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The strain interaction energy between a silicon interstitial and a carbon substitutional in a silicon crystal was
modeled by a continuum Green’s function method and by atomistic simulation. The interaction energy is
proportional to d−3, where d is separation distance between the defects. The pair interaction energy was found
to be less than 0.04 meV for d�6 nm increasing to more than about 0.1 meV for d�3 nm. The energies are
unlikely to influence the diffusional behavior of the defects except at distances of one or two unit cells. The
potential between the point defects is repulsive if they are oriented along the �100� crystal axis, but attractive
if they are positioned along �110� or �111�.
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I. INTRODUCTION

Silicon, one of the most widely used materials in the elec-
tronics industry, often contains carbon to inhibit the diffusion
of dopants such as boron because the outdiffusion of boron
from as-grown regions can significantly degrade device
performance.1 But carbon itself diffuses surprisingly fast.
This study examines whether the strain interaction energy
between point defects contributes to the fast diffusion of car-
bon in silicon crystals.

Implantation of boron in silicon by ion beam causes an
excess of silicon self-interstitials.2 Ion implantation also in-
troduces defects into the crystal which are repaired by an-
nealing at a temperature of about 800 °C. Boron diffuses by
kick-in and kick-out reactions with silicon interstitials,3,4 as
illustrated in Fig. 1 and diffuses particularly fast during
annealing.2 Diffusion of dopants is undesirable; the dopant
profile needs to be kept sharply steplike and this becomes
more important as device sizes reduce. Carbon is therefore
added to provide a sink for the self-interstitials, inhibiting the
diffusion of boron.2,5,6 But carbon itself diffuses fast; it is
even more diffusive in silicon than boron.7 Like boron, car-
bon diffuses by kick-out and kick-in reactions with silicon
interstitials8 in which a silicon interstitial kicks a substitu-
tional carbon atom out from a lattice site moving the carbon
atom into an interstitial site. The carbon interstitial then
“kicks in,” replacing a silicon atom on a lattice site, as illus-
trated in Fig. 1.

Models in which the carbon substitutional and the silicon
interstitial meet each other by chance do not account for the
observed fast rate of diffusion of carbon in silicon, unless a
large value is attributed to the capture radius �a fitting param-
eter representing the separation distance within which a re-
action is inevitable9�. One contributory factor might be the
strain fields associated with a carbon substitutional and a
silicon interstitial interact, which produce an attractive force
between the two defects. The interaction energy may produce
a “potential well” that draws two defects towards each other
increasing the effective capture radius.

In this paper, we estimate the strain interaction energy
between a silicon self-interstitial and a carbon substitutional
using two different approaches. In the first method, which is

akin to a local force model, the defects were modeled as
cubic inclusions in a silicon continuum using a Green’s func-
tion method to estimate the interaction energy due to the
strain fields. Secondly, we used atomistic simulation as an
approximation in which the silicon interstitial was repre-
sented by a larger substitutional and the carbon by a smaller
substitutional in a lattice of silicon atoms. These two ap-
proaches were chosen to provide estimates of the defect in-
teraction energy over complementary length scales, the con-
tinuum Green’s function approach valid for larger distances,
and the atomistic simulations for defect pair separations of a
few unit cells. This work is complementary to that of Hobler
and Kresse10 who presented results for interstitial and va-
cancy pair defects in silicon using ab initio for defect pairs
separated by up to two unit cells.

The first of the two models, the Green’s function ap-
proach, is based on the local force model, which is one of the
simplest models of a point defect in continuum elasticity. A
pair of opposing forces is placed along each axis11 around
the defect, equivalent to inserting a spherical inclusion into a
spherical hole of initially different size.12 Green’s functions
and Radon11 or Fourier12,13 transforms can then be used to
calculate strain and interaction energy. A refinement of this
model, more suitable for the near field, is the “nonlocal”
continuum model, which places an array of radial forces at
the positions of the defect’s first and second neighbor
atoms.14 The forces used in this model are derived from the
harmonic lattice model developed by Bullough and Hardy.15

All of these models are capable of describing an anisotropic
material such as silicon. At a distance d of 10 unit cells from
the defect, the displacement predicted by the local force
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FIG. 1. Two-dimensional representation of kick-in and kick-out
reactions between a substitutional and a self-interstitial. The black
dot represents a boron or carbon atom in a silicon lattice.
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model differs from that of the nonlocal force model by
�10%14 and as d→� the two values become equal. In the
local force model the elastic interaction energy between two
defects is proportional to d−3 while the nonlocal force and
harmonic lattice models predict a d−5 relation.12,16,17 The har-
monic lattice model predicts that, for Cu, the interaction en-
ergy between two like point defects is negative when they
are both lying on the �100� crystal axis and positive in the
�110� and �111� orientations. The Green’s function model
described in the following section produces a similar conclu-
sion for silicon �with signs reversed for the two unlike de-
fects�.

The second approach to the estimation of the interaction
energy of a carbon substitutional and a silicon self-interstitial
is based on a simple atomistic model. Standard classical in-
teratomic potentials are used and a molecular dynamics
package is used to calculate the system energy at 0 K. This
approach has been used, for example, to estimate the strain
energies in semiconductor materials.18

This paper is organized as follows. In Sec. II we derive
the expression for strain interaction energy and describe both
the Green’s functions and atomistic methods. Results are pre-
sented in Sec. III. Despite the substantial differences in ap-
proach and the approximations used, both methods are
shown to draw quantitatively similar results. Finally, the con-
clusions are presented in Sec. IV.

II. THEORY

A. Green’s function method

Strain energy w per unit volume is defined as

w =
1

2
�ij�ij =

1

2
Cijkl�kl�ij , �1�

where �, �, and C are the stress, strain, and stiffness tensors,
the subscripts represent the three dimensions in space, and
the sum is taken over all values of repeated indices. Total
energy W in a volume V is given by

W =� 1

2
Cijkl�kl�ijdV . �2�

Assuming stresses and strains add linearly, the strain energy
density due to two point defects is

w�1+2� =
1

2
Cijkl��ij

�1� + �ij
�2����kl

�1� + �kl
�2��

=
1

2
Cijkl��ij

�1��kl
�1� + �ij
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The first two terms are the energy densities associated with
single defects and are not affected by the presence of the
second defect. The last two terms are the energy densities
�w associated with the interaction between the two defects.
The interaction energy �W is therefore given by

�W =
1

2
� Cijkl��kl

�1��ij
�2� + �kl

�2��ij
�1��dV =� Cijkl�ij

�1��kl
�2�dV ,

�4�

since Cijkl=Cklij.
In the Green’s function model, at the site of the silicon

interstitial, a silicon unit cell is removed and replaced by a
larger cube, which is initially compressed to fit into the unit
cell. The initial strain inside the cube, before the system is
allowed to relax, is known as misfit strain, and is uniform
throughout the cell and zero elsewhere. When the system
relaxes, the cube expands and a nonuniform strain arises in-
side and outside the cell. The carbon substitutional is repre-
sented by a corresponding smaller cube replacing a unit cell
of silicon; thus the misfit strain has the opposite sign to that
of the interstitial cell. The use of a cube is arbitrary, but the
strain field a distance of just one unit cell away from the
source of the strain is almost independent of the shape of the
source.19

It is now necessary to estimate the effective misfit strain
of a cube of silicon, which contains an extra atom in the form
of an interstitial. Misfit strain �* for a small volume of ma-
terial A embedded in material B is defined as

�* =
aB − aA

aA
, �5�

where aA and aB are the lattice constants of A and B. The
lattice constant of silicon is 0.543 nm. The cell which in-
cludes the silicon interstitial contains nine atoms instead of
the usual eight. The unstrained volume of nine silicon atoms
is therefore 9/8 of a normal silicon unit cell. To find a char-
acteristic length, comparable with a, we take the cube root of
the volume. Hence the representative misfit strain of the sili-
con cell containing an interstitial is given by

�SiI
* =

1 − � 9
8�1/3

� 9
8�1/3 . �6�

The cell representing the carbon substitutional contains
seven silicon atoms and one carbon atom, so the total un-
strained volume is taken to be 7

8aSi
3 + 1

8aC
3 , and the misfit strain

is given by

�C
* =

aSi − � 7
8aSi

3 + 1
8aC

3 �1/3

� 7
8aSi

3 + 1
8aC

3 �1/3 . �7�

A Green’s function method is used to deduce the relax-
ation strains. A Green’s function is the response �in this case
the strain response� at a field point �anywhere in the crystal�
due to a unit impulse at a source point �inside one of the cells
containing a point defect�. Integrating over the volume where
impulses occur �in this case, the defect cell� gives the total
response. We used the Green’s tensors developed by Faux
et al.20,21 for materials with cubic anisotropy based on the
work of Mura and Kinoshita.22 Faux’s method is particularly
suitable for this computationally intensive problem as the
Green’s functions form an infinite polynomial series, where
the first term describes the isotropic case and subsequent
terms are successively higher-order corrections for aniso-
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tropy, and they are therefore fast to compute. Faux has
shown that truncation after the third term produces an excel-
lent approximation to the exact solution.20 The more general
and more complex method of Pan23,24 takes into account the
piezoelectric effect �zero for silicon� and can be expressed as
a surface integral, which is useful for dealing with the nu-
merical singularities that arise when integrating through the
source volume.

The calculation involved two nested sets of numerical in-
tegrals; first, integration is required over source points to
calculate the strain at a field point due to each of the two
point defects then, second, the product of these strains is
integrated over field points in a large volume of material
surrounding the point defects in order to calculate the total
strain interaction energy �Eq. �4��. Three different defect ori-
entations were modeled with defects orientated along the
�100�, �110�, and the �111� crystal axes, respectively. The
geometry of our model is shown in Fig. 2. For symmetry
reasons it was only necessary to take field points in 1/8 of the
total volume in the �100� and �110� cases �1/4 of the total
volume in the �111� case�.

In the case of the inner integral, a Simpson weighting was
used to increase the accuracy. For field points close to the

defects, the mesh was refined by a factor of 3. The disadvan-
tage of integrating over a source volume as opposed to a
surface integral over the source surface is that the interaction
energy is highly sensitive to the distance from a field point to
the closest source point. So, for field points inside the defect
cell, we assumed a uniform value for the strain throughout
the cell. This value of the constant strain used in this region
was based on the strain at the center of the cell as calculated
by the Pan method23 �which uses a surface integral�. This
approximation introduces an error of less than 8% in the total
strain interaction energy.

The field points extend 200 cells beyond the source points
in each direction. By a semi-analytical integration out to in-
finity, we have determined that this accounts for more than
99.96% of the total strain interaction energy of an infinitely
large silicon crystal containing the two defects, since the
strain decays as r−3, where r is the distance between the
source point and the field point. For field points far from the
source points, the density of field points was reduced to save
computational time.

We used the following material parameters for silicon:
elastic stiffness C11=166 GPa, C12 �Lame constant 	�
=64 GPa, C44 �Lame constant 
�=79.6 GPa, lattice constant
a=0.543 nm. For carbon we used the lattice constant of dia-
mond �0.356 nm�. In each of the three orientations we took a
range of distances d between point defects. The model is
probably only valid for d� �10 unit cells or 5 nm.

B. Atomistic method

Atomistic calculations were undertaken, first, to check the
order of magnitude of the strain interaction energies obtained
by continuum calculations as described in the previous sec-
tion and, second, as a means of obtaining reasonable esti-
mates of the strain interaction energies at shorter distances.

We adopt a simplistic model in which a silicon crystal has
two atoms replaced, one by a siliconlike atom with a larger
size �to represent the interstitial� and one replaced by a
smaller siliconlike atom �to approximate the carbon intersti-
tial�. This model has obvious shortcomings and would not be
expected to accurately simulate the real defect pair especially
at very short distances but should serve to check the reason-
ableness of Green’s function calculation, recognizing that the
Green’s function calculation is itself subject to approxima-
tions, and extend the range of the energy calculation to
somewhat shorter distances. The key approximations inher-
ent in the atomistic model is the size of the Si-like atoms to
best approximate the interstitial silicon and substitutional
carbon. We acknowledge, also, that there are more sophisti-
cated interatomic potentials than the Stillinger-Weber/Jian
set used here including potentials which explicitly treat
silicon-carbon interactions which are likely to produce a
more accurate numerical result for the interaction energy. It
is also noted that a major contribution to the energy is due to
the strain of the many atoms surrounding the defects and the
accuracy of the various interatomic potentials at high distor-
tions is not known.

The atomistic computer simulations are performed on a
cube of silicon with dimensions of 23�0.543 095 nm con-

(100) orientation
y

xz

Si interstitial

field point
source point

C substitutional

(111): point defects at z=x

(110): point defects at z=0

x

C substitutional

Si interstitial

y

z

FIG. 2. Schematic diagram showing the geometry in cross sec-
tion: �a� the �100� orientation and �b� the �110� orientation, where
field points at z�0 in the quadrant indicated are integrated over,
and the �111� orientation, where integration occurs over both posi-
tive and negative z values.
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taining a total of 97 336 atoms. Stillinger-Weber26 �SW� in-
teratomic potentials are used with the modification proposed
by Jian et al.25 The Jian et al. potential parameters were used
because the bulk modulus agrees with experiment whereas
the original SW parameterization yields a value about 6%
too large. The Stillinger-Weber potentials contain a two-body
component of the form

�ij
�2� = �A�Br−4 − 1�exp��r − b�−1	 �8�

where r= 
ri−r j 
 /� and r�b ��ij
�2�=0 when r�b�. � is cho-

sen so that this function has a minimum at r=21/6 with an
energy −�.

The three-body term is of the form

�ijk
�3� = �	�cos � +

1

3
�2

exp���rij − b�−1 + ��rik − b�−1	 ,

�9�

where � is the angle between atom pairs ij and ik. The di-
mensionless potential cutoff b is 1.8 and � is 1.2 as chosen
by Stillinger and Weber.26 The parameters �, A, B, , �SiSi
and 	 are 2.17 eV, 6.865 464 121, 0.611 445 848, 0.9757,
2.0951 Å, and 9.11, respectively.25

The cube of silicon contains two model substitutional at-
oms, one larger �L� than silicon and one smaller �S�, sepa-
rated by a distance d in either the �100� or �111� direction.
The former approximates a silicon interstitial and the latter
represents a carbon substitutional. The potentials defined
above are used for atoms L and S with just the parameter �
changing to reflect the different sizes of the substitutional
defects. All other parameters associated with either the two-
body or the three-body potential are unchanged. The atomis-
tic simulations represent approximations to the real system
and, therefore, it is difficult to assign appropriate values to �
for the defect atoms. For example, Eqs. �6� and �7� produce
values of �3% for the magnitude of the effective misfit
strain for either the silicon interstitial or the carbon substitu-
tional. The lattice constants for carbon and silicon suggest
that a carbon substitutional should be associated with a �
about 20% smaller than that for silicon �assuming that the
usual geometric combination is used for mixed atom pairs
so, for example, �SiL=�SiSi�LL�. In practice, the potentials
for the Si-L and Si-S interactions are assigned �SiL
=2.304 61 and�SiS=1.885 59, respectively, being chosen to
be 10% larger and smaller than the value for Si, respectively.

All simulations are performed using the DLPOLY27 mo-
lecular dynamics �MD� package using the NVT ensemble
�constant number of atoms, volume, and temperature� at 0 K
so the MD package is used simply to determine the system
energy at the minimum energy configuration. Periodic
boundary conditions are used. The system is equilibrated for
about 30 ps using 0.005 ps time steps followed by 60 ps us-
ing 0.002 ps time steps. The configurational energy is re-
corded to 12 significant figures. The computed temperature is
typically 10−9–10−10 K at the end of the run and the system
is deemed to have equilibrated once the configurational en-
ergy has not changed for a minimum of 1 ps. It is likely that
the true equilibrium energy has not been achieved, but the
difference is judged to be, at most, 1 or 2 at the 12th signifi-

cant figure equivalent to about 0.001–0.002 meV. Even
though this systematic error is small, as a similar conver-
gence criterion is used for all simulations, these systematic
errors subtract out once the difference between energies is
taken.

Simulations were run for atoms S and L separated by 1–7
cell dimensions in the �100� direction and 1–4.25 cell dimen-
sions in the �111� direction, a maximum separation of about
4 nm.

III. RESULTS AND DISCUSSION

Figure 3 shows the interaction energy between a Si inter-
stitial and a C substitutional separated by up to 15 nm, cal-
culated by the atomistic and the continuum Green’s function
methods. Figures 4 and 5 show the same data, but on a
semilogarithmic plot extending out to a separation of
100 nm.

The quantitative agreement between results from the ato-
mistic and continuum models is impressive considering the
various approximations used. Both indicate that strain inter-
action energy �W between a silicon interstitial and a carbon
substitutional is less than about 0.04 meV, equivalent to a
temperature of 5 K, for separation distances greater than
5 nm. This is small compared to kT at room temperature
�25 meV� or higher. We can conclude that strain interaction
potential does not play a significant role in attracting point
defects to each other at distances greater than 5 nm except at
low temperatures.

Both atomistic and continuum models agree that, for de-
fects aligned along �100�, the interaction energy �W is posi-
tive �so defects repel each other�. They also agree that in the
�111� orientation �at least at d�2 nm� �W is negative
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FIG. 3. The strain interaction energy between a silicon intersti-
tial and a carbon substitutional point defect in a silicon crystal, as a
function of separation distance between the defects. Squares denote
the pair of defects lying along the �100� crystal axis and triangles
along �111�. Filled symbols are for the continuum Green’s function
method and unfilled for the atomistic method. � has the defects at
the corner of the unit cell and � at �1/4, 1/4, 1/4� in the unit cell.
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�which implies that defects attract each other�. Our con-
tinuum model also predicts that the defects attract each other
in the �110� orientation. This is consistent with the results of
Masumura,13 Schaefer,28 Shneck,12 and others, all of whom
use the local force model. All of these are studies of Cu,
which has cubic symmetry and the same sign of anisotropy
coefficient �C11−C12−2C44� as Si, so would be expected to
behave in a similar way.

The difference in sign of energy between the various ori-
entations can be explained as follows. The total interaction
energy is dominated by the contributions from field points
inside the defect cell, very close to the source. The element
of strain energy density for a field point inside defect cell �1�
is given by

w = Cijkl�ij
�1��kl

�2� �10�

as in Eq. �4�. At the center of defect cell �1�, �ij
�1� is a scalar

multiple ��1� of the identity matrix; let us assume it is posi-
tive, like that of the carbon substitutional. Thus the interac-
tion energy wcen at the center of source �1� is

wcen = �C11 + 2C12���1��ii
�2� �11�

where �ii
�2� is the trace of the tensor for strain inside cell �1�

due to defect �2�. �C11+2C12� is always positive. The sign of
wcen �and thus of �W� is therefore the same as that of
Tr��ij

�2��. Assuming that defect �2� has negative misfit strain,
like the silicon interstitial, Tr��ij

�2�� is positive when the two
defects are oriented along �100�, which is a soft direction,
but negative along the hard directions �110� and �111�. This
observation accords with the arguments of Shneck.12 Of
course, the curves would coincide for an isotropic medium.

The atomistic simulation found a large positive �W
�about 2 meV, not shown on the graphs� for d� �1 nm in
�111� orientation, in the configuration where the defects are
at the corner of their unit cells. This agrees with the findings

of Shneck.12 The continuum model would not be valid at
such a small separation. This result suggests that the strain
interaction energy may only contribute to the diffusion pro-
cess once the two defects are close, less than about 3 nm.

The straight lines on the semilogarithmic plots imply that
strain interaction energy is proportional to d−3, which agrees
with the literature on the local force model.12 This follows
from the fact that the strain Green’s function for a particular
orientation is proportional to r−3, where r is the distance
from the source point to the field point.

IV. CONCLUSION

We modeled two point defects in a Si crystal �a C substi-
tutional and a Si interstitial� as inclusions in a continuous
medium, and separately as large and small substitutionals in
an atomistic simulation. The strain interaction energy �W
between a Si interstitial and a C substitutional is found to be
� 0.04 meV for separation distance d� 5 nm. This indicates
that strain interaction energy plays a negligible part in the
diffusion of C in Si at room temperature or above at dis-
tances greater than about 5 nm. The strain interaction energy
may contribute to the diffusion process at low temperatures
and/or once the two defects are less than about 3 nm apart.

The potential between the defects due to the strain is re-
pulsive if they are oriented along the �100� axis, but attrac-
tive along �110� and �111�. �W is proportional to d−3.
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