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A nonplanar geometry for the quantum Hall �QH� effect is studied, whereby two quantum Hall systems are
joined at a sharp right angle. When both facets are at equal filling factor � the junction hosts a channel with
nonquantized conductance, dependent on �. The state is metallic at �=1/3, with conductance along the
junction increasing as the temperature T drops. At �=1,2 it is strongly insulating, and at �=3,4 shows only
weak T dependence. Upon applying a dc voltage bias along the junction, the differential conductance again
shows three different behaviors. Hartree calculations of the dispersion at the junction illustrate possible expla-
nations, and differences from planar QH structures are highlighted.
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Experimental studies of reduced dimensional conductors
are relevant for both nanoelectronics and basic physics. Con-
ductance in semiconductor nanowires1–4 is limited by disor-
der and interactions which can backscatter propagating
charge. In chiral one-dimensional �1D� systems like quantum
Hall �QH� edges5,6 charge propagates in only one direction
but can be tailored to backscatter and interact at one7 or
several8 pointlike constrictions. More about 1D systems
could be learned if two QH edges could be coupled to an
extended disorder potential to reconstitute a wire. In planar
geometries, however, lithographically defined edges9 have
soft confinement potentials and suffer from edge
reconstruction,10,11 and sharp confinement structures which
include a tunnel barrier12 spatially separate forward and re-
verse movers, reducing both interactions and backscattering.

Here we study a conducting state at the corner of two QH
systems joined at a 90° angle, where the corner geometry
itself serves as a sharp QH boundary for both facets. The
corner junction hosts a conducting channel which carries cur-
rent across the full macroscopic length of the sample, and
whose conductance is not quantized even though the facets
are in QH states. At different filling factor �, both metallic
and insulating conductance along the junction are observed
as a function of temperature and voltage. The length-
dependent conductance for some � suggests disorder-
mediated scattering. Most striking is the metallic behavior at
�=1/3 whereby conductance along the junction increases
with decreasing temperature. Such nonplanar confinement
structures are unconventional for the QH effect, and Hartree
calculations of a sharp corner illustrate the expected disper-
sions, clarifying possible origins of the observed phases.

The bent quantum well is fabricated by epitaxially over-
growing a GaAs/AlGaAs heterostructure on a cleaved
corner13 �Figs. 1�a� and 1�b��. A GaAs well layer is topped
with an Al0.7Ga0.3As barrier with modulation doping at a
distance d=120 nm, forming an L-shaped heterointerface
where electrons are confined. The facets have near-equal
densities n1=1.10�1011 cm−2 and n2=1.28�1011 cm−2,
and a junction length L=2 mm for sample A
�n1=1.11�1011 cm−2, n2=1.45�1011 cm−2, and
L=4.5 mm for sample B�,14 with a mobility estimated at

around ��5�105 cm2/V s. Additional samples showed the
same behavior which was reproducible in multiple
cooldowns.

A tilted magnetic field B at angle � can induce the QH
effect in both facets. At a conventional QH edge, the perpen-
dicular field component B� induces a mobility gap within
each facet, leaving chiral 1D edge channels to carry current
at the periphery5,6 �Fig. 2, inset�. The most prominent gapped
states occur when the filling factor �=hn /eB� is an integer
or odd-denominator fraction, and for the integer QH effect, �
also counts the number of 1D edge channels. This Rapid
Communication considers only equal � on both facets �for
other B orientations and � ratios, see Ref. 13�.

To understand what sort of edge states may exist at the
bent QH junction, we first calculate the dispersion at finite B
using the Hartree potential VH�x ,z� solved at B=0 for a sharp
corner:

� �p + eA�2

2m* + VH�x,z��� = E� . �1�

Figure 1�a� shows the Cartesian coordinates, and the
calculations assume equal charge density on both facets,
n1=n2=1�1011 cm−2, neglecting spin for simplicity. By
choosing the Landau gauge A= �0,Bx ,0�, momentum ky

is a good quantum number, and the dispersion Em�ky�
results from the eigenvalue problem of Eq. �1� for
�m,ky

=�m�x ,z�eikyy, where m is the Landau index.
Figure 1�c� shows the dispersion �black� versus projected

orbit center xc=kylB
2 for the lowest energy levels

�lB=�� /eB is the magnetic length.� For comparison, the dis-
persion of a right-facing sharp QH edge15 �blue� is shown for
a hard wall positioned at the vertical dotted blue line, mir-
rored by the red dispersion of a left-facing edge. These two
hard-wall-like dispersions arise because the sudden 90° bend
in the heterojunction serves as a hard wall for the incident
skipping orbits within the opposing facet. Unlike the planar
antiwire of Ref. 12, there is no tunnel barrier separating the
two systems, and the edge states from the two orthogonal
facets interpenetrate at the corner. The third subsystem is a
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deeply bound wire seen previously in Hartree calculations as
a 1D accumulation of charge at the corner13 and indicated
here by the green parabolic dispersion. This accumulation
wire adds two spin-degenerate 1D modes to the edge in each
direction and serves as an additional 1D channel for scatter-
ing. Together with the 1D edge modes from the QH systems,
the model thus predicts as many as N=�+2 1D modes in
each direction, whose dispersions anticross in the Hartree
solution.

The Hartree calculations apply to the experiment as long
as the corner curvature R at the junction is sharper than two
quantum lengths: the Fermi wavelength �F=70 nm and lB. In

Fig. 1�b�, R is determined within the resolution of the elec-
tron microscope to be R	10 nm.16 Because 2R	�F /2, a 1D
accumulation wire should exist at the junction with only a
single subband occupied. The condition R= lB determines the
field Bc=� /eR2=6.6 T below which the B=0 Hartree poten-
tial safely approximates the finite-B solution. The condition
B
Bc corresponds to ��1 in this sample, so the calcula-
tions should assist in understanding the integer QH regime.

We now experimentally investigate the bent QH junction.
Zero-resistance minima in the longitudinal resistance Rxx for
both facets in Fig. 2 �gray� identify the well-formed QH
states: �=1/3 ,2 /3 ,1 ,2 ,3 ,4 ,5 ,6. The conductance along the
junction is measured using the following four-point
geometry:17,18 a current is driven across the corner to ground
with an applied bias Vs, and the resultant voltage Vcc or Vcc� is
measured between two contacts, one on each facet �Fig. 2,
inset�. The cryostat maintained 30 mK base temperature up
to 18 T, rising to 60 mK at 20–23 T, and extreme care was
used in measuring resistance minima to eliminate artifacts
from the lock-in input impedance.19

FIG. 1. �Color� �a� Schematic of the bent quantum well sub-
jected to a quantizing B field. The electrons in the facets �blue and
red� and corner accumulation wire �green� are colored according to
their dispersions in �c�. �b� Scanning electron micrograph of a di-
agnostic structure with AlAs �dark� and GaAs �light� bands. The
corner curvature R is sharper than the 10 nm resolution limit.16 �c�
Hartree calculations of the dispersion at a sharp corner �black� from
Eq. �1�, overlaid with left- �blue� and right-facing �red� sharp QH
edge dispersions and an accumulation wire dispersion �green�. Ver-
tical dotted lines represent the effective hard walls seen by the edge
states.

FIG. 2. �Color� Sample A. Longitudinal resistance Rxx within
each facet �gray�, and cross-corner voltages Vcc �red� and Vcc�
�green�. Nonzero Vcc minima indicate finite conduction along the
junction. Inset: schematic of edge states and backscattering of cur-
rent along the junction.

FIG. 3. �Color� Bent QH junction conductance G vs �. �a�
�Sample A� Landau index m and spin quantum number � are indi-
cated above each integer � revealing a pairwise similarity. Circled �
are measured as a function of temperature and voltage in Figs. 4�a�
and 4�b�. �b� �Sample B� Length dependence of the bent QH junc-
tion conductance G. The L1=4.2 mm corner junction was first char-
acterized �red and green, dotted lines�, and then scribed to a length
L2=0.45 mm and remeasured �red and green, solid lines�. Note: for
the longer L1 length conductance to be at all measurable, elevated
temperatures were required for �=3,4.

FIG. 4. �Color� Sample A. �a� Temperature dependence of the
bent QH junction conductance G vs T at the � circled in Fig. 3.
�=1,2 are strongly insulating; �=3,4 weakly insulating; and the
fractional �=1/3 metallic. �b� The dc voltage dependence Vs of the
differential conductance dI /dV for the same �. For �=1/3 four
temperatures are shown, whose peak values at Vs=0 correspond to
the black squares in �a�. Power laws T−0.4 and V−0.4 plotted for
comparison �dotted line�.
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The cross-corner voltage Vcc is plotted in red and Vcc� in
green in Fig. 2. With the facets in a QH state, the current
along the junction can be calculated,20 Ijct= ��e2 /h�Vcc

= ��e2 /h�Vcc� . Whenever Rxx=0, Vcc=Vcc� represents current
conservation entering and exiting the junction. The conduc-
tance G along the junction is

G =
Ijct

Vs
= �

e2

h

Vcc

Vs
= �

e2

h

Vcc�

Vs
. �2�

The junction conductance for sample A is plotted versus �
in Fig. 3�a� for filling factors where Rxx=0. At 30 mK, the
junction does not conduct for either �=1 or 2. At �=3,4 ,5,
and 6 the junction conductance falls within the range 0.01–
0.04 of e2 /h. The fractional QH effect �=2/3 shows a simi-
lar conductance, while the conductance at �=1/3 at 60 mK
is slightly higher. In all cases, the small and nonquantized
junction conductance G�e2 /h indicates that charge is
strongly backscattered within the junction region.

In Fig. 3�a�, integer � are labeled with both the Landau
index m as well as spin �. In diffusive 1D systems, one
expects a stepwise increase in conductance with each addi-
tional mode, and in Fig. 3 such steps are observed to occur
pairwise in �: �=1,2 �m=0�; 3,4 �m=1�; and 5, 6 �m=2�.
The conductance thus behaves as though the Landau index
m, not �, counts the modes at the junction. A suppression of
spin splitting at this sharp QH junction could explain this
result. A similar lack of spin splitting at a sharp edge was
already experimentally observed in tunneling experiments of
sharp-edge systems15 and deserves further scrutiny.

The length dependence L of the conductance for sample B
is shown in Fig. 3�b�. At �=3,4, and 6, where the depen-
dence could be measured, the short junction �L2=0.45 mm,
solid lines� conducts better than the long junction
�L1=4.2 mm, dotted lines�, with conductance scaling ap-
proximately as G�1/L. If backscattering is distributed uni-
formly along the length of the junction, the 1D conductance
can be written G= �e2 /h�l0N /L where l0N is the mean free
path times the number of modes. These results suggests
mean free path l0N=7 �m ��=3,4� and l0N=27 �m ��=6�
at the temperatures shown, and provide evidence that the
charge backscattering is distributed along the junction.

The junction conductance was also measured as a func-
tion of temperature T and dc voltage bias Vs. Figure 4�a�
shows the T dependence of the conductance for �=1/3, 1, 2,
3, and 4. For each �, the same behavior occurs across the
entire minimum. With decreasing T, the conductivity along
the corner junction either decreases ��=1,2�, stays roughly
constant ��=3,4�, or increases ��=1/3�, illustrating what we
label as strongly insulating, weakly insulating or metallic
behavior, respectively. In Fig. 4�b�, the differential conduc-
tance dI /dV of the corner QH junction is plotted for the same
� as a function of Vs. The insulator dI /dV drops drastically
with reduced bias ��=1,2�, whereas the metallic state dI /dV
increases, forming a cusp at zero bias ��=1/3�. Varying the
temperature up to 170 mK while measuring this cusp shows
that most of the temperature dependence occurs at the small

biases. The weakly insulating phase ��=3,4� shows the
weakest bias dependence, with a mild dip at low bias indi-
cating an insulator.

Possible explanations of these phases must be consistent
with the experimentally measured sharp junction curvature
of Fig. 1�b�. We therefore base our discussion on the
dispersions of Fig. 1�c�. The explanation for the insulator at
�=1,2 is twofold. It can arise either from an anticrossing
band insulator at the corner or from localization of 1D states.
Gaps in the dispersion arise whenever the bands of Fig. 1�c�
anticross, and if the Fermi level sits within such a gap, the
junction would host a band insulator. At higher B relevant for
�=1,2, the anticrossing gaps from Eq. �1� increase, in con-
trast to planar barrier systems where the gaps vanish expo-
nentially at high B. The increased gaps due to the strong
coupling of the modes at the corner are likely to form a band
insulator at high B. Alternately, the �=1,2 insulator could
arise according to the scaling theory of localization for 1D
systems, since all 1D systems are expected to become insu-
lators in the presence of disorder21 and repulsive
interactions.22,23 The limited temperature range of the data in
Figs. 4�a� and 4�b� is insufficient to identify which of these
two mechanisms may be responsible, though we note that the
conductance does drop faster than a power law, consistent
with both explanations. We also note that the �=1,2 tem-
perature dependences perfectly overlap, suggesting a com-
mon mechanism.

The weakly insulating behavior at �=3,4 may be related
to weak localization. Examining the voltage dependence in
Fig. 4�b�, the zero-bias dip in dI /dV suggests a crossover
from a metal to a weakly insulating state below Vs�1 mV,
which would represent an energy scale for the weak local-
ization. A careful modeling of the multimode 1D conduc-
tance of Fig. 1�c� will be the first step toward identifying
these energy scales in the model, and promises to be an
interesting subject of future work.

Perhaps most intriguing is the metallic behavior at
�=1/3, with a junction conductance that increases as tem-
perature is lowered. At such high fields B
Bc, the Hartree
dispersions from Eq. �1� would have to be calculated self-
consistently at finite B, and must include interactions to cor-
rectly account for the Laughlin ground state in the facets.
Though such calculations are beyond the scope of this paper,
qualitatively one expects a mixing of the accumulation wire
magnetosubband dispersion for electrons25 with the frac-
tional QH edge dispersions for quasiparticles.6

Looking at the �=1/3 voltage bias curves in Fig. 4, it is
clear that the conductance is strongly temperature dependent
at extremely low temperatures. The likeliest candidate for
such low-energy scattering is electron-electron interactions.
As discussed in Refs. 17 and 18, coupled fractional QH
channels can result in such metallic behavior, as long as elec-
trons �not fractional quasiparticles� backscatter the charge
between the counterpropagating �=1/3 edges, creating an
“antiwire.” The T dependence is predicted to be metallic
since low-temperature correlations at �=1/3 suppress elec-
tron tunneling and therefore backscattering. The conductance
is predicted to behave as a power law G�T��T�, and the
data of Fig. 4 would fit an exponent �=−0.4, corresponding
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to the Luttinger parameter g=1−� /2=1.2 after Ref. 18. We
note that the same exponent occurs in the voltage depen-
dence dI /dV�V� �dashed line, Figs. 4�a� and 4�b��. If this
explanation is relevant, it would appear that the accumula-
tion wire effectively functions as a �=1 “vacuum” for coun-
terpropagating fractional quasiparticles, constituting a
1/3 :1 :1 /3 junction where only electrons can tunnel and
backscatter charge. We remark that the planar antiwire ge-
ometry originally suggested in Refs. 17 and 18 and imple-
mented in Ref. 12 actually prohibits the desired strong cou-
pling of fractional QH edges, since the intervening barrier
exponentially suppresses tunneling at high B.24 Only in the
nonplanar geometry introduced here can counterpropagating
edge modes overlap sufficiently in real space that strong
backscattering in the high-B limit may occur.

We note that the sharp confinement potential will play a
decisive role in modeling the junction conductance. Experi-
mentally, sharp edge potentials have been shown to eliminate
the incompressible strips characteristic of soft QH edges.15

Recent theory has been able to describe conduction in this

sharp limit where these incompressible strips are expected to
be absent.26

In conclusion, we have characterized a new low-
dimensional system, the bent QH junction. Hartree calcula-
tions illustrate the dispersion in the junction, and show how
nonplanar confinement differs from planar. The temperature
and voltage dependence of the junction conductivity change
with �, revealing metallic, weakly insulating, and strongly
insulating states. The length dependence reveals the influ-
ence of disorder. The observation of metallic behavior at a
sharp junction may highlight the importance of interactions.
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