transport properties of 2DEG is ex-
tremely important. Among many facets of this problem, we
choose for discussion in this paper the formation of impurity
related collective excitations in a magnetically doped quan-
tized 2DEG in the case of odd integer filling factor �=2n
+1. In a pristine state, 2DEG with odd � is in a quantized
Hall ferromagnet �QHF� regime with nondegenerate ground
state characterized by the total spin quantum number S
=N� /2 and maximum spin projection Sz=S. �N� is the
magnetic-flux-quanta number.� Different branches of the ex-
citons are well distinguishable among the low-energy excita-
tions. They are classified as spin waves �spin excitons�, mag-
netoplasmons, or multiexciton states, depending on the spin
and orbital quantum numbers.3–10 Besides, low-lying collec-
tive half-integer-spin fermionic states �trions, skyrmions,
etc.� may be formed in a QHF under certain
circumstances.11–18 Magnetic impurities are characterized by
their own spectrum of local spin excitations, and one can
anticipate a strong interplay between local and collective ex-
citations in a magnetically doped QHF.

It is known that the influence of impurities on the discrete
spectrum of quantized Landau electrons in a 2DEG has many
specific features. Even such a basic property as the interac-
tion of a 2DEG with neutral short-range impurities is far
from being trivial.19–21 Only the Landau states with a finite
probability density on the scatterer locations interact with
impurities. This means that the whole set of Landau states
breaks down into two groups: the major part of the Landau
levels �LLs� is not affected by the impurity scattering, and
the states having a nonzero scattering amplitude on an impu-
rity form a separate system of bound Landau states in the
energy gaps between the free LLs.

To be more specific, we consider a 2DEG formed in the
n-type GaAs/GaAlAs heterostructures doped with transition
metal �TM� impurities. The reason for this choice is that the
technology of �Ga,Mn�As epilayers is well developed, and
the QHF regime is achieved experimentally in GaAs based
heterostructures. As a rule, transition metal ions substitute
for the metallic component of the binary II-VI and III-V
semiconductors.22–24 The influence of isolated TM impurities
on the spectrum of the Landau states was investigated in Ref.
25. It was shown that the resonance scattering in the d chan-
nel is in many respects similar to that of the short-range
impurity scattering in the s channel.19–21 The symmetry se-
lection rules for the resonance d waves in the cylindrical
�symmetric� gauge pick up the Landau states with the orbital
number m=0 �in the symmetric gauge�. These states are the
same states that are involved in the s scattering by the impu-
rities with a short-range scattering potential.21 Besides, this
scattering is spin selective in magnetically quantized 2DEG.

It should be emphasized that in the problem under con-
sideration, the criterion of isolated impurities acquires a spe-
cific feature. In fact, the Mn concentration range, where our
theory is applicable, is limited from below by technological
capabilities and from above by the obvious requirement that
the impurity induced disorder does not destroy collective ex-
citonic states. So, the relevant interval of bulk Mn concen-
trations is 1013 cm−3�nMn�1015 cm−3. Here, the upper limit
corresponds to the two-dimensional �2D� concentration of
109 cm−2, which in our case is actually well below the Lan-
dau band capacity N� at B�10 T that is equal to the 2D
electron number on the upper �half-filled� LL. One may ex-
pect that the above mentioned classification of excitonic
states is valid only at the bulk concentration nMn
�1015 cm−3, which is much less than in the materials used
for the creation of dilute magnetic semiconductors.26

We calculate in this paper the spectra of bound and con-
tinuous collective excitations related to magnetic impurities.
When studying the influence of magnetic impurities on the
excitonic spectrum of 2DEG, a distinction between the nega-
tive and positive signs of the gyromagnetic ratio of 2DEG
electrons g2DEG should be also mentioned. It will be shown
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that in the conventional situation of negative g2DEG, the in-
teraction with magnetic impurity lowers the ground state en-
ergy due to the effective antiferromagnetic character of the
effective indirect exchange. This results in the formation of a
set of bound and delocalized collective excitations presenting
combined modes classified by a change in the total spin
number Sz. When g2DEG�0, so that the g factors of both
subsystems �2DEG electrons and impurities� have the same
sign, magnetic impurities may form bound states in the gap
below the spin exciton continuum and even initiate a global
reconstruction of the QHF ground state.

II. MODEL HAMILTONIAN

Following Ref. 23, we describe the electron scattering on
a TM impurity in a semiconductor within the framework of
the Anderson impurity model Hamiltonian27 generalized
for the case of multicharged impurity states in
semiconductors.28–30 According to this model, the principal
source of magnetic interaction is the resonance scattering of
conduction electrons on the d-electron levels of TM impurity
in the presence of a strong on-site Coulomb interaction U.
Due to this interaction, the local moment of TM impurity
survives in the crystalline environment, and a “kinematic”
indirect exchange interaction between the conduction and
impurity electrons arises in the second order in the s-d hy-
bridization parameter, even in the absence of a direct ex-
change.

The generic Hamiltonian describing the QHF regime in a
magnetically doped semiconductor is

Ĥ = Ĥd + Ĥs + Ĥt + Ĥsd. �2.1�

Here, Ĥd=�iĤdi describes the TM impurities on the sites i,

Ĥs is related to the band electrons on the LLs, and Ĥt is
responsible for hybridization between the impurity d elec-
trons and Landau electrons. Eventually, it is this hybridiza-
tion that generates coupling between collective modes in
2DEG and localized spin excitations on the impurity sites. In
our extremely weak doping regime, both the direct and indi-
rect interactions between magnetic impurities are negligible.
Each magnetic scatterer may be considered independently,
and it is convenient to choose the symmetric gauge
A= �− B

2 y , B
2 x ,0� with the quantum numbers �= �n ,m� for the

Landau electrons hybridized with the atomic d electrons cen-
tered around the site i, positioned in the center of coordi-
nates. The Coulomb interaction is taken into account in the
impurity and in the band electron subsystems. Besides, the
direct Coulomb interaction between the d and s electrons
described by the last term in the Hamiltonian �2.1� is added
to the conventional impurity Hamiltonian �cf. Ref. 27� de-
scribed by the first and third terms. All additional interac-
tions will be discussed below in detail.

Substitutional Mn impurity in GaAs retains all its five d
electrons due to a special stability of the half-filled 3d shell.
In the p-type GaAs, the electrically neutral state of Mn in Ga
position is Mn�3+��3d5+hole�, where the hole is bound on the
relatively shallow acceptor level near the top of the valence
band, whereas the occupied d-electron levels are deep in the

valence band.23,24,31,32 In the n-type heterostructures, these
acceptor states are overcompensated, and the chemical po-
tential is pinned on one of the lowest Landau levels in the
conduction band. Since we are interested only in the low-
energy excitations above the ground state of the n-type sys-
tem, Mn impurities will be considered as the Mn�3+��3d5�
ions in the subsequent calculations.

A. Single-orbital model: Spin-selective hybridization

One may significantly simplify the calculation of the
spectrum of excitations by reducing the general Hamiltonian
�2.1� to the form in which only the terms relevant to the
calculation of the desired collective states are present. As a
result of this simplification, outlined below in Sec. II B, one
arrives at the single-orbital, single Landau band hybridiza-
tion Hamiltonian, which explicitly takes into account the
Hund rule governing the high-spin states 3d5 and 3d6 of the
Mn 3d shell �the state 3d4 is proven to be irrelevant in our
specific case of Mn in GaAs lattice, see Fig. 1�. These im-
purity states are characterized by the maximum total spin
quantum numbers S�d�=5/2 at 3d5, and S�d�=2 at 3d6, and

the effective Hamiltonian Ĥ is defined in the charge sector
��d5 ,N� , �d6 ,N−1�� of states with variable number N or N
−1 of the electrons on the highest nth LL �of course, in our
case, N	N��. The Hamiltonian now reads

Ĥ = �
�

�d�n̂	0� + Un̂	0↑n̂	0↓ + �
m�


n�anm�
† anm� + ĤCoul� + Ĥt,

�2.2�

where the impurity Hamiltonian Ĥd of Eq. �2.1� is repre-
sented by the two first terms, in which n̂	0�=c	0�

† c	0�, and
c	0�

† is the creation operator for the d electron at the orbital
	0 with the spin z component �. The notation 	0 designates
the only 3d orbital with the Y02�3z2−r2 symmetry, which
effectively couples with the m=0 state of the LL.25 The pa-
rameter U characterizes Coulomb and exchange interactions
determining the addition energy for the transition 3d5→3d6.
The third term in Eq. �2.2� is the Hamiltonian of noninter-
acting Landau electrons, where anm�

† is the creation operator

+U

E
0

(a) (b)

ε
d

d
ε

FIG. 1. Allen reactions that involve an additional �a� electron or
�b� hole in the impurity site. �d↓ and 
d↑+U are addition energies
for the fifth and sixth electrons in the 3d shell of Mn ion in accor-
dance with Eqs. �2.8�. The ground state with the energy E0 corre-
sponds to the completely occupied lowest Landau subband. Spins of
Mn 3d shell and occupied Landau subband are antiparallel because
of the different signs of g factors for Mn and 2DEG in GaAs.
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for the �n ,m ,�� Landau state. Most of the interaction com-

ponents are included in ĤCoul� . This term does not include
only the d-d interaction parametrized by U and the last term

Ĥt. The latter, generically, is also the part of the Coulomb
interaction between impurity and Landau electrons which in-
termixes impurity and Landau orbitals. However, in our case,

Ĥt acquires the form of a single-electron hybridization op-
erator 
see discussion after Eq. �2.13��,

Ĥt = �
�

Wn0an0�
† c	0� + H.c. �2.3�

As was mentioned above, this operator is responsible for the
resonance orbital-selective scatterings in QHF. It includes
hybridization of the impurity electron with the 2DEG elec-
trons within the nth LL. This means that only the influence
of impurity on the intra-LL excitations �of the spin-wave
type� is taken into account. The hybridization with the states
with n��n describing the processes with energy change ��c
or higher is omitted.

In the absence of the interaction term ĤCoul� , the Hamil-
tonian �2.2� acts in the subspace

�d5,s;vac�, �d6,s +
1

2
;an0↑�vac
 ,

and

�d5,s + 1;an0↓
† an0↑�vac� , �2.4�

where the fully polarized 2DEG without impurity is chosen
to be the “vacuum” state �vac�= �↑ , ↑ , . . . , ↑ �. Therefore,
anm↑

† �vac�=anm↓�vac��0. We represent the total spin compo-
nent as Sz=

N�

2 +s. Thus, we characterize the states in the set
Eq. �2.4� by the quantum number Sz. It is important that only
Sz=Sz

�s�+Sz
�d� is an exact spin quantum number in our system.

Separately, the Hamiltonian �2.2� commutes neither with the
spin component Sz

�s� of the LL electrons nor with the impurity
spin component Sz

�d�. Equally, it does not commute with the
total spin S2 and with the spins �S�s��2 and �S�d��2 �see Ap-
pendix B�. The number s in the set Eq. �2.4� changes within
the interval − 5

2 
s�
5
2 . It is convenient to choose the state

�d5 , 5
2 ;vac� as a reference point �“global vacuum”�. This state

is not mixed with any other state of the system by the opera-
tor �2.3� so that it enters the set of eigenstates of the Hamil-
tonian �2.2�, although at g2DEG�0 it is one of the excited
states of the system.

Within a given “triad” �2.4�, i.e., at a given s, the operator
�2.3� intermixes these basis states. The corresponding nondi-

agonal matrix elements are �vac;s ,d5�Ĥt �d6 ,s+ 1
2 ;an0↑�vac�

and �vac�an0↑
† ;s+ 1

2 ,d6�Ĥt�d5 ,s+1;an0↓
† an0↑�vac�, where the

bra and ket vectors are appropriately normalized. Therefore,
for any given quantum number Sz=

N�

2 +s, the magnetic im-
purity scattering problem can be effectively described in
terms of a single-orbital impurity model that involves only
one or two d	0 electrons. The single-orbital basis

�s−;vac�, �s0;an0↑�vac�, and �s+;an0↓
† an0↑�vac�

�2.5�

arises instead of the original multielectron basis �2.4�, where
the indices ��, 0, �� label the bare energies Es−

, Es0
=Es−

+U+�d↑−
n↑, and Es+
=Es−

+ �gi−g2DEG��BB. Here, gi�BB
=�d↑−�d↓ and g2DEG�BB=
n↑−
n↓ are Zeeman energies for
impurity and 2DEG, respectively. The two states Es±

form a
Zeeman doublet for a given s, while the state Es0 becomes
resonant with the LL continuum.

As a result of this mapping, where only one component 	0
of the normalized multielectron states is responsible for the

hybridization, the Ĥt operator can be redefined for each triad
�2.5� as

Ĥt�Sz� = V
�↑�s�c↑
†a0 + �↓�s�c↓

†b0� + H.c. �2.6�

It becomes thereby spin selective. The shorthand notation
a0�an0↑, b0�an0↓ is used here and below; c↑/↓

† is the cre-
ation Fermi operator for the s± impurity states �s± ;vac�
=c↑/↓

† �vac� and �s0 ;vac�=c↑
†c↓

†�vac�. The Clebsch-Gordan co-
efficients ���s� reflect the normalization of eigenvectors
�2.4� by replacing them with normalized single-orbital basis
�2.5�. For s=−5/2, −3/2, −1/2, 1 /2, and 3/2, we have

�↑ =�1

2
−

s

5
, �↓ =� 7

10
+

s

5
. �2.7�

The highest state in the bare Zeeman ladder �� 5
2

�
− ;vac�

��d5 , 5
2 ;vac� remains nonhybridized.

Unlike the original Anderson model,27 the mixing coeffi-
cient, V�Wn0 in our particular case, arises as a nondiagonal
component of the s-d Coulomb interaction �see Secs. II C
and II D for further discussion�.

B. Description of the employed simplifications

Here, we list the simplifications which have allowed us to
reduce Eq. �2.1� to the Hamiltonian �2.2� with the following

change Ĥt→Ĥt, and apply it to our system.
The first simplification exploits the fact that the character-

istic Coulomb energy of Landau electrons EC=�e2 /�lB is
considered to be small in the QHF regime as compared to the
cyclotron energy ��c. Here, � is the average form factor
related to the finite thickness of the 2DEG �0.3���1�. In
the EC���c limit, one may neglect the LL mixing. Besides,
it implies that, in our case, the energies of collective excita-
tions are smaller than ��c.

The second simplification is related to the “deepness” of
the 3d levels of a neutral Mn impurity relative to the bottom
of the conduction band in GaAs. We know from the previous
studies25 that the scattering potential created by a TM impu-
rity for the Landau electrons is generated by the s-d hybrid-
ization. It has a resonant character, and the spin-selective
scattering becomes strong when one of the impurity 3d lev-
els is close to the LLs of conduction electrons. The process
of s-d hybridization may be represented by the so-called
Allen reactions23,24,33 �see Fig. 1�

3d5 → 3d6 + h , �2.8a�
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3d5 → 3d4 + e . �2.8b�

The first of these reactions describes hopping of an electron
from the filled Landau subband to the impurity d shell,
whereas the second one means hopping of an electron from
the d shell to a state in the empty Landau subband. It is
known from the numerical calculations32 that the addition
energy for the sixth electron in the Mn 3d shell �e−

CFR state in
terms of Ref. 24� is in resonance with the states near the
bottom of the GaAs conduction band. It really means that the
values U and 
d↑ well compensate each other in the sum


d↑+U. So, one may retain only the processes �2.8a� in Ĥt
and neglect contributions of the 3d5→3d4 ionization.

The third major reduction of the Hamiltonian is the elimi-
nation of the impurity orbital degrees of freedom due to the
selection rules for the s-d hybridization matrix elements.25

This orbital selectivity arises, first, because of symmetry rea-
sons since only electrons with equal axial m numbers in d
and LL states are hybridized. Second, a precondition of the
selectivity is related to the fact that the magnetic length lB is
much larger than the radius rd of the 3d-electron state �in the
energy scale, this condition takes the form of inequality
U ,
d����c�. The hybridization integral determined by the
overlap of the d and Landau wave functions behaves as
��rd / lB�m�1 for m�0. All resonance scattering �hybridiza-
tion� amplitudes with m�0 are, thus, negligibly small, and
only the s-scattering term �m=0� can be retained in Ht. This
explains why only one of the five 3d orbitals, namely, 	0, is
involved in the resonance interaction with the 2D Landau
electrons.

C. Interaction Hamiltonian in excitonic representation

As was mentioned above, the states of the system are
characterized by the total spin component Sz. For a given Sz,
we may deduce the effective Hamiltonian

Ĥ�Sz� = Ĥd + Ĥ1
�s� + Ĥt�Sz� + Ĥs-s + Ĥs-d �2.9�

with the single-orbital impurity term Ĥd=�d↑n̂↑+�d↓n̂↓
+Un̂↑n̂↓ �n̂�=c�

†c�� and with the hybridization term deter-
mined by Eq. �2.6�.

The remaining terms in the Hamiltonian �2.9� are defined
within the framework of the single-LL approximation for the
Landau electrons.3–6,9–12,16,18,34–36 Although only the states
with m=0 in the LL are involved in the resonance scattering,
the complete basis for the description of collective excita-
tions includes all m orbitals of the LL, and the corresponding
Schrödinger field operators should be taken in the form

�̂↑�R� = c↑�d�R� + �s�z��
m

am�m�r� ,

�̂↓�R� = c↓�d�R� + �s�z��
m

bm�m�r� . �2.10�

Here, the shorthand notation am=anm↑, bm=anm↓ is used. R
= �r ,z� is the three-dimensional �3D� coordinate with the ref-
erence point at the impurity site, �s�z� is the size-quantized
functions of s electrons in the layer, and �m is the wave

function of the nth LL, where index m in the symmetric
gauge changes within the interval �−n ,−n+1, . . . ,N�−n−1�.

Using the above definitions and Eqs. �2.10� in the generic
interaction operator

ĤCoul =
1

2 �
�1,�2=↑,↓

� d3R1d3R2�̂�2

† �R2��̂�1

† �R1�W�R1

− R2��̂�1
�R1��̂�2

�R2� �2.11�


where W�R�	e2 /�R at R�rd�, one may rewrite the s-s and
s-d Coulomb interactions in the excitonic representation
�ER�.6,9,18 This actually means that after substitution of Eqs.
�2.10� into formula �2.11�, the latter can be expressed in
terms of combinations of various components of the density-
matrix operators. These are so-called ER operators presented
in our case only by the intra-LL set, i.e., by the spin-exciton
operators Qq

†, where an electron is promoted from one spin
sublevel to another 
see Refs. 6, 9, and 18, and Appendix A,
where the necessary ER equations are given with reference
to our case�, and by operators Aq

† and Bq
† acting within the

sublevels a or b �see ibidem�. As a result, the Coulomb terms
of Eq. �2.9� can be written only by means of the intrasublevel
operators Aq

† and Bq
† 
their definitions are given by Eq. �A4�

in Appendix A�,

Ĥs-s =
N�

2 �
q

Wss�q��Aq
†Aq + 2Aq

†Bq + Bq
†Bq�

−
1

2
�A0 + B0��

q
Wss�q� , �2.12�

Ĥs-d = �n̂↑ + n̂↓��
q

Wsd�q��Aq + Bq� . �2.13�

The Coulomb vertices are presented also in Appendix A

Eqs. �A12� and �A13��.

We neglect in Eq. �2.11� the direct exchange s-d interac-

tion terms �see the next section�. The mixing operator Ĥt�Sz�
in our model Hamiltonian �2.6� includes, in fact, off-diagonal

interaction terms from ĤCoul. Indeed, the Coulomb interac-
tion described by the terms �c↓

†n̂↑bm+H.c. and �c↑
†n̂↓am

+H.c. induces transitions adding or removing one electron to
the d center in accordance with the Allen reaction diagrams
�2.8�. These terms represent the s-d hybridization formally
conditioned by the d-center occupation; however, since in
our case the reaction �2.8b� is forbidden, they actually oper-
ate as �c↓

†bm+H.c. and �c↑
†am+H.c. in Eq. �2.6�, respec-

tively. 
In terms of the d5↔d6 transitions, the hybridization
is taken just in the form of Eq. �2.3�.�

The single particle Hamiltonian for LL electrons may be
also written in the ER representation,

Ĥ1
�s� = N�
�
n − 
Z/2�A0 + �
n + 
Z/2�B0� , �2.14�

where 
Z= �g2DEG��BB and 
n= �n+1/2���c.

D. Numerical estimates of the energy parameters

Before turning to our main task, i.e., to the calculation of
excitation spectra, it is worthwhile to evaluate the character-
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istic energy parameters related to this problem. We estimate
the parameters of 2DEG in GaAs for the typical value B
=10 T of magnetic field. In this field, EC�5 meV character-
izes the Coulomb interaction �A13�. Below, in our calcula-
tion, this value is mostly presented by the spin-exciton mass,
which can be estimated empirically, i.e., the inverse mass is
1 /Mx�2 meV in energy units. The LLs’ spacing is ��c
	16 meV, and the Zeeman splitting between two Landau
subbands is 
Z	0.25 meV �because g2DEG=gGaAs	−0.44�.
The Zeeman splitting for Mn ion is gi�BB	1.1 meV �be-
cause gi=gMn	2.0�. The hybridization constant V and the
repulsion U are the other important parameters characteriz-
ing the magnetic impurity. It is rather difficult to extract them
from the available experimental data. We can only roughly
estimate the energy U as a distance between the Mn-related
peaks in the density of states of occupied and empty states in
the spectrum of bulk �Ga,Mn�As, calculated while taking
into account the electron-electron interaction.32 Such an es-
timate gives U�4–4.5 eV. From the same calculations, we
estimate the energy difference

� = �d↑ + U − 
n + 
Z/2, �2.15�

which determines the position of the Mn�d6� electron level
above the bottom of the Landau band 
see Fig. 1�a�� as �
�0.1 eV. In order to estimate the parameter V, one should
recollect that the dominating contribution to the hybridiza-
tion integral is given by the matrix elements of the Coulomb
interaction, having the form Vc↑

†a0c↓
†c↓ �see above�. This

means that V�Urd
3/2��zd� / lB. Estimating the radius of the �d

function as rd�2 Å, and ��zd��0.15 Å−1/2 �for the impurity
located in the vicinity of the quantum well bottom�, one gets
V�20 meV. This gives �V�2 /��4–8 meV for the relevant
kinematic exchange parameter. At the same time, the direct
exchange turns out to be insignificant. Indeed, one can esti-
mate from Eq. �2.11� that the characteristic coupling con-
stants for the terms �c↑

†c↓bm1

† am2
and c↑

†c↓
†bm1

am2
are of the

order of Urd
3���zd��2 / lB

2 , being, therefore, by a factor �� /U
smaller than �V�2 /�.

III. COLLECTIVE SPIN-FLIP STATES: NEGATIVE g2DEG

FACTOR

The Coulomb interactions Ĥs-s and Ĥs-d admix the LL
states with m�0 to the three-state basis �2.5�. Instead of
triads �2.5�, the basis

�s−;vac�, �s0;am�vac�, and �s+;Qq
†�vac� �3.1�

contains spin-exciton continua Qq
†�vac� attached to the spin-

flipped impurity state s+. 
The definition of the spin-exciton
creation operator is given by Eq. �A1�.�

This set is complete only within the single-orbital
approximation.37 At a given s, it is convenient to take the
energy E0+�s� of the state �0�= �s+ ;vac��c↑

†�vac� as the ref-
erence point, because this state is not affected by the hybrid-
ization within the framework of the single-orbital model.

This energy is defined as E0+�s�= �vac� ;s+1,d5�Ĥ�d5 ,s

+1; �vac�, where the Hamiltonian Ĥ is given by Eqs. �2.2�

and �2.3�. For a given Sz=
N�

2 +s, we have E0+�s�=Evac− � 5
2

−s�gi�BB, with Evac defined as the energy of the global
vacuum state �d5 ,5 /2 ; �vac�. One can check with the help of
expressions �B1� and �B4� in Appendix B that the vectors
�s0 ;am �vac� and Qq

†�0� at q�0 correspond to the definite
total spin state with S=Sz, whereas �s− ; �vac� and Q0

†�0� are
not characterized by any definite number S.38

A. Secular equation

Following the above discussion, the spin-flip operator
may be represented in the form

X̂† = c↓
†c↑ − �

m

Dmc↓
†am + �

q
f�q�Qq

† . �3.2�

The normalizability condition �X �X��� for the bound spin-
exciton state �X�=X†�0� then reads �m�Dm�2+�q�f�q��2��,
and the sum

Nb = �
q

�f�q��2 =
N�

2�
� dq�f�q��2

presenting the contribution of continuous spin excitons into
the norm �X �X� becomes thereby an essential characteristic
of the spin-flip excitation. For the regular �normalizable� so-
lutions, we expect f�q��N�

−1/2. Besides, singular states for
which the sum �q�f�q��2 diverges also exist. These states
form a continuous spectrum of impurity-related spin exci-
tons.

The coefficients Dm and f�q� are determined from the
equation


Ĥ,X̂†��0� = E�X� , �3.3�

where the energy E is counted from E0+�s�. Before turning to
the computation, we specify the energy levels of the basis
states �3.1� at V=0. The state �s− ;vac� has the energy
E0−�s�=E0+�s�−gi�BB. The doubly occupied impurity state
�d0 ;am�vac� appears due to a charge transfer with the creation
of a conventional “hole” in the LL. Its energy is Ed,m�s�
=E0++Ed,m, where

Ed,m = �d↓ + U + 
Z/2 − 
n + �m + E� �3.4�


cf. Eq. �2.13��. Here, E�= �1/N���qWss�q� 
see Eq. �A11�
for the definition of E��. This term appears due to the
global electroneutrality requirement when calculating the
energy of the hole am�vac�.4,5,9,11 The term �m
=−�2/N���qhm+n,m+n�q�Wsd�q� is the Coulomb interaction
energy of the hole am�vac� with the doubly occupied d center

see Eq. �A2� for functions hik�.

Substituting operators �2.9� and �3.2� into Eq. �3.3�, pro-
jecting the result onto the basis vectors �3.1� and using Eqs.
�2.6�, �A3�, �2.12�–�2.14�, and �A5�–�A10�, we obtain a
closed system of equations for the coefficients Dm and f�q�.
This system defines the eigenvalues of Eq. �3.3� for a given
s. The symmetry of the problem allows us to look for the
solutions in the form f�q�= fm�q�eim�. Below, we limit our-
selves to a study of the isotropic case of m=0. �Discussion of
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the case m�0 may be found in Ref. 35.� As a result, we get
Dm=D0�m,0, and our system for a given Sz=

N�

2 +s acquires
the simple form

E + gi�BB = �↑�s�V*D0,

�E − Ed,0�D0 = �↑�s�V − �↓�s�VN�
−1/2�

q
hnn

* �q�f�q� ,

�E − 
Z − Eq�f�q� = − N�
−1/2hnn�q��↓�s�V*D0. �3.5�

The energy of the free exciton state Qq
†�0� is 
Z+Eq 
see Eq.

�A11��.
The collective states localized around a magnetic impurity

are described by solutions of Eq. �3.5� outside the free spin-
wave band �i.e., in the energy interval E�
Z or E�
Z+E��.
The corresponding eigenfunctions are characterized by the
regular envelope function f0�q�. We arrive then at the secular
equation

�↓
2�s�
N�

�
q

�hnn�q��2

E − 
Z − Eq
+

�↑
2�s�

E + gi�BB
=

E − Ed,0

�V�2
�3.6�

for the energy E. The first term in the left-hand side �lhs� of
Eq. �3.6�, including the sum of spin-exciton propagators, pre-
sents the self-energy, which usually arises in the Schrödinger
or Lippmann-Schwinger equation describing the perturbation
introduced by a short-range potential into the continuous
spectrum. The prototype of this term in the theory of mag-
netic defects is the self-energy for localized spin waves in the
Heisenberg ferromagnet with a single substitution impurity.39

Specific features of our model are manifested by the energy
dependence of impurity-related processes. First, instead of a
constant term �inverse impurity potential� in the right-hand
side �rhs� of Eq. �3.6�, we have the inverse resonance poten-
tial �V�2 / �E−Ed,0�, which stems from the hybridization be-
tween LLs and the 3d level of impurity electron.28,29 Second,
an additional term describing an impurity spin-flip process in
terms of the single-orbital model arises in the lhs of Eq.
�3.6�.

B. Spectrum of the localized states

First, we carry out a simple study considering solutions of
Eq. �3.6� in the absence of an exciton band, i.e., by formally
substituting Eq=0 into Eq. �3.6�. �This is instructive in order
to classify the bound collective states.� We obtain then a
simple algebraic equation with two roots. When solving this
equation, we use the sum rule �q�hnn�q��2=N� and neglect
the energy dependence in the rhs due to the condition Ed,0
	��E. Each doublet is bound to its own reference energy
E0+�s� in accordance with the corresponding spin component
Sz

�d�=s+1 of the Mn�+2� ion. Due to the kinematic exchange
�second order spin-flip processes�, each state in the Zeeman
grid 
lower root of Eq. �3.6�� acquires a partner state 
upper
root of Eq. �3.6��, except for the highest level with s=5/2
which remains intact, because the spin-flip processes are ki-
nematically forbidden for this state. The level splitting is
illustrated by the scheme in Fig. 2. We see that the kinematic

exchange makes the Zeeman states of impurity ion nonequi-
distant, and an additional multiplet of excited states arises as
a prototype of the bound spin excitons.

Having this classification in mind, we turn to calculating
the bound exciton states for a finite dispersion of the free
spin waves. According to the estimates of the model param-
eters presented in Sec. II C, we solve Eq. �3.6� for the real-
istic conditions EC�gi�BB�
Z, whereas the ratio between
the energies EC and �V�2 /� may be arbitrary.

All the generic features of impurity-related states may be
seen in the case of a unit filling where n=0 ��=1�, and we
study this situation in detail. The solutions we are looking for
are localized in the energy interval �E−Ed,0�	�, so one can
neglect the energy dependence in the rhs of Eq. �3.6�. A
graphical solution of Eq. �3.6� is schematically shown in
Fig. 3.

Two intersection points labeled E0
�s� and Ex

�s� correspond to
two discrete solutions. Just as in Fig. 2, this pair of solutions

FIG. 2. A scheme of the Mn�+2� Zeeman level splitting due to
the kinematic exchange in the absence of exciton dispersion. The
bare Zeeman ladder is shown on the left. Five of six levels in this
grid are shifted down �extreme right column�, whereas the s=5/2
level remains not renormalized. Each of these five levels has its
high-energy counterpart. The energy is measured in the gi�BB units.
The following values of the input parameters are chosen: 
Z=0.2,
�V�2 /�=2, and Ed,0=��1. The factors �↓

2�s� and �↑
2�s� are pre-

sented by Eq. �2.7�.

FIG. 3. Graphical solution of the secular equation. The lhs and
rhs of Eq. �3.6� are shown as functions of the argument E by solid
and dashed lines, respectively �E dependence in the rhs is ne-
glected�. The filled area indicates possible values of the lhs because
it belongs to the interval of E where the sum in Eq. �3.6� becomes
indefinite.
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arises at any s except for s=5/2. The lower solution with the
energy E0

�s� is the state of the Mn�+2� ion with the spin com-

ponent �Ŝz
�d��	s shifted downwards from the value Evac+ �s

− 5
2

�gi�BB by the effective exchange interaction with the
spin-wave continuum �in this case, D0�Nb�. The upper so-
lution corresponds to the spin-flipped state of the Mn�+2� ion

with �Ŝz
�d��	s+1 dressed with the spin-wave localized on the

impurity. In this case, �Ŝz
�s��	

N�

2 −1 and Nb�D0. This bound
exciton state, described semiphenomenologically in Ref. 35,
is shallow compared with the main characteristic energy pa-
rameter EC. Like in many other impurity-related states in
2DEG,21,25,40 its energy is confined within the interval
−gi�BB�Ex

�s��
Z in the logarithmic vicinity of the bottom
of the delocalized spin-exciton band. Due to this fact, one
may find the level position analytically. Using the quadratic
approximation for the exciton dispersion law Eq=q2 /2Mx
and turning from summation to integration in the lhs of Eq.
�3.6�, one has

�↓
2

N�
�
q�0

�h00�q��2

E − 
Z − Eq
	 �↓

2Mx ln
	Mx��
Z − E��� . �3.7�

Here, Mx, is the spin-exciton mass defined as 1/Mx

=�0
�dpp3vss�p�e−p2/2 /2�EC 
see Eqs. �A11� and �A13�; the

lB=1 unit is used� and 	=1.781. . .. Then the binding energy

Ex
�s� = 
Z −

1

	Mx
exp�−

�↑
2

�↓
2Mxgi�BB

−
�

�↓
2Mx�V�2

�
�3.8�

is found from Eq. �3.7�. This result is valid provided at least
one of the two inequalities, �↓

2Mxgi�BB��↑
2 or

�↓
2Mx�V�2 /��1, holds, which is not too strict a requirement

due to the exponential smallness of the second term in the
rhs of Eq. �3.8�.

The asymptotic value of the lower state E0
�s� is also easily

found. In the case of strong hybridization �V�2 /��EC, one
gets E0

�s�	−gi�BB−5�V�2 /6�. In this asymptotic limit, the
excitation energy does not depend on s. In the opposite limit
�V�2 /��EC, we have E0

�s�	−gi�BB−�↑
2�s��V�2 /�.

In the intermediate region �V�2 /��EC, Eq. �3.6� for E0
�s�

can be solved numerically. It is convenient to rewrite this
equation in the dimensionless form

�↓
2�s��

0

� e−q2/2qdq

F�s� −  e�q�
+

�↑
2�s�

F�s� + g
+ 1 = 0, �3.9�

where  =� /Mx�V�2 is the ratio of the characteristic Coulomb
energy in the Landau band and the characteristic kinematic
exchange energy. The relevant energy parameters in Eq. �3.6�
are redefined as E= ��V�2 /��F�s�� �, 
Z+Eq=Mx

−1e�q�, and

gi�BB= ��V�2 /��g. Then the system of localized levels Ẽ0,x
�s�

counted from the global vacuum energy is described by the
set of equations

Ẽ0,x
�s� = − gi�BB�3/2 − s� + F0,x

�s� � ��V�2/� , �3.10�

with s=−5/2, −3/2, −1/2, 1 /2, and 3/2. The family of
lower roots F0

�s�� � of Eq. �3.9�, changing smoothly from
−�↑

2−g at  =� to approximately −6/5−5g�↑
2 /6 at  =0, de-

scribes the renormalization of the Zeeman grid of impurity
spin-flipped states due to the kinematic exchange with LL
continuum. To illustrate this dependence, we have found the
solution of Eq. �3.10� for g=0.25, neglecting 
Z and model-
ing the spin-exciton dispersion by the function e�q�=2

−2e−q2/4I0�q2 /4�, which corresponds to the ideal 2D case.3–5

�At the same time, the parameter Mx may be considered as
an empirical value.� The results of this calculation are pre-
sented in Fig. 4.

C. Delocalized impurity-related excitations

We conclude this section by a brief discussion of the de-
localized states �free spin waves distorted by the resonance
magnetic impurity scattering�. These states are described by
the functions f�q� with a divergent norm in the expansion
�3.2�. The secular equation for these states cannot be pre-
sented in the form �3.6�, but there are solutions satisfying
Eqs. �3.5� at any energy within the spin-exciton band, 
Z
�E�
Z+E�. These states are the “counterparts” of the lev-
els Ex

�s� in the spin-wave continuum. Let q0�E� be a root of
equation 
Z+Eq0

=E. Substituting

f�q� = C
�2�

4q0
��q�,q0

+ u�q��1 − ��q�,q0
� �3.11�

into Eqs. �3.5�, one gets three equations for the coefficients
D0, C, and u�q�. Turning from summation to integration and
using the rule �q��q�,q0

=2q0L /� �L2=2�N� being the 2DEG
area�, one finds the coefficient u�q� from the equation �↑

2�E
−
Z−Eq�u�q�=−�↓

2N�
−1/2hnn�q��gi�BB+E�. Then equation

FIG. 4. The lower root of Eq. �3.9� with g=0.25. The numbers s
are indicated near the curves. See text for further details.
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Ce−q0
2/4 = 1 +

�E + gi�BB�
�↑

2 ��↓
2
W

0

� qdq�hnn�2

E − 
Z − Eq
+

Ed,0 − E

�V�2 �
�3.12�

for the spectrum is derived from Eq. �3.5� in the thermody-
namic limit �L ,N�→��. It can be readily seen that the norm
of the function �3.11� diverges as �q�u�q��2�N�.

IV. POSITIVE g2DEG FACTOR: PINNING OF THE
QUANTIZED HALL FERROMAGNET SPIN

Experimentally, the magnitude of the g2DEG factor in
GaAs/AlxGa1−xAs structures can be altered gradually by
changing pressure or by varying Al content �x�. It can be
made very small and even change its sign.14 The value of
g2DEG may be effectively reduced also due to optical orien-
tation of nuclear spins, changing the electron Zeeman split-
ting �Overhauser shift�.13,17 In this section, we discuss the
impurity-related reconstruction of the ground state and the
spectrum of spin-flip excitations at small but positive values
of g2DEG. It will be shown below that even a minute amount
of magnetic impurities can drastically influence the QHF
state.

Keeping the previous notations, it is now convenient to
redirect the magnetization axis �ẑ→−ẑ�, i.e., to make formal
transformation gi→−gi instead of changing the sign of
g2DEG. It is clear that at least in the absence of the s-d hy-
bridization, the global vacuum state �d5 ,5 /2 ; �vac� serves as
the ground state, and all the spin flips cost positive energy.
The localized states can still be found from Eq. �3.6� with
redefined Zeeman energies, gi�BB→−gi�BB and 
Z→
Z

*.
The latter parameter actually takes the values 
Z

*

=g2DEG
* �BB�0.1 K. Making change g→−g in Eq. �3.9� we

denote the lower root of this new equation as Fx�
�s�. This root

corresponds to the energy of the localized spin exciton with
changed impurity spin projection, �Sz

�d�	3/2−s, where s
= 3

2 , 1
2 , − 1

2 , − 3
2 , and − 5

2 . The total spin component is

Sz=−
N�

2 −s �when presenting results, we return to the “nor-

mal” coordinate system where ẑ is directed along B� �, and the
energy counted off the global vacuum level is given by the
formula

Ẽx�
�s� = gi�BB�3/2 − s� + Fx�

�s�� ��V�2/� . �4.1�

�It should be noted that now the new global vacuum is really
below the old one by the energy 5gi�BB.� Functions Fx�

�s� � �
are presented in Fig. 5.

Other roots of the secular equation belong to the continu-
ous spectrum. These states may be analyzed following the
approach described in Sec. III C. The special “resonance”
solution of Eq. �3.12� with gi substituted for −gi arises, in
this case, at E=gi�BB�
Z

*. Then u�q�=0 and the norm
�X �X� diverges not as �N� but as L�N�

1/2 �see discussion in
the next section�. As a function of s, the delocalized reso-
nance states form a set of equidistant levels

Ẽres
�s� = gi�BB�5

2
− s� �4.2�

�again the energy of the global vacuum is taken as the refer-
ence level�.

When looking for the x� -type solutions at E�
Z
* but �E �

�1/Mx, one may use Eq. �3.7�. Then one obtains for the
localized spin-exciton energy41 Ex�

�s�= �V�2Fx�
�s�� � /� the fol-

lowing equation:

Ex�
�s� 	 
Z

* −
1

	Mx
exp� �↑

2

�↓
2Mxgi�BB

−
�

�↓
2Mx�V�2

� �4.3�

instead of Eq. �3.8�. Here, s= 3
2 has to be taken for the exci-

tation from the ground state, then �↑
2= 1

5 and �↓=1. The ex-
ponentially small energy Ex�

�3/2� thus corresponds to the for-
mation of a bound spin exciton of large radius. However, for
sufficiently small 
Z

* �or for a strong enough kinematic ex-
change�, the energy Ex�

�3/2� becomes negative, which means
that an instability of the global vacuum �d5 ,5 /2 ; �vac� is con-
sidered as the QHF ground state. This instability appears
provided

 �  c1, �4.4�

where  c1 is determined by the equation

�V�2Fx�
�3/2�� c1�/� + 
Z

* = 0. �4.5�

The question that arises is whether the condition �4.4�
means the global reconstruction of the ground state and the
appearance of a new state with many spin excitons bound to
the magnetic impurity. To clarify this point, we discuss the
limiting situation where 
Z

* →0 but still N�
Z
* →�. Then the

ground state at any  is no longer the global vacuum because
the creation of one spin exciton bound to the impurity lowers
the energy of the system. The corresponding energy gain
compared to the global vacuum is presented as �V�2G1� � /�.

The subscript “1” corresponds to one bound exciton; spe-
cifically, we have G1� �=Fx�

�3/2�.� To answer the question, one
should consider the situation with K captured spin excitons

FIG. 5. The lower root of Eq. �3.9� with negative parameter g.
Calculation is performed for g=−0.25 and e�q�=2
−2e−q2/4I0�q2 /4�. The values of s are indicated near the curves.
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�then Sz=K−
N�+5

2 � and calculate the proper value GK� � at
arbitrary K. The latter is determined by the competition be-
tween the antiferromagnetic kinematic exchange, which
forces 2DEG spins to reorient in the direction opposite to the
impurity spin, and the Coulomb-exchange energy appearing
due to 2DEG inhomogeneity in a cluster of K spin excitons
bound to the impurity. This inhomogeneity energy is mea-
sured in 1/Mx units. The calculation of GK at K�1 �but K
�1� is beyond the abilities of our present approach, but we
can consider the case of K�1 and find the conditions under
which such a massive pinning of 2DEG spins in the vicinity
of the impurity turns out more advantageous than the binding
of single spin exciton �i.e., G��G1�.

A. Skyrmionic states created by magnetic impurities

The state with K�1 can be described as a collective to-
pological defect �skyrmion� pinned to a magnetic impurity.36

A smooth inhomogeneity in the system of spins may be pre-
sented as a continuous rotation in the 3D space. If one char-
acterizes the local direction of the spins by a unit vector n��r�
with components nx=sin ! cos �, ny =sin ! sin �, and nz
=cos ! �� and ! are the two first Eulerian angles�, then the
conditions �!�r=0=0 and �!�r=�=� inevitably result in the ap-
pearance of the topological invariant qT=�dr"�r�, where the
density

"�r� =
1

4�
n� · ��xn�� # ��yn�� �4.6�

is a vortex characteristic of the spatial twist. The value qT has
to be a nonzero integer number.42 Its physical meaning is the
number of excessive �qT�0� or deficient �qT�0� electrons
in the system,11,12,16,18 i.e., qT=N�−N. In a perfect 2DEG
and at nearly zero Zeeman gap �
Z

* →0�, such a weakly in-
homogeneous skyrmion state has the energy

Esk =
3

4
E�qT +

1

2Mx
��qT� − qT� . �4.7�

This result is valid within the single Landau level approxi-
mation �see, e.g., Ref. 18�. It is enough to consider the case
qT= ±1, because any state with �qT � �1 is merely a combi-
nation of “singly charged” skyrmions. Due to the hybridiza-
tion with the impurity, the skyrmionic state gains a negative
kinematic exchange energy. The latter has to be taken into
account in combination with the Coulomb-exchange energy
�4.7� and with the finite positive Zeeman energy at g2DEG

*

�0,

EZ = 
Z
*K where K =

1

4�lB
2 � �1 + cos !�dr �4.8�

�in the clean 2DEG, the skyrmion energy is given by Esk
+EZ�.

One can conclude from symmetry considerations that the
impurity is located at the center of the topological defect.
Then additional pinning energy may be found by means of
the conventional energy minimization procedure where the
Euler angles are used as variational parameters. This energy

is the difference between the energy of the global vacuum
state with a distant skyrmion and the ground state energy
calculated in the presence of a magnetic impurity at the cen-
ter of the topological defect �cf. Ref. 36, where a similar
procedure was elaborated in the limit of potential impurity
scattering�. Namely, to calculate the contribution of magnetic
impurity at K�1, one should consider a domain around an
impurity which is small in comparison with a characteristic
area of the skyrmion, but contains a large enough number of
spin-flipped LL electrons involved in the formation of pinned
topological defect. Then the situation becomes similar to that
considered in Sec. III: s-d hybridization of the impurity elec-
tron with the m=0 electron in this domain generates the ki-
nematic exchange in accordance with Fig. 1, and leads to the
reconstruction of the spectrum in accordance with Eq. �3.6�.
The shift of the energy with respect to the global vacuum is

given by the value 5gi�BB+ Ẽ0
�−5/2�, where Ẽ0

�−5/2� is deter-
mined by Eq. �3.10�.43 Hence, we obtain that the pinning
energy is Esk,pin=−gi�BB−F0

�−5/2�� ��V�2 /�, where F0
�−5/2� is

shown in Fig. 4. In the limit of strong pinning �Esk,pin

�Esk� and “frozen” impurity spin �g�1�, this result agrees
with the pinning energy found earlier.36

The energy Esk,pin is calculated in the leading approxima-
tion, which does not depend on the charge qT. However, it is
instructive to obtain the correction related to the inhomoge-
neity of the texture. It is known16,18 that the density �4.6�
may be interpreted in terms of an effective magnetic field
appearing in the Schrödinger equation due to this inhomoge-
neity. One may introduce the renormalized magnetic length

lB→ l̃B as

1

l̃B
2

=
1

lB
2 − 2�"�r� . �4.9�

Taking into account that �V�2 /��1/ lB
2 and  � lB, and rewrit-

ing Eqs. �4.6� and �4.9� in terms of the Euler angles,42 one
finds the correction to pinning energy due to the finite radius
R* of the skyrmion core �see Ref. 36 for a detailed calcula-
tion�. The corrected energy is determined by the value "�0�
and has the form

Esk,pin
�qT� = − gi�BB −

�V�2

�
�F0

�−5/2�� � − qT� lB

R*�2

#�2F0
�−5/2� −  

dF0
�−5/2�

d 
��, qT = ± 1.

�4.10�

It is assumed here that g�1.
The skyrmion core radius R* is found by considering the

competition between the Zeeman energy �4.8� and the energy
of Coulomb repulsion.11,44 Generally speaking, in our case,
in order to find R*, we should include the energy Esk,pin in the
minimization procedure. However, this correction only insig-
nificantly influences the result due to the condition R*� lB
and because of the rather strong e-e interaction resulting in
the skyrmion formation. Using the realistic estimate for the
kinematic exchange energy �V�2 /��EC, the minimization
yields the same formula
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EZ =

Z

*

2
�R*

lB
�2

ln� lB
2EC


Z
*R*2� �4.11�

as in the case of “free” skyrmions,44 where R*3

=9�2lB
2e2 / 
64
Z

*� ln�EC /
Z
*��. The number of spin-flipped

electrons turns out to be rather large

K =
1

96
�9�2e2

�
Z
*lB

�2/3�ln�EC


Z
* ��1/3

� 10 – 20 �if 
Z
* � 0.1 K� .

�4.12�

We first consider the regime where there are no skyrmions
in the clean system, but these collective excitations could be
created due to strong enough kinematic exchange interaction
between the LL electrons and magnetic impurities. This is
the situation where the inequality �4.4� is valid, and besides,
the condition �N−N���Ni is realized, where Ni is the num-
ber of impurities. The electroneutrality of the system requires
that the topological defects are created as skyrmion-
antiskyrmion pairs. Two impurities are able to create a
skyrmion-antiskyrmion pair provided the pinning energy
Esk,pin

�+� +Esk,pin
�−� exceeds the energy increase due to the

skyrmion-antiskyrmion gap. The latter, in accordance with
Eq. �4.7�, includes the Coulomb-exchange part equal to Mx

−1

and twice the Zeeman energy 
Eqs. �4.8� and �4.12��. In ad-
dition, the energy of a skyrmion and an antiskyrmion pinned
by two neighboring magnetic impurities has to be lower than
the double energy of a pinned spin exciton. Thus, the condi-
tion G��G1 for the creation of a pinned skyrmion-
antiskyrmion pair can be rewritten in the form

 �  c,�, �4.13�

where the critical value  c,� can be obtained with the help of
Eq. �4.10�:

g + F0
�−5/2�� c,�� +  c,�/2 + EZ�/�V�2 = Fx�

�3/2�� c,�� .

�4.14�

Under the condition �4.13�, an impurity acquires the local-
ized magnetic moment K�B−1/3 antiparallel to its own mo-
ment and exceeding it �when, e.g., K�5/2 in the GaAs:Mn
case�.

B. Phase diagram of quantized Hall ferromagnet ground state
at g2DEG

* �0

There are two critical transitions in our problem: first, the
global vacuum is destroyed when  becomes less than  c1
and single spin-flip exciton appears �this state may be char-
acterized as a “local pinning”�; second, the massive pinning
of 2DEG spins takes place when  reaches the value  c,�.
However, this scenario is somewhat changed if one takes
into account finite ratios Ni /N�. Indeed, up to this point, we
have supposed that the Zeeman energy 
Z

*N� corresponding
to the “global flip” of all 2DEG spins is larger than any
contribution to the QHF energy due to the magnetic impuri-
ties. This global spin flip actually represents the spin con-
figuration treated as the ground state in the previous section.
When counted from the global vacuum, its energy per impu-

rity is Esf=gi�BB+ �N�
Z
* /Ni�+ �V�2F0

�−5/2�� � /�. Negative Esf

means that available magnetic impurities are able to polarize
completely all 2DEG electrons even at positive g2DEG

* . In
agreement with the above discussion, one can conclude that
such a complete polarization takes place when

Esf� � � Emin� � , �4.15�

where

Emin = min�0, �V�2Fx�
�3/2�� �/� + 
Z

*,

gi�BB + �V�2F0
�−5/2�� �/� + �1/2�Mx

−1 + EZ� .

The phase diagram of our system at zero temperature is
determined by the interplay between Zeeman splitting, Cou-
lomb interaction, and kinematic impurity exchange energy,
and controlled by the impurity concentration. These factors
are characterized by the dimensionless parameters g2DEG

* ,  ,
and Ni /N�. One can construct this diagram by employing the
inequalities �4.4�, �4.13�, and �4.15�. The results for both
cases of infinitely small and finite ratio Ni /N� are presented
in Fig. 6 in the �g2DEG

* , � coordinates. We expressed the e
−e interaction values entering the skyrmion Zeeman energy

Eqs. �4.11� and �4.12�� in terms of the parameter Mx: EC
=Mx

−1 and e2 /�lB=Mx
−1�8/��1/2. The phase diagram for the

Ni /N�→0 case is explicated by the legend above the main
picture. The  = c1�g2DEG

* � curve in Fig. 6 separates states
with unbroken global vacuum �the area above this line� and
states of local pinning, where each impurity is dressed by
one bound spin exciton. The dotted line 
 c,��g2DEG

* � curve�
separates the state with local pinning and the state of massive
spin reversal �K�1� determined by the pinned skyrmions
�hatched area below this line�.

FIG. 6. Phase diagram illustrating the reconstruction of the QHF
ground state at g2DEG

* �0 for two cases: isolated impurity Ni /N�

→0 �see elucidating legend above the main picture� and finite im-
purity concentration Ni /N�=0.01. The calculation was carried out
for the Zeeman parameters g=gi�BB� / �V�2=0.25 and 
Z

*

=0.05�g2DEG
* /0.44��V�2 /�, and for the spin-exciton dispersion equal

to  e�q�=0.05�g2DEG
* /0.44�+2 
1−e−q2/4I0�q2 /4�� in �V�2 /� units.

Comments in the figure refer to the Ni /N�=0.01 case. See text for
other details.
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In the more realistic case of Ni /N�=0.01, the curves
 c1�g2DEG

* � and  c,��g2DEG
* � formally remain the same since

the parameter Ni /N� does not enter Eqs. �4.5� and �4.14�.
However, in this case, an essential part of the �g2DEG

* , � area
belongs to states where the 2DEG spins are globally polar-
ized in the B� direction in spite of positive g2DEG

* . This dark-
gray area presents solutions of inequality �4.15�. Unbroken
global vacuum occupies only the blank sector in the upper
right corner of the phase diagram. At large  but fixed
�V�2 /�, the line separating the blank and dark-gray sectors
tends to g2DEG

* =0.088, which corresponds to a value 
Z
*

=Ni�V�2 /N�� being the result of the Esf� →��=0 equation.
At the same time, if the  →� limit is realized owing to
vanishing V, then both systems of the impurities and of the
2DEG become independent, and at any positive g2DEG

* , the
global vacuum presents certainly the ground state. The light-
gray area below the  = c1�g2DEG

* � line, but above the dotted
line, corresponds to the singly spin-flip states with one exci-
ton bound to an impurity. The hatched light-gray domain
below the dotted line corresponds to the state with the local-
ized skyrmions created by strong kinematic exchange 
Eq.
�4.13��. In our specific case of the Ni /N�=0.01 ratio, the
dark-gray sector is not contiguous to this skyrmionic region.
The total QHF spin Sz in various states of the phase diagram
is indicated in the picture.

Now we discuss the regime where free skyrmions are al-
ready available in the system because the number of elec-
trons well deviates from the quantum flux number. Namely,
we consider that �N−N���Ni �although still �N−N���N��.
In this case “excessive” skyrmions may be bound to an im-
purity. The result depends on the QHF phase. In the globally
pinned phase �dark-gray area�, the binding is impossible
since the effective interaction between the impurity and the
skyrmion is repulsive. In the state of local pinning �light-
gray unhatched domain�, the binding also does not occur.
Indeed, the binding energy would be equal to Esk,pin �4.10�,
but due to the condition �4.4�, this value is smaller than the
spin-exciton delocalization energy −�V�2Fx�

�3/2� /�. At the glo-
bal vacuum �blank sector�, the binding takes place and the
binding energy is equal to the pinning energy �4.10�. Cer-
tainly, the binding takes place in the skyrmionic ground state
�light-gray hatched sector�. However, in contrast to the �N
−N���Ni case, now all Ni impurities bind skyrmions of the
same charge qT, where qT= ±1, if, correspondingly, N$N�.

To conclude this section, it is worthy to note that we have
only considered the situation where the g2DEG

* �0 ground
state is realized in the most symmetric phases when the
pinned spin K is equal to 0, 1, or K��. As has been seen,
there are only two critical parameters  c1 and  c,� in this
case. However, one might suppose that transition from the
local pinning �K=1� to the skyrmionic phase of massive pin-
ning would proceed more smoothly with diminishing param-
eter  . Namely, below the  c1�g2DEG

* � curve, there should be a
critical value  = c2�g2DEG

* � at which the transition K=1
→K=2 occurs. This value would be the root of equation
G1� c2�=G2� c2�. The next critical point would correspond to
the K=2→K=3 transition and so on. This sequence of val-
ues  c1� c2� . . . cK� . . .. where GK−1� cK�=GK� cK� should
condense in the vicinity of  c,�. Actually, this means that the

light-gray unhatched domain in Fig. 6 would present not
only the singly spin-flip 2DEG state but a set of states with
K=1,2 ,3 , . . ., spin excitons localized at the impurity where
K is growing with diminishing  . In reality, for a finite 
Z

*, K
reaches the value given by Eq. �4.8� at  = c,�. Such a “strati-
fication” of the light-gray unhatched sector would be the
only qualitative change of the phase picture of Fig. 6. Quan-
titative changes would be presented by appropriate shifts of
the  c,� curve and of the boundary between the dark-gray and
light-gray areas. However, it is clear that these shifts would
not be significant. The corresponding crossover parameters  
would at least remain of the same order as the ones calcu-
lated with the help of Eqs. �4.14� and �4.15�.

V. DISCUSSION

We have found that the interplay between the kinematic
impurity exchange and the Coulomb interaction in 2DEG
results in the appearance of bound exciton states and in the
renormalizaton of impurity spin states, including the recon-
struction of the QHF ground state at g2DEG

* �0.
Among the available experimental techniques, the inelas-

tic light scattering �ILS� method seems to be the most useful
method for an experimental study of the 2DEG spectra �see
Refs. 7, 10, and 45, and references therein�. However, this
tool has some special features, and it is helpful to discuss our
results from this point of view. Let us first consider the
g2DEG�0 case. When measuring the energy from the ground

state level Ẽ0
�−5/2�, where the impurity has the maximum spin

projection 
see Eq. �3.10��, one obtains ten levels of the lo-
calized excitations �E related to the spin changes �Sz
=0,1 , . . . ,5,

�E�Sz,t
= gi�BB�Sz + ��V�2/��
Ft

�s�� � − F0
�−5/2�� �� �t = 0,x� ,

�5.1�

where s=�Sz−5/2, and the index t labels the type of the
excited state 
in Eq. �5.1�, it is considered that Ft

�5/2��0�.
Within the scope of the experiment where only the ��Sz�
2
excitations seem to be observable as ILS peaks, we plot in
Fig. 7 these five levels calculated with the help of Eq. �3.9�
for the parameters g=0.25 and 
Z=0.05�V�2 /�. This calcula-
tion is done for the sake of demonstration, with the function
Eq=2Mx

−1
1−e−q2/4I0�q2 /4�� and the fitting parameter Mx

used to describe the spin-wave dispersion. In the available
wide quantum wells, the inverse spin-exciton mass is rela-
tively small.46 Hence, the values  �1 seem to be experimen-
tally relevant, and the evolution of nonequidistant excitations
�E�Sz,x

as a function of  �and, therefore, of B� should be
observable in this interval.

The nonlocalized states discussed in Sec. III C actually
present a transformation of the x-type excitations when the
spin exciton is detached from the impurity and falls in the
spin-wave continuum. The bottoms of continuous bands
are shown as filled areas in Fig. 7. The band edges are
higher than the �E�Sz,x

curves by the quantity
−��V�2 /��Fx


�Sz−�5/2�� � � 
see Eqs. �3.8� and �3.10��, and there-
fore, the latter may be treated as the spin-exciton binding
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energy. However, it seems difficult to observe these states in
the ILS spectra because of comparatively small oscillator
strengths, specifically due to the divergence of the envelope
function f�q�.

Similar ILS picture should also take place for g2DEG
* �0 in

the phase of the 2DEG global pinning �dark-gray area in Fig.
6�. In the skyrmionic phase �light-gray hatched sector�, there
are intraimpurity ILS transitions determined by Eq. �5.1�.
Besides, two other types of resonances are expected: the first
is the skyrmion delocalization with �Sz=0 and with excita-
tion energy equal to Esk,pin �4.10�; another one is the transi-
tion �Sz=−1, where the delocalized skyrmion leaves the im-
purity with the bound spin exciton. In the latter case, the
transition energy is Esk,pin− �V�2Fx�

�3/2�+
Z
*.

In the global vacuum and local-pinning states �blank and
light-gray unhatched domains�, the ILS spectrum is deter-
mined by transitions between levels �4.1� and �4.2�, so that,
e.g., the ILS transitions to the localized states from the global
vacuum are determined by the energies �E�Sz

=
Z
*

+gi�BB��Sz−1�+ �V�2Fx�
�5/2−�Sz� /� and correspond to nonzero

spin change �Sz=1,2�3,4 ,5�. At the same quantum numbers
�Sz, there should also be resonance features related to the
impurity spin rotation, which cost the energy �E�Sz,res

=gi�BB�Sz. These resonances are, in fact, transitions to the
continuous spectrum, which should be noticeable on the
background of free spin wave contribution �
Z

* ��E�E��

see the comment above Eq. �4.2��.47 The ILS spectrum of
excitations from the local-pinning ground state is presented:
first, by the �Sz=−1 transition to the global vacuum �this
energy is equal to �E−1=−�V�2Fx�

�3/2� /�−
Z
*�; second, by the

�Sz=1,2�3,4� transitions to the localized spin-flip states
with energies �E�Sz

=gi�BB�Sz+ �V�2
Fx�
�3/2−�Sz�−Fx�

�3/2�� /�;
and third, by the �Sz=0,1 ,2�3,4� transitions to the reso-
nance states in the continuous spectrum with transition ener-
gies �E�Sz,res=gi�BB��Sz+1�− �V�2Fx�

�3/2� /�−
Z
*.

Finally, we note that currently there are several possibili-
ties for the experimental study of skyrmionlike textures �e.g.,

see Refs. 13, 14, 17, and 48�. However, for any method, one
of the most serious obstacles impeding the observation of
spin-flip phases is the very narrow interval in the vicinity of
the g2DEG

* =0 factor, where the spin-flip reconstruction of the
ground state or skyrmionlike excitations are possible. From
this point of view, the minor magnetic doping would become
an additional fine tuning tool allowing one to change the
balance between EZ and EC, and to influence the skyrmion
formation.
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APPENDIX A: EXCITONIC REPRESENTATION

The excitonic representation is a convenient tool for a
description of electron-hole states in a 2DEG multiply de-
generate in m. When acting on the vacuum state �vac� �in our
case, this vacuum is defined in Sec. II A�, the exciton cre-
ation operators form a system of basis states diagonalizing
the Hamiltonian, including a considerable part of the Cou-
lomb interaction. Due to translational invariance of a clean
2DEG, these exciton states are classified by the 2D momen-
tum q and the degeneracy turns out to be lifted. The exciton
operators for a single LL were first introduced in Ref. 6. The
commutation rules for the same case of single LL were found
in Ref. 49 �see also Ref. 9, and references therein�.

Unlike previous papers, where the ER technique was de-
veloped for the Landau gauge, we use the symmetric gauge
for bare one-electron states. In the symmetric gauge, the
spin-exciton creation operator is expressed in terms of the am
and bm Fermi operators,

Qq
† = N�

−1/2 �
m,m�=0

N�−1

hmm�
* �q�bm−n

† am�−n �A1�

�cf. the definition based on the Landau gauge6,9,18,36�. In this
expression,

hmk�q� = �m!/k!�1/2�q−�k−mLm
k−m�q2/2�e−q2/4 �A2�

are the building block functions used in the ER technique,
q−= iqe−i� /�2� i�qx− iqy� /�2, and Lm

k−m are the Laguerre
polynomials. Here and below, all lengths are measured in the
magnetic length lB=1 unit. The spin-exciton states are or-
thogonal and normalized,

�vac�Qq1
Qq2

† �vac� = �q1,q2
. �A3�

The operators �A1� together with the intrasublevel operators

FIG. 7. The case of g2DEG�0. Energies of the excitations mea-
sured from the ground state are plotted in units of �V�2 /� as func-
tions of  =� /Mx�V�2. Filled areas show energies of the delocalized
spin excitons. See text for details.
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Aq
† =

1

N�
�

m,m�=0

N�−1

hmm�
* �q�am−n

† am�−n

and

Bq
† =

1

N�
�

m,m�=0

N�−1

hmm�
* �q�bm−n

† bm�−n �A4�

form a closed Lie algebra. In order to check it, we first obtain
the commutation relations


Qq
†,am

† � = N�
−1/2 �

k=0

N�−1

hm+n,k
* �q�bk−n

† ,


Qq
†,bm� = − N�

−1/2 �
k=0

N�−1

hk,m+n
* �q�ak−n, �A5�


Aq,am� = −
1

N�
�
k=0

N�−1

hm+n,k�q�ak−n,


Bq,bm
† � =

1

N�
�
k=0

N�−1

hk,m+n�q�bk−n
† , �A6�

and


Qq,am
† � = 
Qq,bm� = 
Aq,bm� = 
Aq,bm

† � = 
Bq,am�

= 
Bq,am
† � � 0. �A7�

As a result, we see that operators �A1� and �A4� really
form a closed algebra with the commutation relations9,18,49


Qq1
,Qq2

+ � = ei�q1 # q2�z/2Aq1−q2
− e−i�q1 # q2�z/2Bq1−q2

,

e−i�q1 # q2�z/2
Aq1
† ,Qq2

† � = − ei�q1 # q2�z/2
Bq1

† ,Qq2

† �

= − N�
−1Qq1+q2

† ,


Aq1

† ,Aq2

† � =
2i

N�

sin� �q1 # q2�z

2
�Aq1+q2

† ,


Bq1

† ,Bq2

† � =
2i

N�

sin� �q1 # q2�z

2
�Bq1+q2

† . �A8�

Acting on the vacuum state, the intrasublevel operators
result in

Aq
†�vac� = �q,0 and Bq

†�vac� � 0. �A9�

The excitonic basis Qq
†�vac� determine the set of eigen-

states of a clean 2DEG,


�Ĥ1
�s� + Ĥs−s�,Qq

†��vac� = �
Z + Eq�Qq
†�vac� . �A10�

Here, Eq stands for the Coulomb energy of the free spin wave
defined by the equation3–5

Eq =
1

N�
�
p

Wss�p�
1 − ei�p # q�z�

� �
0

�

dppvss�p�
hnn�p��2
1 − J0�pq�� , �A11�

J0�pq� is the Bessel function.
The Coulomb vertices in the Hamiltonian �2.12� and

�2.13� are given by the equations

Wss�q� = vss�q�
hnn�q��2, Wsd�q� = vsd�q�hnn�q� ,

�A12�

where 2�vss�q� and 2�vsd�q� are the 2D Fourier transforms
of the average s-s and s-d interaction potentials. One can
present them as1

vss�q� =
e2

�lBq
� � dz1dz2e−q�z1−z2����z1��2���z2��2,

vsd�q� =
e2

�lBq
� dze−q�z−zd����z��2. �A13�

�The impurity site is assumed to be at the point Rd
= �0,0 ,zd�.�

APPENDIX B: SPIN OPERATORS

Bound spin excitons are characterized by the spin num-
bers Sz and S2. The corresponding operators have the form

Ŝz = Ŝz
�s� + Ŝz

�d�, �B1�

where

Ŝz
�s� =

N�

2
�A0 − B0�, �Ŝ�s��2 = N�Q0

†Q0 + �Ŝz
�s��2 + Ŝz

�s�

�B2�
and

Ŝz
�d� =

1

2
�n̂↑ − n̂↓�, �Ŝ�d��2 =

3

4
�n̂↑ + n̂↓� −

3

2
n̂↑n̂↓ �B3�

are the spin operators for 2DEG �in the excitonic represen-
tation� and for magnetic impurity �in terms of the single-
orbital model�, respectively. The total squared spin operator
for the system is defined as

Ŝ2 = �Ŝ�s��2 + 2Ŝz
�s�Ŝz

�d� + N�
1/2�Q0

†c↑
†c↓ + c↓

†c↑Q0� + �Ŝ�d��2.

�B4�

The operator Ŝz commutes with the Hamiltonian �2.9�, while

for Ŝ2 one has


Ŝ2,Ĥ� � N�
1/2�gi�BB − 
Z�c↓

†c↑Q0 + ��↑ − �↓�V
c↓
†�n̂↑b0

+ N�
1/2Q0a0� − c↑

†�n̂↓a0 + N�
1/2Q0

†b0�� − H.c. �B5�

The difference between the g factors of the magnetic impu-
rity and the host QHF, and the difference between the pro-
jection factors �↑ and �↓ measure the spin nonconservation.
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