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We consider the problem of screening of an electrically charged impurity in a clean graphene sheet. When
electron-electron interactions are neglected, the screening charge has a sign opposite to that of the impurity and
is localized near the impurity. Interactions between electrons smear out the induced charge density to give a
large-distance tail that follows approximately, but not exactly, an r−2 behavior and with a sign which is the
same as that of the impurity.
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I. INTRODUCTION

With the recent explosion of interest in graphene, there
are numerous experimental motivations for understanding
the influence of impurities on its electronic and transport
properties. For noninteracting electrons, the influence of a
dilute concentration of impurities on transport properties has
been investigated in some depth.1 Here, we shall instead
study in some detail the physics associated with a single
impurity carrying electrical charge Z. Nanoscale studies of
the electronic properties of a single graphene sheet have re-
cently become possible,2,3 and so it should eventually be
possible to observe the variation in the charge density and
the local density of states as a function of distance from the
impurity. We shall show here that this spatial structure is a
sensitive probe of the strong correlations between the elec-
trons in graphene and of the unusual nature of screening in a
two-dimensional semimetal with a Dirac dispersion spec-
trum.

For noninteracting electrons, the influence of a Coulomb
impurity exerting a potential Ze2 / �4��0r� �where r is the
distance from the impurity� was studied some time ago.4

This case is equivalent to the familiar “Friedel problem” but
for Dirac fermions. However, even for this seemingly simple
case, there are subtleties which were overlooked in the initial
treatment4 and corrected in Ref. 5. A number of papers
appeared6–8 while our paper was being written, presenting
additional results on this noninteracting problem. We shall
review and extend the results of Ref. 5 for noninteracting
electrons in Sec. II. We shall then proceed to the full treat-
ment of the impurity problem and allow for electron-electron
Coulomb interactions.

In short, our results are as follows. For noninteracting
electrons, the screening charge is a local delta function in
space to all orders in perturbation theory over the impurity
charge. The sign of this screening charge is opposite to that
of the impurity, as is usually the case. However, once inter-
action between electrons is turned on, the screening charge
develops a long-range tail even for small impurity charges.
The tail follows approximately an r−2 law, with a coefficient
which varies quite slowly with r. Notably, the sign of this tail
is the same as that of the impurity. The long-range tail of the

screening charge, thus, is a sensitive probe of the interaction
between electrons, in particular, to the renormalization of the
fermion velocity and the “quantum critical” aspects10 of the
interacting Dirac fermion problem.

Let us begin with a statement of the problem. After taking
the continuum limit to the N=4 species of two-component
Dirac fermions �a �a=1, . . . ,N�, we have the theory defined
by the Euclidean partition function,

Z =� D��DA� exp�− S − Simp� ,

S = �
a=1

N � d2r� d��a
†�r,��� �

��
+ iA��r,�� + iv�x �

�x

+ iv�y �

�y
��a�r,�� +

1

2g2 � d2q

4�2 � d�2q�A��q,���2,

Simp = − iZ� d�A��r = 0,�� . �1�

The functional integral is over fields defined in two spatial
dimensions r= �x ,y� and imaginary time �, �x,y are Pauli
matrices acting on the Dirac space, and v is the Fermi veloc-
ity. The scalar potential which mediates the e2 / �4��0�r��
Coulomb interaction between the electrons is iA��r ,��; after
a spatial Fourier transform to two-dimensional momenta q,
this interaction requires the 2q �=2�q�� coefficient of the term
quadratic in A�, with the coupling g2=e2 /�0. The screening
due to a substrate of dielectric constant � can also be in-
cluded by modifying the coupling to10 g2=2e2 / ��0�1+��	.
The action S therefore represents the physics of an ideal
graphene layer. The influence of an impurity of net charge Z
at r=0 is described by Simp.

Many essential aspects of the theory above follow from
its properties under the renormalization group �RG� transfor-
mation under which r→r /s and �→� /s. A standard analysis
shows that all three couplings in Z, namely, v, Z, and g, are
invariant under this transformation at tree levels. Indeed, for
two of the couplings, this invariance extends to all orders in
perturbation theory: the coupling g does not renormalize be-
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cause of the nonanalytic q coefficient, while Z remains in-
variant because it is protected by gauge invariance.5 So we
only need to examine the RG flow of a single coupling, the
velocity v. Because v is a bulk coupling, its flow cannot be
influenced in the thermodynamic limit by a single impurity
and so can be computed in the absence of the impurity. Such
a RG flow was initially examined in the more general con-
text of theories with the Chern-Simons couplings in Ref. 9,
but a complete presentation was given in the present context
in Ref. 10. We shall use the notation and the results of the
latter paper here, with the exception that we use two-
component Dirac fermions with N=4 while Ref. 10 uses
four-component Dirac fermions with N=2.

It will be useful for our analysis to introduce two combi-
nations of the above couplings which also have engineering
zero dimension and hence are pure numbers. These are

� =
g2N

32	v
, � =

g2Z

4�	v
�2�

�we have set 	=1 elsewhere in the paper�. As we will see,
the coupling � is a measure of the strength of the electron-
electron Coulomb interactions, while � measures the
strength of the electron-impurity Coulomb interaction.

We shall limit our explicit results here to the spatial form
of the charge density,

n�r� = − �
a

Tr
�a
†�r,���a�r,��� , �3�

�where Tr acts on the Dirac space� induced by the impurity.
However, our RG strategy can be extended to other observ-
ables of experimental interest, such as the local density of
states.

As noted above, we will begin in Sec. II by considering
only the electron-impurity Coulomb interaction, while
electron-electron Coulomb interactions will be accounted for
in Sec. III.

II. NONINTERACTING ELECTRONS

This section will ignore the electron-electron Coulomb
interactions. Formally, we work in the limit �→0, but � is
kept fixed. The problem reduces to that of a single Dirac
electron in the attractive impurity potential,

V�r� = −
Zg2

4�r
. �4�

This problem was originally studied in Ref. 4. However, they
introduced an arbitrary cutoff at high energy to regulate the
problem at short distances, and this leads to spurious results.5

As we will demonstrate here, there is no dependence upon a
cutoff energy scale at all orders in perturbation theory, pro-
vided the high energy behavior is regulated in a proper
gauge-invariant manner. With no cutoff energy scale present,
a number of results can be deduced by simple dimensional
analysis. The Fourier transform of the charge density n�r� is
dimensionless, and therefore we can write

n�q� = − NF��� , �5�

where F��� is a universal function of the dimensionless cou-
pling �. Note that n�q� is required by this dimensional argu-
ment to be q independent, and so n�r�
�2�r�.

The arguments so far are perturbative, but nonperturbative
effects can be deduced by solving the full Dirac equation
in the potential in Eq. �4�. This solution has appeared
elsewhere,6–8 and so we will not reproduce it here. Such an
analysis shows that the perturbative arguments apply for �
�1 /2, but a different phenomenon appears for �
1 /2. In
particular, Shytov et al.6 showed that n�r��−r−2 for �

1 /2 �the sign of this tail is opposite to that of the impu-
rity�.

We shall limit our discussion in this section to the �
�1 /2 case. One reason for doing so is that electron-electron
Coulomb interactions act to reduce the effective value of �.
This will become clearer in Sec. III, but we note here that a
standard random-phase approximation screening of the po-
tential V�r� in Eq. �4� can be simply accounted for by apply-
ing the mapping

� →
�

1 + �
�6�

to the results of the present section. The value of � in
graphene is not small.10

We shall now establish the existence of the universal
function F��� in Eq. �5� to all orders in �. The existence of
a universal F��� is a consequence of the nonrenormalization
of the impurity charge Z.5 We compute n�q� diagrammati-
cally, and the needed diagrams all have one fermion loop and
are shown in Fig. 1.

To first order in �, we have

n�q� = −
Z

2q
�0�q� , �7�

where �0�q� is the bare polarization operator,

�0�q� = − g2N� d2k

4�2 � d�

2�
Tr
�− i� + vk · �� �−1

��− i� + v�k + q� · �� 	−1� =
g2Nq

16v
, �8�

and so we have F���= �� /8��+O��2�.

FIG. 1. Feynman diagrams for the charge density without
electron-electron interactions to order �3. The filled square is the
impurity site, the wavy line is the A� propagator, the line is the
fermion propagator, and the filled circle is the charge density
operator.
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The order �2 graph in Fig. 1 vanishes by Furry’s theorem, and at order �3, we write the contribution to n�q� in the form

N�Zg2�3� d2k1

4�2

d2k2

4�2

d2k3

4�2

A�k1,k2,k3�
8k1k2k3

�2��2�2�k1 + k2 + k3 + q� , �9�

where

A�k1,k2,k3�

=� d2p

4�2 � d�

2�
Tr
�− i� + vp · �� �−1�− i� + v�p + q� · �� 	−1�− i� + v�p + q + k1� · �� 	−1�− i� + v�p + q + k1 + k2� · �� 	−1� ,

�10�

where it is understood here and below that −q=k1+k2+k3. We now want to symmetrize this by placing the external vertex
with momentum q at different points on the loop—this should not change the final result for n�q�. In this manner, we obtain

3A�k1,k2,k3�

=� d2p

4�2 � d�

2�
ˆTr
�− i� + vp · �� �−1�− i� + v�p + q� · �� 	−1�− i� + v�p + q + k1� · �� 	−1�− i� + v�p + q + k1 + k2� · �� 	−1�

+ Tr
�− i� + vp · �� �−1�− i� + v�p + k1� · �� 	−1�− i� + v�p + q + k1� · �� 	−1�− i� + v�p + q + k1 + k2� · �� 	−1�

+ Tr
�− i� + vp · �� �−1�− i� + v�p + k1� · �� 	−1�− i� + v�p + k1 + k2� · �� 	−1�− i� + v�p + q + k1 + k2� · �� 	−1�‰ . �11�

Now this expression has the important property that it vanishes at q=0, where we have

3A�k1,k2,k3� =� d2p

4�2 � d�

2�

�

i��
Tr
�− i� + vp · �� �−1�− i� + v�p + k1� · �� 	−1�− i� + v�p + k1 + k2� · �� 	−1� . �12�

This property allows us to establish that the integral in Eq.
�9� is convergent and cutoff independent. Let the loop mo-
menta p, k1, k2, and k3 all become much larger than the
external momentum q. The resulting integrand will scale as
the power of momenta associated with a logarithmic depen-
dence on the upper cutoff. However, in this limit of small q,
we have just established that the integrand is zero. It is clear
that this argument can be extended to all orders in �. We
have thus established the existence of the cutoff independent
function F���. We computed the integral in Eq. �9� numeri-
cally and so obtained

F��� =
�

8
� + �0.19 ± 0.01��3 + O��5� . �13�

III. INTERACTING ELECTRONS

We will now consider the full problem defined in Eq. �1�
and account for both the electron-electron and electron-
impurity Coulomb interactions. The problem can be solved
in two limits: in the weak-coupling limit, �→0, and the
large N limit, N→� with fixed Z=O�1�. In both cases,
� / �1+���1, so one can limit oneself to linear response in
which the induced charge is �generalizing Eq. �7�	

n�q� = − ZD�q���q� , �14�

where D�q� is the full propagator of the Coulomb potential
A� and ��q� is the polarization tensor. The connection be-
tween D�q� and ��q� is

D−1�q� = D0
−1�q� + ��q� , �15�

where D0�q� is the bare propagator,

D0�q� =
1

2q
. �16�

In leading order �either in coupling or 1 /N�, the polarization
operator was given in Eq. �8�, and we showed in Sec. II that
this gives rise to a q independent n�q� or a screening charge
localized at r=0.

However, if we compute corrections, we find logarithmi-
cally divergent diagrams, where the logarithms are cutoff
from above by the inverse lattice size and from below by q.
The leading logarithms are summed by a standard RG pro-
cedure. Since the theory is renormalizable, we can eliminate
the dependence on the cutoff by expressing the each diagram
in terms of the renormalized parameters instead of the bare
parameters of the Lagrangian. By choosing the renormaliza-
tion point to be q0, and denote v0 as the fermion velocity at
the scale v, the polarization tensor can be schematically writ-
ten as

��q� = ��q;q0,v0� . �17�

In �, there are logarithms of the ratio q /q0. We notice that
��q ;q0 ,v0� is invariant under a change of the renormaliza-
tion q0, given that v0 is changed correspondingly �the par-
ticle density has no anomalous dimension�. To eliminate the
powers of log�q /q0�, we can choose q0=q; hence,
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��q� = ��q;q,v�q�	 , �18�

where, in the perturbative expansion of the right hand side,
there is no large logarithms. Thus, to leading order, it is
given by a single diagram, which was computed previously
�Eq. �8�	,

��q� =
g2N

16v�q�
q . �19�

All the leadings, logarithms are contained in the function
v�q�, which satisfies the equation

q
�

�q
v�q� = ��v� , �20�

with the boundary condition v�q0�=v0. The screening charge
is then

n�q� = − Z
��q�

1 + ��q�
, ��q� =

g2N

32v�q�
. �21�

The problem is now reduced to the problem of finding v�q�
�or, equivalently, ��q�	. This problem has a long history;11

most recently it has been revisited in Ref. 10 �see also be-
low�.

To find the spatial charge distribution n�r�, one needs to
take Fourier transform of Eq. �21�. First, one notice that if
the velocity does not run, then n�r� is proportional to ��r�.
Only when v runs with the momentum scale does n�r� differ
from 0 away from the origin. When the running is slow �as at
weak coupling or at large N�, the amount of screening charge
enclosed inside a circle of radius r �assumed to be much
larger than the lattice spacing�, to leading order, is

�r

dr�n�r�� � �n�q��q=1/r = − Z� ��q�
1 + ��q�

�
q=1/r

. �22�

The total screening charge is small if � at the scale 1 /r is
small, and close to −1 if � is large. Differentiating both sides
of Eq. �22� with respect to r, one finds

n�r� = −
Z

2�r2

��q�
�1 + ��q�	2

��v�q�	
v�q�

. �23�

Note that the beta function for v is negative; therefore, we
arrive to a counterintuitive result that the screening charge is
positive. To see what is happening, let us take the limit r
→� in Eq. �22�. This limit corresponds to the infrared limit
q→0. We know that asymptotically v�q� grows to � in this
limit �although only logarithmically�, hence

��

dr�n�r�� = 0. �24�

that is, the total screening charge is zero when integrated
over the whole space �although the integral goes to zero very
slowly�. The presence of an external ion, therefore, only
leads to charge redistribution: a fraction of the unit charge is
pushed from short distance �of order of lattice spacing� to
longer distances, but none of the charge goes to infinity.
Therefore, there is a finite negative screening charge local-
ized near r=0. Its value can be found by taking r to be of

order of inverse lattice spacing a−1 in Eq. �22�. The final
result for the screening charge density can be written as

n�r� = − Z
��a−1�

1 + ��a−1�
��r� −

Z

2�r2

��q�
�1 + ��q�	2

��v�q�	
v�q�

.

�25�

In the rest of the note, we will concentrate our attention on
the long-distance tail of n�r�, ignoring the delta function at
the origin.

At weak coupling ���1�, the beta function for v�q� is

��v� = −
g2

16�
. �26�

The solution to the RG equation, with the boundary condi-
tion v=v0 at q=q0, is

v�q� = v0 +
g2

16�
ln

q0

q
, �27�

and the screening charge density is

n�r� =
Z

Nr2� g2N

32�
�2�v0 +

g2

16�
ln q0r�−2

. �28�

Notice that the result is proportional to the square of the
small coupling constant �=g2N /32v, although we have per-
formed the calculation to leading order in the coupling. The
reason is that for the charge density n�r� to be nonzero, it is
necessary that the coupling constant runs. The density n�r�
therefore contains the beta function ��v�, as seen in Eq. �23�,
and hence is second order in the coupling constant.

In the 1 /N expansion, the beta function for v�q� was com-
puted in Ref. 10:

��v� =�−
8v

�2N
� ln�� + ��2 − 1�

���2 − 1
+ 1 −

�

2�
� , � 
 1

−
8v

�2N� arccos �

��1 − �2
+ 1 −

�

2�
� , � � 1.�

�29�

The two expressions smoothly match each other at �=1.
It is instructive to analyze the two regimes where the RG

equation can be solved analytically. The first regime is �
�1, where the result is the same as in Eq. �28�. The second
regime is the strong-coupling regime ��1. This regime cor-
responds to a quantum critical point characterized by a dy-
namic critical exponent z, whose value at large N is10

z = 1 −
8

�2N
+ O�N−2� . �30�

In this regime, �= �z−1�v. The solution to the RG equation,
with the initial condition v=v0 at q=q0, is

v�q� = v0�q0

q
�1−z

, 1 − z �
8

�2N
. �31�

In this regime,
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n�r� =
Z

2�r2

1 − z

�0
�q0r�1−z, �0 =

g2N

32v0
, �32�

i.e., the charge density follows a power law behavior n�r�
�r−1−z. The power is slightly different from −2.

In real graphene, � is of order 1, so one has to solve
numerically the RG equation. We chose the scale q0 to be
comparable to the inverse lattice spacing r0

−1 and v0 to be
106 m /s, a typical value found in experiments. We then run v
according to the leading �in 1 /N� RG equation in two cases,
in vacuum and when graphene is on a SiO2 substrate with
dielectric constant �=4.5. We then plot 2�r2n�r� as a func-
tion of the distance r on Figs. 2 and 3. As seen from the
figures, the charge density n�r� roughly follows the r−2 law;
when r changes by 2 orders of magnitude, the product r2n�r�
changes by a factor of about 1.5 in both cases.

IV. CONCLUSIONS

In this paper, we have considered the problem of screen-
ing a Coulomb impurity in graphene. We show that there is a
qualitative difference between screening by noninteracting
and interacting electrons. In the case of noninteracting elec-

trons, the induced charge density is localized at the position
of the impurity when the impurity charge is small. The inter-
action between electrons lead to a long-distance tail in the
induced charge distribution, with a counterintuitive sign
which is the same as that of the impurity.

One problem that is not addressed in this paper is the
screening of an impurity with large ��1 by an interacting
electron gas. We hope to address this problem in a future
publication.

Note added. An earlier version of this paper had a sign
error in the �3 term in Eq. �13�; we thank V. Kotov for
pointing this out to us, and for giving us a preview of the
work of Terekhov et al,12 which contains a closed form ex-
pression for the function F���.
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FIG. 2. �Color online� The dependence of 2�Z−1r2n�r� on the
distance r for suspended graphene. Note that coordinate r is on a
logarithmic scale.
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FIG. 3. �Color online� The dependence of 2�Z−1r2n�r� on the
distance r for graphene on a substrate with �=4.5. Note that coor-
dinate r is on a logarithmic scale.
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