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I. INTRODUCTION

CaF2 and BaF2 are strongly ionic, wide-band-gap materi-
als raising interest in their use for precision vacuum ultravio-
let �vuv� lithography. The steadily advancing miniaturization
of integrated circuits and the aim of producing microchips
with increasingly small sizes needs a reduction of the wave-
lengths used in lithography processes from the visible to
the ultraviolet ��400 nm� and the vacuum ultraviolet
��200 nm� region.1 A demand arises for new materials for
lenses with a band gap wider and transmission higher than
the commonly used glassy materials.2 In this context, CaF2
with its large band gap is the material of choice, and BaF2
with its similar properties constitutes an alternative material,
since sizable and qualitatively good crystals can be pro-
duced. A perfect cubic symmetry is the requirement for iso-
tropic optical properties.

For a defined optical system the knowledge of changes of
the refractive index with temperature or volume is essential.
Deviations of the index of refraction from the ideal ground-
state value can lead to a change of quality. One issue is
thereby the intrinsic birefringence induced by the spatial dis-
persion coming from a small optical anisotropy at nonzero
energy which is studied, e.g., in Refs. 2 and 3.

Another key question is the behavior of the optical prop-
erties under strain. The thermal expansion of a material or
the volume reduction due to pressure are two possible forms
of strain. This aspect is the topic of the present paper. The
change of the high-frequency dielectric constant, namely the
elasto-optical constants, is calculated resulting from various
applied strains. Despite the technological interest at vuv en-
ergies we restrict ourselves to the static Pockels constants,
i.e., those at low energies compared to electronic-gap ener-
gies but high energies compared to phonon energies, and
demonstrate the role of nonlinear effects.

II. NUMERICAL DETAILS

Both systems, CaF2 and BaF2, crystallize in the face-
centered cubic fluorite structure �Fm3m� with three atoms in
the elementary cell with the alkaline-earth ion at �0,0,0� and
the F− ions at ± 1

4 �1,1 ,1�a.
The electronic and structural properties of the ground

state have been determined within the methods of density

functional theory in the local-density approximation �LDA�.
For the calculation of the Pockels constants we have used the
pseudopotential method as implemented in the ABINIT code4

which allows one to consider the effects of macroscopic
electric fields and thus the high-frequency �low-energy� di-
electric constant. Ground-state and dynamical properties
have been calculated elsewhere for the sake of comparison
for CaF2 and BaF2 with different ab initio program
packages,5,6 showing the reliability of the method used.

For both substances we have used the Hartwigsen-
Goedecker-Hutter pseudopotential, which proved to give bet-
ter dielectric and dynamical results than, e.g., Troullier-
Martins or combinations of other available pseudo-
potentials.5,7 For CaF2 we have used an energy cutoff of 110
Ha and a 4�4�4 k-point mesh leading to a precision of
10−3 Ha in the ground-state energy. For BaF2 an energy cut-
off of 100 Ha and the same k-point mesh was used. The
resulting ground-state lattice constants and high-frequency
dielectric constants are listed in Table I. As in many other
cases the LDA result slightly underestimates the experimen-
tal value of the lattice constant and overestimates the dielec-
tric constant, see Table I.

TABLE I. Calculated and experimental lattice constant a and
equilibrium high-frequency �low-energy� dielectric constant ��.

Method
CaF2 BaF2

a
�Å�

�� a
�Å�

��

Experimental
�300 K�

5.463a 2.045b 6.2,a 6.184c 2.16,b 2.167c

5.45d,c 2.056,c 2.05e 2.18,e 2.15f

Theoreticalg 5.3325 2.371 6.0506 2.472

aReference 8.
bReference 9.
cReference 10.
dOur neutron scattering data �10 K� �unpublished�.
eReference 11 �4 K�.
fReference 12.
gThis work.
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III. CALCULATION OF THE POCKELS CONSTANTS

For small distortions the change in the dielectric function
tensor � is linear in the strain, and the �linear� Pockels con-
stants p���� are defined by

���� � ��� − ��,�
0 = − ��

2 p����e��, �1�

where the Einstein summation convention is used.
In this work we investigate only the symmetrical part of

the strain tensor,

e�� =
1

2
� �u�

�x�

+
�u�

�x�
� .

Calculations have been performed with various finite but
small strains with respect to the equilibrium structure to yield
the corresponding high-frequency dielectric constants. Stan-
dard procedures include isotropic and uniaxial pressures
along the cube axes for the determination of p11 and p12 and
uniaxial pressures along a face or space diagonal for that of
p44.

We have calculated the dielectric constant for six sym-
metrically different strains. It should be kept in mind that the
theoretical equilibrium dielectric constant is somewhat larger
than the experimental one �about 15% for BaF2 and CaF2,
see Table I�. Assuming the relative change of the dielectric
constant with strain to be realistic �the moduli of� the Pock-
els constants are expected to turn out to be too small by the
same amount.

IV. NONLINEAR CONTRIBUTIONS

The Pockels constants will be given in the Voigt notation.
For a cubic system there are three symmetrically inequiva-
lent, nonvanishing elements of a fourth-order �linear� tensor

�xxxx � �11, �xxyy � �12, �yzyz � �44,

and nine sixth-order �nonlinear� tensor elements,

�111, �122, �112, �123, �166, �144,

�456, �661, �441.

In contrast to the six sixth-order tensor elements of the non-
linear elastic constants, here relations like �441=�144 are not
true since the first index refers to the derivative with respect
to the electric field components, while the latter two indices
refer to the derivatives with respect to strains.

Expansion in terms of the strain leads to

���� = �����e�� +
1

2
�����	
e��e	


and in particular, in Voigt notation �and for symmetric strains
only�,

��1 = �11e1 + �12�e2 + e3� +
1

2
�111e1

2 +
1

2
�122�e2

2 + e3
2�

+ �112e1�e2 + e3� + �123e2e3 + 2�144e4
2 + 2�166�e5

2 + e6
2� ,

�2�

��4 = 2�44e4 + 4�456e5e6 + 2�441e4e1 + 2�661e4�e2 + e3�
�3�

and cyclic.
The linear and nonlinear Pockels constants are then given

by

d�i
−1

dej
= −

1

��
2 ��ij + �ijkek� = pij + pijkek. �4�

V. RESULTS

Rather than taking differentials we have taken differences,
and thus we have been led to compute the nonlinear in ad-
dition to the linear Pockels constants. In order to obtain the
single Pockels constants rather than their combinations we
considered various types of strain which involve different
combinations of the Pockels constants.

In general we have calculated the dielectric constant at
equilibrium and two different strains �of the same symme-
try�; then we have fitted a parabola through these three data
sets from which the linear and second-order changes can be
extracted. In order to circumvent numerical noise we have
used strains of the order of a percent. This may seem large,
but the results for different choices of the strains turn out to
be rather consistent. In fact, in almost all cases we have used
the results from the different choices to estimate the numeri-
cal error bars. The results will be given in rounded numbers,
even though the computations themselves have been done
with a larger number of digits.

A. Strictly uniaxial strain (T1g symmetry)

In this section we investigate a compression �or exten-
sion� along only one cube axis. This type of strain may be
unfeasible in an experiment since it is usually accompanied
by an extension �or compression� perpendicular to it; but this
strain is quite interesting from a theoretical point of view
since it leads to an independent and simultaneous determina-
tion of p11 and p12.

From Eqs. �2� and �3� and with only the strain-tensor
element ezz=e3=e not vanishing we obtain to second order
in e

��1 = ��2 = �12e +
1

2
�122e

2, �5�

��3 = �11e +
1

2
�111e

2, �6�

��4 = ��5 = ��6 � 0.

1. BaF2

The results for BaF2 from a quadratic fit to the results of
strains e3=ezz= ±0.05 as well as with e3= ±0.2 together with
the equilibrium data �e3=0� �and all other components van-
ishing� are very similar; the mean is
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��3 = − 0.316�4�e + 1.21�6�e2,

��1 = − 1.46�4�e + 2.19�4�e2.

The derived numbers of p11 and p12 appear in Table II �with-
out square brackets� and those of p111 and p122 in Table III.
For later use in Sec. V D we note

1

2
�111 = 1.21�6� , �7�

1

2
�122 = 2.19�4� . �8�

The relative contribution of the nonlinearities is appre-
ciable for the strains used in our calculations, in particular
the contribution to �11 and p11.

2. CaF2

Similarly as for BaF2 we proceed for CaF2. Likewise, the
results from e3= ±0.2 and ±0.05 are very similar; the mean is

��3 = + 0.125�8�e + 0.93�5�e2,

��1 = − 1.15�3�e + 1.91�4�e2.

For later use in Sec. V D we note

1

2
�111 = 0.93�5� , �9�

1

2
�122 = 1.91�4� . �10�

As for BaF2 the contribution of the nonlinearities is appre-
ciable for the strains used in our calculations. To our sur-

TABLE II. Calculated and experimental Pockels coefficients. The numbers in square brackets are derived
values.

Method p11 p12 p11+2p12 p11− p12 p44

BaF2 Experimentala 0.110�11� 0.257�26� �0.624� �−0.147� 0.0142�14�
Experimentalb �0.131� �0.277� �0.685� −0.146 0.0264

Experimentalc −0.152�1� 0.0251�5�
Calculatedd 0.113

Calculatede −0.099 0.072

Calculatedf �0.0508�2�� �0.2315�2�� 0.5139�5� −0.1807�1� 0.02089�2�
0.0517�6� 0.239�7� �0.53�1�� �−0.187�7��

CaF2 Experimentala 0.0443�44� 0.276�28� �0.5963� �−0.2317� 0.0287�29�
Experimentalb �0.0258� �0.202� �0.4298� −0.161 0.0239

Experimentalc −0.184�1� 0.0252�5�
Experimentalg 0.026 0.198

Experimentalh 0.0558 0.228 0.5118 −0.1722 0.0236

Calculatedd 0.048

Calculatede −0.057 0.051

Calculatedf �−0.0215�2�� �0.1972�2�� 0.3729�4� −0.2187�2� 0.0316�3�
−0.022�1� 0.204�6� �0.386�13�� �−0.226�7��

aReference 13, Brillouin scattering at 632.8 nm.
bReference 14, calculated from piezobirefringence data at 589.3 nm cited therein.
cReference 1, piezobirefringence at E=2.269 eV; for theoretical LDA results see the figures therein and the
present remarks in Secs. V A and V F here.
dReference 15.
eReference 16, dipole-dipole model.
fAb initio calculation using ABINIT, this work. Error bars are from numerical uncertainties.
gReference 17, pressure dependence of refractive index.
hPockels �1906� as cited in Ref. 18.

TABLE III. Calculated nonlinear Pockels coefficients. The error bars result from uncertainties of qua-
dratic fits of the dielectric numbers at various strains.

p111 p122 p112 p123 p456 p166 p144

BaF2 −0.40�2� −0.72�1� −0.03�1� −0.19�3� 0.106�12� −0.1571�15� −0.264�3�
CaF2 −0.33�2� −0.68�2� +0.07�2� −0.26�4� 0.072�6� −0.0655�7� −0.319�3�
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prise, the sign of the value for p11 for CaF2 turns out to be
opposite to the experimental one. We will come back to this
finding at the end of the paper.

3. Strain-induced birefringence

For the strain-induced birefringence �� −��=��3−��1 we
obtain the values 1.15�4�e3 for BaF2 and 1.28�4�e3 for CaF2.
This is to be compared with the theoretical values 	1.1e and
	1.15e, respectively, from Ref. 1 for their K11−K12 as read
off their figures at E=0. At E=2.269 eV, the experimental
values of Ref. 1 are 0.723�7� and 0.780�8�, respectively.

B. Homogeneous strain (A1g symmetry)

This case corresponds to hydrostatic conditions. For all
diagonal strain-tensor elements equal �exx=eyy =ezz=e and
zero off-diagonal elements� we obtain from Eq. �2�

��1 = ��2 = ��3 = ��11 + 2�12�e

+ �1

2
�111 + �122 + 2�112 + �123�e2. �11�

1. BaF2

From the lattice constants 5.9, 6.0, and 6.2 Å and qua-
dratic fits to three different combinations of two of these with
the equilibrium lattice constant 6.05 Å we find

��1 = − 3.139�3�e + 6.9�2�e2 �12�

and by comparison with Eq. �11�

p11 + 2p12 = 0.5139�5� , �13�

p111 + 2p122 + 4p112 + 2p123 = − 2.26�6� , �14�

while from p11 and p12 of Sec. V A above for uniaxial strain
along z we find

p11 + 2p12 = 0.53�1�

in reasonable agreement �within 3%� with each other. �This
latter is the number in square brackets in Table II.� This is
also in agreement with the result of Ref. 1, Fig. 9, where
��1	−3e at low energies. The nonlinear constants for the
two different strain symmetries must differ, since they con-
tain different combinations of the pijk.

2. CaF2

From the lattice constants 5.33 �equilibrium�, 5.3, and
5.4 Å and a quadratic fit we find

��1 = − 2.097e + 5.078e2 �15�

and

p11 + 2p12 = 0.3729�4� , �16�

p111 + 2p122 + 4p112 + 2p123 = − 1.81�5� , �17�

assuming a numerical error as for BaF2, namely 0.1% for the
linear and 3% for the nonlinear result, while from the data
for strictly uniaxial strain along z we find

p11 + 2p12 = 0.386�13� .

The linear Pockels constants from the two symmetrically dif-
ferent strains agree within 3%. This is also in agreement with
the data of Ref. 1, Fig. 7, where ��1	−2.3 �as compared to
our value of 2.1� at low energies. The nonlinear constants
must differ as mentioned above; they will be considered fur-
ther below in Sec. V E.

C. Shear strain (Eg symmetry)

This corresponds to uniaxial conditions at constant vol-
ume with pressure along a cube axis. We choose pressure
along the z axis; with e1=e2=− 1

2e3=e and all other compo-
nents vanishing in Eq. �2� the two different components �1
=�2 and �3 have different nonlinearities,

��1 = ��2 = ��11 − �12�e + �1

2
�111 +

5

2
�122 − �112 − 2�123�e2,

�18�

��3 = − 2��11 − �12�e + �2�111 + �122 − 4�112 + �123�e2.

�19�

1. BaF2

With a strain of e1=exx= ±0.02 �and e1=0� we obtain

��1 = + 1.103e + 9.501e2, �20�

��3 = − 2.209e + 9.400e2, �21�

and

p111 + 5p122 − 2p112 − 4p123 = − 3.108 from �1, �22�

4p111 + 2p122 − 8p112 + 2p123 = − 3.078 from �3. �23�

The average of the linear constants is

p11 − p12 = − 0.1807�1� ,

while the numbers of Sec. V A above yield

p11 − p12 = − 0.187�7� . �24�

�This is the number in square brackets in Table II.� Thus the
calculations with strains of the three different symmetries
T1g, A1g, and Eg give very consistent results for the two �lin-
ear� Pockels constants p11 and p12 and their combinations.
Further considerations concerning different combinations of
p11 and p12 will be made in Sec. V D.

2. CaF2

Analogously to the case of BaF2 we obtain

��1 = 1.231e + 7.691e2, �25�

��3 = − 2.458e + 10.317e2, �26�

and
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p111 + 5p122 − 2p112 − 4p123 = − 2.736 from �1, �27�

4p111 + 2p122 − 8p112 + 2p123 = − 3.670 from �3. �28�

The average of the linear constant is

p11 − p12 = − 0.2187�2� , �29�

and the numbers from Sec. V A yield the same, although less
precise result

p11 − p12 = − 0.226�7�

for the linear term.

D. A1g and Eg data combined

The combination of the A1g and Eg data can be used to
determine the constants p11 and p12. These results enter Table
II in square brackets and seem to be somewhat more precise
than the directly calculated values of Sec. V A.

As a further check of consistency of the Pockels constants
p11 and p12 we have investigated a strain of still another
symmetry, namely with e1=e2=−e3=e and all other compo-
nents vanishing. From Eq. �2� one has

��1 = ��2 = �11e +
1

2
��111 + 2�122 − 2�123�e2, �30�

��3 = �− �11 + 2�12�e +
1

2
��111 + 2�122 − 4�112 + 2�123�e2,

�31�

which can be written as

��1 = ��2 =
1

3
��1

A1g +
2

3
��1

Eg − �122e
2, �32�

��3 =
1

3
��3

A1g +
2

3
��3

Eg − �111e
2. �33�

The results from a direct computation can be compared to
the results derived from the data of Secs. V A–V C. With e
=0.03 we obtain for BaF2

��1 = − 0.00561,

��3 = − 0.07009

directly and

��1 = − 0.0055�4� ,

��3 = − 0.0700�5�

as derived from Eqs. �7�, �8�, �12�, �20�, and �21�. Likewise,
we find by direct computation for CaF2

��1 = + 0.00635,

��3 = − 0.06410,

and from Eqs. �15�, �25�, �26�, �9�, and �10� with e=0.03

��1 = + 0.0063�4� ,

��3 = − 0.0641�5� .

For this symmetry we did not investigate other values of e
since the different strains led to essentially identical results,
demonstrating the consistency of the results from different
strains.

E. Nonlinear T1g, A1g, and Eg data combined

We consider the results for the T2g data p111 and p122 from
Sec. V A as rather reliable, since also the linear terms are
quite consistent. Taking these T2g data as given indepen-
dently and as granted there remain the three equations �14�,
�22�, and �23� �in the case of BaF2� from the A1g and Eg data
for the two constants p112 and p123. To be on the safe side we
assume an error bar of 5% for the Eg nonlinearity, somewhat
larger than the 3% error bars for the A1g nonlinearity. In the
way described we obtain the data for p112 and p123 as in
Table III for BaF2 and likewise for CaF2.

F. Shear strains (T2g symmetry)

We have investigated two different distortions,

e�111� = e�111�
0 1 1

1 0 1

1 1 0
�

and

e�110� = e�110�
0 1 0

1 0 0

0 0 0
� ,

for uniaxial strain along the �111� and �110� directions, re-
spectively. To second order one has from Eqs. �2� and �3�

��1 = ��2 = ��3 = 0 + �2�144 + 4�166�e�111�
2 , �34�

��4 = ��5 = ��6 = 2�44e�111� + 4�456e�111�
2 �35�

for the �111� case and

��1 = 0 + 2�166e�110�
2 , �36�

��2 = ��3 = 0 + 2�144e�110�
2 , �37�

��6 = 2�44e�110� + O�e�110�
3 � , �38�

��4 = ��5 � 0 �39�

for the �110� case.
For BaF2 and CaF2 it turns out that the internal strain,

i.e., the shift of the F atoms from their symmetry positions
± 1

4 �1,1 ,1�, gives a very important contribution to p44. The
internal strain itself is considered in Sec. V G.

1. BaF2

We have used the values ±0.025 and 0.05 �and e=0� for
e�111� and e�110�, and from three quadratic fits we find
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��1 = − 0.01�2�e�111� + 5.6�1.3�e�111�
2 ,

��6 = − 0.26�1�e�111� − 2.6�3�e�111�
2 ,

��1 = + 0.0005�6�e�110� + 1.92�2�e�110�
2 ,

��3 = − 0.0003�13�e�110� + 3.23�4�e�110�
2 ,

��6 = − 0.255�2�e�110� + 0.06�6�e�110�
2 .

The values for p44 from the two different strains come out
almost identical; the average is given in Table II.

As expected from Eq. �38�, the nonlinear contribution to
p44 for the strain along the �110� direction nearly vanishes.
Also as expected from Eqs. �34�, �36�, and �37�, the linear
term of the diagonal elements ��1 and ��3 nearly vanishes.
From the �111� data we find p456, and from the �110� data we
find p166 and p144, see Table III. These �110� numbers yield

p144 + 2p166 = − 0.578�6� ,

while the �111� results, compared with Eq. �34�, are much
less precise,

p144 + 2p166 = − 0.46�11� ,

with barely overlapping error bars.
Neglecting the internal strain the values of p44 would be

too large by a factor of between 2 and 3 for e�111� and of
about 4 for e�110�. More details of the internal-strain param-
eter will be considered in Sec. V G.

2. CaF2

The qualitative findings for CaF2 are similar to those of
BaF2. With the values ±0.025 for e�110� and ±0.025 and 0.05
for e�111� we find

��1 = − 0.01�6�e�111� + 3.5�1.7�e�111�
2 ,

��6 = − 0.351�5�e�111� − 1.6�1�e�111�
2 ,

��1 = + 0.0005e�110� + 0.737e�110�
2 ,

��3 = − 0.0011e�110� + 3.592e�110�
2 ,

��6 = − 0.357e�110� + 0.059e�110�
2 .

We assume an error of 1% for p44 from the �110� result and
of about 1% for p144 and p166 as found for BaF2.

From the �110� data we obtain

p144 + 2p166 = − 0.450�4� ,

while from the nonlinear �111� results for ��1 we find the less
precise value

p144 + 2p166 = − 0.31�15�

with overlapping error bars. Without the internal strain the
values of p44 would be too large by a factor of about 1.8 for
e�111� and of about 2 for e�110�.

3. Strain-induced birefringence

For the birefringence �� −��=��4 induced by the �111�
strain we obtain the values ��4=−0.26�1�e6 for BaF2 and
��4=−0.351�5�e6 for CaF2 �to first order in e6�. Our values
are larger by factors of about 2 and 3, respectively, than the
low-energy experimental values shown in Ref. 1, despite the
fact that our results for p44 are in good agreement with the
experimental data, see Table II. The theoretical and experi-
mental values of Ref. 1 agree well for CaF2 but differ
strongly for BaF2, even with a wrong sign. �This has led the
authors of Ref. 1 to consider the internal-strain parameter as
a fit parameter, see Sec. V G.�

G. Internal-strain parameter

The earth-alkaline atom at �0,0,0� is in the centrosymmet-
ric octahedral nearest-neighbor surrounding, and the F atoms
at ± 1

4 �1,1,1�a are positioned in the noncentrosymmetric tet-
rahedral surrounding. Except for isotropic strain or uniaxial
strain along a cube axis, the F atoms are, therefore, shifted
off the �homogeneously distorted� center positions under
general strain, the displacement components �in units of the
lattice constant a� being given as19

u� = −
1

4

���e�� �40�

with the internal-strain displacement-tensor elements 
���.
For the fluorite structure 21 of the 3�3�3=27 elements of
the internal-strain tensor vanish, namely those with any two
or more equal indices, and the six nonvanishing elements
with three different indices are all equal,


xyz = 


�and all permutations of the indices�.
It turns out that p44 strongly depends upon the size of the

internal strain; for a numerical study of this dependence see,
e.g., Ref. 1.

1. BaF2

The z component of the internal-strain displacement off
the 1

4 �1,1 ,1� position is found to be

u = − 0.0076 for e�111� = 0.05,

u = − 0.0049 for e�111� = 0.025,

u = + 0.0074 for e�111� = − 0.025

for the �111� strain and

u = − 0.012 05 for e�110� = 0.05,

u = − 0.006 05 for e�110� = 0.025,

u = + 0.006 00 for e�110� = − 0.025

for the �110� strain. The latter �110� set of data is quite con-
sistent and leads to an internal-strain parameter of
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 = 0.482�1� .

It seems that there are appreciable nonlinear contributions to
the internal strain only in the �111� case but not in the �110�
case as is also found for the nonlinear contributions to the
Pockels constant p44; but upon taking the average u for
e�111�= ±0.025 the next higher-order contributions should
cancel, and the average value 
=0.49�1� turns out to be very
close to that from the �110� strain.

The computational result of Ref. 1 is 
=0.45; with this
value, p44 would have the wrong sign, and the authors of
Ref. 1 treated 
 as a fit parameter, reducing it appreciably in
order to get close to their experimental data. A model
calculation20 gives 
=0.754.

2. CaF2

The findings for CaF2 are qualitatively similar to those of
BaF2 with a quantitative difference resulting in


 = 0.321�1�

for the internal-strain parameter from the �110� strain in good
agreement with 
=0.29�11� of the �111� data set. The com-
putational result of Ref. 1 is 
=0.31. A model calculation20

gives 
=0.432.

VI. SUMMARY

A. Linear Pockels constants

The experimental values for p11 and p12 exhibit a very
large scatter, in particular for CaF2, where values for p11
range from 0.026 to 0.056, see Table II. These values are
derived from p11+2p12 �A1g� and p11− p12 �Eg�, and naturally
carry error bars as the sum of both of the latter. Results from
optical experiments usually carry the dependence upon the
radiation frequency1,21 and would need to be extrapolated to
low frequencies if compared to our theoretical values; how-
ever, for energies much smaller than the gap energy, the op-
tical constants vary only slowly.22

From different model assumptions, calculations give the
combined coefficient in the range 0.428� p11+2p12�0.591
for CaF2 and 0.542� p11+2p12�0.71 for BaF2.23 The results
from other model calculations15,16,24 depend strongly on the
particular models used and thus seem to be not very reliable
in comparison with ab initio calculations; the problem seems
to be the correct treatment of the change of the electronic
polarizability of the model ions under strain.

Comparing the results for BaF2 with those of CaF2 one
finds the largest differences in the values of p11 �next to those
of p11+2p12� in theory as well as in experiment. Both p11 and
p12 are larger for BaF2 than for CaF2, and the shear constants
p44 and p11− p12 are smaller.

The deviation of our results for the Pockels constants
from the experimental values are larger for CaF2 than for
BaF2. The reason for the deviation cannot be found only in
the use of the theoretical rather than the experimental equi-
librium lattice constant; the theoretical lattice constants are
smaller than either the low- or room-temperature values and
disagree by 2% to 3%: For the experimental lattice constant

the theoretical value of p11+2p12 becomes even smaller than
the experimental one. �All Pockels constants or their combi-
nations refer to the theoretical equilibrium volume.� We
rather assume the differences to originate from the value of
the dielectric constant, which is too large by about 15%5,6

�see also Table I� and which enters the Pockels constants
quadratically. Also, as shown in Ref. 1 the use of a finer
k-point mesh might bring the theoretical values closer to the
experimental ones. Another deviation may come from using
specific pseudopotentials and/or the LDA; but with the pres-
ently used pseudopotentials and the LDA the results for the
phonon properties have turned out to be quite satisfying.5,6

Thus the unexpected theoretical sign of p11 for CaF2 remains
unexplained at the moment.

The error bars given in our tables are merely from nu-
merical inaccuracies due to finite strains or different symme-
tries of strain. What is difficult if not impossible in an ex-
periment can be done theoretically; choosing the strain
strictly along a cube axis allows one to calculate p11 and p12
independently, and the results are in good agreement with
our values derived from homogeneous and general uniaxial
strain �along a cube axis�.

The constant p44 is very sensitive to the internal strain, as
the position of the F ions is not given by symmetry but by
energy minimization. The theoretical value of p44 is overes-
timated by a factor of typically 2 when the internal strain is
not taken into account.

B. Internal-strain parameter

Shear strain along the �111� or �110� direction makes the F
atoms move off their symmetry positions. Using finite strain
the shift depends nonlinearly on the strain. In the �110� case
the nonlinear contribution to the internal-strain displacement
is only of third order, thus making the �110� strain particu-
larly insensitive to nonlinear effects. To our knowledge, the
internal-strain parameter of BaF2 and CaF2 is not known
experimentally.

C. Nonlinear Pockels constants

The results for the nonlinear Pockels constants are col-
lected in Table III. As expected from the similarity of the
linear strain coefficients of CaF2 and BaF2, also the nonlinear
coefficients are of similar order of magnitude. The nonlinear
coefficients are generally negative except p456. The strains
are chosen in our calculations such that the strain tensors
contain either only diagonal or only off-diagonal elements,
and thus the nonlinear parameters p441 and p661 remain un-
determined. To our knowledge, the nonlinear Pockels con-
stants of BaF2 and CaF2 are not known experimentally.

The influence of the nonlinear terms on the calculation of
the Pockels constants by taking differences rather than dif-
ferentials have been found to be important in nearly all types
of strain except �110�. Too small a strain might result in too
high a numerical noise, and a calculation for too large a
strain suffers from the nonlinearity; this has to be kept in
mind in numerical treatments. To avoid this problem we ex-
tracted our data from nonlinear equations like �2� and �3�.
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