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Failure of the displaced-squeezed state for spin-boson models in the thermodynamic limit
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We present an analysis of a variational coherent-squeezed state that has been discussed in the literature as a
potential ground state for the spin-boson model. We show that when the system-size scaling of the spin-bath
coupling is included properly, all squeezing effects and nonuniversal physics vanish in the thermodynamic
limit. We also present finite-size corrections to the renormalization of the spin’s coherence, showing that
squeezing effects are also absent to leading order in the inverse bath size.
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INTRODUCTION

The spin-boson model is one of the most important theo-
retical models for studying dissipation and decoherence in
quantum systems, and has been applied to numerous systems
in chemistry,' biology,> and the emerging fields of quantum
computation and quantum devices.> The model is simple,
comprising a coherent two level system (TLS) that is
coupled to a bath of harmonic oscillators, yet it is known to
contain a rich array of physical phenomena, and continues to
provide new insights into open quantum systems.

One particularly important issue, especially for practical
quantum devices, is the robustness of the coherence of the
TLS in equilibrium with the bath. Numerous studies on this
have revealed some extremely interesting physics, including
quantum phase transitions between coherent and incoherent
TLS states, and unusual temperature dependence of the
coherence.*!!

Amongst these studies, the use of trial wave functions has
provided some very intuitive insights into the problem. There
are two common states in the literature, both based on the
adiabatic approximation discussed by Leggett et al.* The first
was that of Silbey and Harris, who modified the adiabatic
approximation to allow for simple nonadiabatic responses
from the low frequency modes in the problem.® This state
was shown to correctly describe the coherent-incoherent
transition for ohmic coupling,® and has recently been used to
study the transition in the sub-ohmic system, giving results
in excellent agreement with those obtained by other
methods.” 10

The second state is known as the displaced-squeezed state
(DSS) and was proposed by Chen, Zhang, and Wong.'? This
state is based on two effects: adiabatic displacement of the
bath modes, and spatial deformation of the oscillator wave
functions. At zero temperature it has been shown that the
energy of the DSS can be significantly lower than the Silbey-
Harris state for the case of strong coupling between one os-
cillator and the TLS,!® and this has also been claimed for
strong coupling to a super-ohmic continuum of bath modes.'*

This DSS also predicts coherent-incoherent transitions in
ohmic and sub-ohmic systems,'>!¢ but with significantly dif-
ferent critical properties than those found in the rest of the
literature. Moreover, these critical properties depend on the
explicit form of the TLS-bath coupling, which is unusual as
it has been shown using path integral techniques that the
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spin-boson physics should be controlled solely by the spec-
tral function of the bath.*!” As the DSS is claimed to be the
most stable ground state for strong coupling, there has been
much discussion of this breakdown of ‘“‘universality” as a
function of coupling strength,'*!3 a breakdown which we
shall show does not exist thermodynamically.

In this paper we use an effective Hamiltonian theory to
show that when the system-size scaling of the TLS-bath cou-
pling is included properly, all squeezing and nonuniversal
features of the DSS vanish in the thermodynamic limit.
Finite-size effects are then discussed, with no evidence for
squeezing found to leading order in the inverse system size.

THE SPIN-BOSON MODEL

The Hamiltonian for the spin-boson model is given by*
Hy,=-Ko+ 0.2 glla;+a)) + 2 waja, (1)
! !

where o, , are Pauli matrices for the TLS, @] and q; are the
bosonic creation and annihilation operators for the bath
modes, and w; is the frequency of mode /. The bath couples
to the TLS with coupling constants g;, and the coherent tun-
neling matrix element between the eigenstates of o, is K. We
assume that the bath is truly macroscopic, and that the modes
can be treated as a continuum with a smooth density of states
up to some cutoff frequency w..* The physics of the spin-
boson model is then normally determined solely by the spec-
tral function of the bath J(w),

Jw)=2 gid(w-w), (2)
1
1 1-s
= a0 o', 0w<o,. (3)

The right-hand side of Eq. (3) is a phenomenological
power law where « is a dimensionless coupling strength, w,
is a typical frequency scale of the interaction, and s is the
exponent of the frequency dependence. This form for J(w)
can be derived for specific microscopic interactions, and
many physical examples can be found in the literature.>> The
dynamical and thermodynamical behavior of the TLS de-
pends critically on « and s. As a result, three types of baths
are distinguished according to their value of s: the super-

©2007 The American Physical Society

RAPID COMMUNICATIONS


http://dx.doi.org/10.1103/PhysRevB.76.201307

A. W. CHIN

ohmic bath (s> 1), the ohmic bath (s=1), and the sub-ohmic
bath (s<1).*

ADIABATIC APPROXIMATION
AND THE DISPLACED-SQUEEZED
STATE

In the absence of tunneling, the TLS will remain perma-
nently in an eigenstate of o, and the spin-boson Hamiltonian
can be solved exactly. The two degenerate ground states

|[+),|—) are given by
[+)=UADI0),  [=)=Ual1)]0), (4)
Up= exp(— o, 2 g (- a;)), (5)
1
where [1),||) are the usual eigenstates of o,. These ground

states can be understood intuitively; the TLS creates a static
force which displaces all the bath modes, and this displace-
ment is described by the action of the shift operator U, on
the vacuum of all bath modes |0). When K is finite, the TLS
can tunnel, and no exact solution for the problem is known.
However, bath modes with frequencies much higher than the
tunneling rate 2 K can respond almost instantaneously to the
relatively slow tunneling, and will be dynamically displaced
as the TLS tunnels between states. In such an approximation,
the TLS-bath interaction can be eliminated by simple renor-
malization of the bare TLS tunneling matrix element.

In the zeroth-order adiabatic approximation, where all
modes are assumed to follow the TLS instantaneously, the
tunneling of the bath-dressed TLS leads to a coherent ground
state |gs):é(|+>+|—>), which is characterized by a renor-

malized coherent level splitting K=(+|Ko|-). Physically,
the tunneling probability is reduced by the TLS-bath corre-
lation, as the overlap between the states |+) and |—) is sup-
pressed by the relative displacement of the oscillator wave

functions. Calculating K explicitly, and using the definition
of the spectral function to write the sum over bath modes as
an integral, we find that

K=K exp|:— awé_‘vj 4 w“_zdw:| . (6)

0

The integral in Eq. (6) is finite for super-ohmic baths, but
has an infrared divergence for all ohmic and sub-ohmic
baths. Therefore this approximation predicts that the TLS
always remains coherent for super-ohmic coupling, and is

always incoherent, i.e., K =0, for ohmic or sub-ohmic cou-
plings. For ohmic and sub-ohmic baths this result is known
to be incorrect.”!! This failure can be traced to the mistreat-
ment of the slow modes in the problem, for which the adia-
batic approximation is clearly not valid.

The DSS of Chen, Zhang, and Wu'? attempts to improve
on the adiabatic approximation by also allowing for spatial
distortion of the oscillator wave functions as they adiabati-
cally follow the TLS. As is discussed in Ref. 12, the distor-
tion of the oscillator wave functions can be described using
the generators of bosonic squeezed states, minimum uncer-
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tainty states commonly used in quantum optics.'® The effec-

tive displaced-squ?ezed ground state they propose is given
(IT+1010)
by |l/’s>=UAUS 3

Us= exp(— ; ia} - a;”)). (7)

where Uy is given by

The parameters 7y, describe the amount of spatial distor-
tion of the oscillator wave function, or alternatively, the
squeezing of the bosonic quadrature operators.'® Once deter-
mined, the squeezing parameters modify the renormalization
of the tunneling matrix element by altering the overlap inte-
gral of the adiabatically displaced oscillator states. This
modification can lead to qualitatively different physical re-

sults, including the possibility of finite K for ohmic and sub-
ohmic systems.

VARIATIONAL METHOD AND THE EFFECTIVE
HAMILTONIAN

We now use an adapted version of the variational method
of Silbey and Harris to calculate the effective tunneling ma-
trix element of the TLS in the DSS at T=0 K.6 First we make
a canonical transformation to generate the Hamiltonian in the

basis of the DSS, H= UAUSHsblrslerl’

A

H=-K,o0,-K_ o_+ > w;sinh(2y)
1
- giw;' + X waja[cosh?(2y) +sinh*(2)]
! 1
+ >, w/(a} +aj*)cosh(2y)sinh(27,), (8)
!

where the operators K, ,K_ obey
K. =K =Kexp[-2g0;'e(a;- a))]. 9)

In the adiabatic approximations discussed previously, the
TLS-bath interactions were eliminated to generate an effec-
tive noninteracting Hamiltonian characterized by a renormal-

ized tunneling matrix element K. We derive this form of

Hamiltonian, as a mean-field approximation to H, by intro-
ducing the expectation value of the tunneling operators

K=(0|K,|0Y=(0|K_|0), which is given by
K= Kexp[— 2> g,zwl_ze_‘wl} . (10)
!
Adding and subtracting Ko, to H, we then write the Hamil-
tonian as ﬁ:H0+ ‘7,

Hy=- IZa’X + E w; sinh(2y;) — 2 glzwl_1
1 1
+ >, wajacosh’(2y,) + sinh*(2y,)], (11)
1

‘7=i:I—H0. (12)

Following Silbey and Harris, we now compute the
Bogoliubov-Feynman bound on the free energy of the system
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Ap."” The true free energy A of the model is related to Ag
byl9

A <Ay, (13)

Ag== " InTrexp(- BHy) + (V). (14)

The angular brackets denote the thermal expectation value
calculated with respect to H, and computing the trace using

the simple eigenstates of H,, we find that (\7);10=O. The free
energy bound at 7=0 K is thus

Ag=—K+ 2, w;sinh(2y) - X gl (15)
1 l

We note here that, like all other variational studies in the
literature, this variational method does not consider the pos-

sibility that the separation of the Hamiltonian into H0+\7
may lead to divergent fluctuations if higher order perturba-
tions are calculated, i.e., that the variational state is an inap-
propriate starting point for analysis of this problem. This
matter will be discussed in a forthcoming study of these
variational methods.

The variational parameters 7y, are determined by minimiz-
ing Ay with respect to the set {y,}. We find that 7, satisfies

8[?g2
—t, (16)

Wy

SM=1+

and substituting this into Eq. (10), we find that K obeys the
self-consistent equation

24 8kg? |
E:Kexp —E(%)<1+—§1) ) (17)

1\ @ wy

The presence of 812 in two places in Eq. (17) means that
the renormalization of K is determined by both J(w) and g;.
In the literature,'>!%!5 g, is taken to have a general power-
law form g;,= go(%)n, where g is a constant. However, this
form for the coupling constants cannot be valid, as it does
not take into account the scaling of these constants with sys-
tem size. From Eq. (2) we see that J(w) is the product of gl2
at w=w; and the density of states per unit frequency. As the
density of states per unit frequency is proportional to N,
where A is the total number of bath oscillators, the micro-
scopic coupling constants have to scale as N2 in order to
ensure that the spectral function is well defined in the ther-
modynamic limit. This point is made very clear in the origin
review of Leggett et al.*

As the dependence of K on N is essential to our discus-
sion, we assume a general power-law form for the couplings
given by

2 n
aw(. w
2 (—l> : (18)

W,

where 7 is an exponent greater than zero.> We now use the
definition of the spectral function given in Eq. (2) to write
the sum in Eq. (17) as an integral over a continuous distri-
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bution of bath modes. In this limit, the self-consistent equa-
tion for K takes the form

~ @e J(w)wdw
K=Kexp| -2 R

o (1+ Sawi_"l?w”'3/\/"1)l/2

K=K exp[- I(K)]. (19)

Using Eq. (3), we substitute the power-law form for J(w)

into /(K), and rewrite it in dimensionless form,

X "2dx

1-s 1
I(K) = <&> f T 20)
) “« W, 0 [1 +A(K)xn—3]1/2 (

where we have defined the dimensionless numbers x= f and
(4

A(K)= f\%f Comparing Eq. (20) with Eq. (6), we can see that

the inclusion of squeezing effects introduces a square root
factor into the integrand which can have a profound effect on
the renormalization of K. The squeezing provides an effec-
tive infrared cutoff to the integral, and thus prevents the in-

frared divergence if n<2s+1 and A(K) is finite. Squeezing
effects can therefore potentially lead to coherent ground
states for ohmic and sub-ohmic baths, as well as sharp
coherent-incoherent transitions, as is described for the ohmic
case in Refs. 15 and 16.

However, as there can only be a true infrared divergence
in the thermodynamic limit, we must consider what happens
to the solutions of Eq. (19) as N/— 0. In this limit we see
that A—0, and thus the integral in Eq. (20) reverts to the
form given by the adiabatic approximation.*> Therefore for
ohmic and sub-ohmic baths, the DSS always leads to an
incoherent thermodynamic ground state, and there are no
possible transitions from coherent to incoherent states. Inter-
estingly, a recent variational study of squeezing effects in a
weakly interacting Bose-Einstein condensate also found that
the squeezing vanishes in the thermodynamic limit.?

We can also show that this conclusion is independent of
when we choose to take the thermodynamic limit by solving
the self-consistent equation at finite N and then sending
N— . At finite \ there can be no phase transition as there
will always be an infrared cutoff wy; arising from the finite
size of the system. This frequency scales inversely with the
linear dimensions of the system, and can be written
wr=N"3w,, where w, is a nonuniversal frequency which
depends on the density of oscillators in a given bath. The
squeezing effects provide an effective infrared cutoff at a
frequency of approximately w, A~ o A=1/G=) which van-
ishes faster than w;; as N becomes very large. Thus in the
limit of large N, the squeezing factor can be ignored in the
integrand of Eq. (20), and the renomalization is given by the
adiabatic formula of Eq. (6), but with an infrared cutoff at
- The renormalized matrix element is then given by

~ o [N\
K=Kexp[—1 ( : ) }, (21)

) [0

for the case of sub-ohmic coupling, and
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E=K<&)a, (22)

wp/\/l/3

for ohmic coupling.

As expected for finite A, the TLS retains its coherence for
arbitrary coupling strength, but this coherence always van-
ishes as AN/— . Due to the fact that the infrared divergence
is prevented by wyg rather than w A3~ the coherence does
not depend on the TLS-bath coupling, but the coherence is
still nonuniversal through its dependence on w,.

Although we find no evidence for squeezing at finite N,
squeezing effects can be very important for coupling to a
single mode,'3 or possibly a few discrete modes. For in-
stance, such squeezing effects have recently been predicted
for a TLS coupled to a single nanomechanical oscillator.?!

PHYSICAL REVIEW B 76, 201307(R) (2007)

In conclusion, when one uses the correct system-size scal-
ing of the TLS-bath couplings, analysis of the DSS shows
that all the squeezing and nonuniversal effects vanish in the
thermodynamical limit. In thermodynamic equilibrium, this
variational state thus reproduces the results of the basic adia-
batic approximation, and fails to capture the interesting tran-
sition physics of ohmic and sub-ohmic systems. Squeezing
effects are also found to be absent when one considers the
leading order finite-size corrections around the zero-order
adiabatic state.
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