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Application of the magnetic field parallel to the plane of the graphene sheet leads to the formation of
electron- and holelike Fermi surfaces. Such situation is shown to be unstable with respect to the formation of
an excitonic condensate even for an arbitrary weak magnetic field and interaction strength. At temperatures
lower than the mean-field temperature, the order parameter amplitude is formed. The order parameter itself is
a U�2� matrix allowing for the combined rotations in the spin and valley spaces. These rotations smoothly
interpolate between site and bond centered spin-density waves and spin-flux states. The trigonal warping,
short-range interactions, and the three-particle umklapp processes freeze some degrees of freedom at tempera-
tures much smaller than the mean-field transition temperature, and make either Berezinskii-Kosterlitz-Thouless
�Sov. Phys. JETP 32, 493 �1971�; J. Phys. C 5, L124 �1972�; 6, 1181 �1973�� �driven either by vortices or
half-vortices� or Ising type transitions possible. Strong logarithmic renormalization for the coupling constants
of these terms by the Coulomb interaction is calculated within one-loop renormalization group. It is found that
in the presence of the Coulomb interaction, some short-range interaction terms become much greater than one
might expect from the naive dimensionality counting.
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I. INTRODUCTION

The fabrication of graphene �graphite monolayers1,2� and
the subsequent observation of the integer quantum Hall3,4 in
this layer produced a splash of theoretical and experimental
activity.

Though the transport properties of graphene are con-
trolled by the impurities, it is still worthwhile to understand
the phase diagram of the completely clean graphene.

The main purpose of this paper is to point out that an
application of a magnetic field in the graphene plane facili-
tates a spontaneous symmetry breaking. Though the dimen-
sionless Coulomb coupling e2 /�v in graphene is large at
large energies, it undergoes strong downward renormaliza-
tion at small energies so that the analysis for weak magnetic
fields can be safely carried out without resorting to any un-
controllable approximations.5

To achieve this goal and understand the effects of the
naively dimensionally irrelevant terms �such as trigonal
warping, short-range part of the interaction, and umklapp
terms�, we considered their logarithmic renormalization by
the long-range Coulomb interaction and found some unex-
pected results. Earlier, the effect of the Coulomb interaction
was considered for the isotropic terms only.6–8

The remainder of the paper is organized as follows. In
Sec. II, we discuss symmetries of a two-dimensional
graphene sheet and write down its low-energy Hamiltonian.
In Sec. III, we describe physical reasons for the instability
and suggest the order parameter. In Sec. IV, we write down
the Landau-Ginzburg free energy functional, discuss thermal
fluctuations, and describe the phase diagram. Section V is
devoted to the analysis of the microscopics: we study the
energy dependence of the effective coupling and renormal-
ization of the leading anisotropies in graphene. Section VI

contains the summary and conclusions. Some auxiliary ma-
terials are relegated into two appendixes.

II. SYMMETRIES OF THE SYSTEM AND THE MODEL
LOW-ENERGY HAMILTONIAN

The purpose of this section is to write down the low-
energy field theory to describe the electron-electron interac-
tion in graphene. Our consideration will be based on the
discrete symmetries of the lattice only, and we will not ap-
peal to any microscopic model.9

The effective low-energy field theory of graphene is con-
structed by the factorization of the original fermionic fields
���r ;�� ,�= ↑ ,↓, in terms of the oscillatory Bloch functions
corresponding to the K and K� points of the Brillouin zone
�see Fig. 1�,
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FIG. 1. �a� The hexagonal lattice of graphene with the shortest
translation vectors a�1,2,3. Circles show the positions of the maxima
of the absolute values of Bloch functions uK

A,B�r�. Their relative
phases are shown, �=exp�i2� /3�. �b� The first Brillouin zone and

the shortest translation vectors of the reciprocal lattice b�1,2,3. Two
nonequivalent Dirac cones are formed in the vicinity of points K
and K�.

PHYSICAL REVIEW B 76, 195415 �2007�

1098-0121/2007/76�19�/195415�27� ©2007 The American Physical Society195415-1

http://dx.doi.org/10.1103/PhysRevB.76.195415


���r;�� = �� ��r,��*u��r� , �2.1�

where ���r ,�� is the four component fermionic field which
can vary only over distances much larger than the lattice
constant, and u��r� is the four-dimensional vector of the
Bloch functions whose structure is described below.

Consider the Bloch functions (uA�r�K ,uB�r�K) forming a
basis for a two-dimensional irreducible representation of the
wave-vector symmetry group C3v. �In the tight-binding pic-
ture, those Bloch functions are peaked on the corresponding
sublattices; see Fig. 1�. The overall point symmetry group is
C6v, and thus, the wave functions uK�

A = �uK
A�* and uK�

B = �uK
B�*

also have to be included as points K� and K are connected to
each other by C2 rotation and by time reversal symmetry.
They are conveniently joined in a vector10

u�T = „�uK
A ;uK

B�AB�uK�
B ;− uK�

A �AB…KK�, �2.2�

forming the basis of the four-dimensional irreducible repre-
sentation of the planar symmetry group of graphene
� j1,j2

C6
vtj1a�1+j2a�2

, with the normalization condition

�
uc

dru��r� · u�*�r� = 4�a�1	 a�2� . �2.3�

Hereinafter, �uc denotes integration within the unit cell.
Thus, the fermionic field describing all relevant degrees

of freedom, �T= ��↑ ,�↓�, has eight components. This eight-
dimensional space is represented �see Eq. �2.2�� as a direct
product of the valley �KK��, the sublattice �AB�, and the spin
�s� two-dimensional spaces. We will use standard 2	2 Pauli
matrices �̂x,y,z, with the corresponding subscripts to param-
etrize all 8	8 matrices describing the Hamiltonian and the
symmetry properties.

The partition function describing the low-energy proper-
ties of the interacting electrons in a clean graphene is given
by ��=1�

Z =� D�†D� exp	− �
0

1/T

d�� dr
�†��

��
+ H��†,���� .

�2.4�

The Hamiltonian of the system has to satisfy all the dis-
crete symmetries of the clean graphene, and to remain invari-
ant with respect to transformations of the fields generated by
the rotation C3, two reflections �v

x,y, and translations �t�:

C3: ��r� → − exp

Cr	 � +
i

2
�̂z����r� , �2.5a�

�v
x: ��x,y� → �̂x�̂z��x,− y� , �2.5b�

�v
y: ��x,y� → �̂z�̂x��− x,y� , �2.5c�

t: ��r� → exp�i
t�̂z���r� , �2.5d�

where 
C,t= ±2� /3, and we introduce the matrices

�̂ = �̂
AB

� 1KK� � 1s,

�̂ = 1AB
� �̂

KK� � 1s,

Ŝ = 1AB
� 1KK� � �̂

s , �2.6�

where =x, y, and z.
Continuous U�1� rotations in the spin space are given by

U�1�: � → exp�i
sŜz/2�� , �2.7�

where we choose the z direction of the spin to be along the
magnetic field.

Time reversal symmetry for the parametrization �2.2� ac-
quires a natural form

T: ���� → �̂y
AB

� �̂y
KK� � �̂y

s�*�− ��, B → − B ,

�2.8�

where B is the magnetic field acting, in our case, only on the
electron spin.

Having listed the important symmetries of the problem,
we present the Hamiltonian in the form

H = HD + HC + Hw + Hsr + Hu. �2.9�

The first term describes the Dirac-type kinetic energy and
the Zeeman energy

HD = − iv�rc��† � · ��̂� + B�†Ŝz� , �2.10�

where �= ��x ,�y�, ��̂ is defined in Eq. �2.6�, the Bohr mag-
neton and the g factor are included into the definition of B,
and rc is the minimal linear scale present in the problem. As
was pointed out in Ref. 6 �see also Refs. 7 and 8�, the veloc-
ity v�rc� becomes scale dependent due to the Coulomb inter-
action

HC =
e2

2
� dr1

��†�r���r����†�r1���r1��
�r − r1�

, �2.11�

whose strength e2 cannot be renormalized as it is the only
nonlocal term in the system.

Though the terms described by Eqs. �2.10� and �2.11� are
the most important ones on dimensional grounds, they are
not sufficient to define the problem completely since their
symmetries are much higher:

C�: ��r� → exp

Cr	 � +
i

2
�̂z����r� , �2.12a�

�v: ��x,y� → �̂x��x,− y� , �2.12b�

U�1� � SU�2� � SU�2�: ��r� → Û�±,
s;n1,2���r�,

Û = exp
 i−n2 · �̂
�

Ŝz

2
�exp
 i
sŜz

2
�exp
 i+n1 · �̂

�

2
�

�2.12c�

than it is allowed by Eqs. �2.5a�, �2.5b�, �2.5c�, �2.5d�, and
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�2.6�–�2.8�. Here, 
· are the continuous real variables and
n1,2 are three-dimensional unit vectors.

The terms lowering the symmetry of the Hamiltonian can
appear both in the kinetic energy and in the interaction
Hamiltonian. For instance, the trigonal warping of the one-
electron spectrum is given by

Hw = �w�rc�rcv�rc��†��+
2�̂+�̂z + H.c.�� , �2.13�

where �+��x+ i�y and �̂+���̂x+ i�̂y� /2. Dimensionless cou-
pling �w�rc� is of the order of unity at rc of the order of the
lattice constant, and scales down at larger distances.

In writing down the short-range interaction, one can ne-
glect the effect of the Zeeman term on the scale of the order
of the lattice constant. Thus, the SU�2� invariance in the spin
space must be preserved and

2

rcv�rc�
Hsr = �

,�=x,y,z
F��rc���†�����2

+ �
=x,y,x

�J
��rc���†���2 + J

��rc���†���2� .

�2.14a�

�All the other short-range spin rotational invariant interaction
terms can be reduced to those of Eqs. �2.14a� and �2.14b� by

using the identity 2��1�2
��3�4

=��1�4
��2�3

+��̂�1�4
��̂�2�3

�.
The symmetries �2.5� immediately yield the relation

Fzz = 2F−
z + F+

z ,

Fxz = Fyz = − F−
z + F+

z ,

Fzx = Fzy = 2F−
� + F+

�,

Fxx = Fyy = Fxy = Fyx = − F−
� + F+

�,

Jz
�,� = 2J−

�,� + J+
�,�,

Jx
�,� = Jy

�,� = − J−
�,� + J+

�,�. �2.14b�

The reason for introducing F± and J± couplings will become
clear later in Sec. V. As for the numerical values of the cou-
plings, a very crude estimate at the scale rc of the order of
the lattice constants can be obtained by calculating the ma-
trix elements of the bare interaction potential:

F� =  e2

4v�rc�
� � dr1�

uc

dr2���r1����r2�
rc�a�1	 a�2��r1 − r2�

,

���r� � „u��r�†���u��r�… , �2.15�

and J�,�=0. �Obtaining finite values of J�,� requires virtual
processes at least of the second order.� As ���r� contains
only oscillatory components �see Eqs. �2.2� and �2.6��, the
integral in Eq. �2.15� is determined only by the distances of
the order of the lattice constant. Thus, the parameters are
extremely sensitive to the details at short distances and
should be treated as entries for the low-energy theory.

Though the warping and the short-range interaction
�2.13�, �2.14a�, and �2.14b� lift most of the spurious symme-
tries �2.12�, the extra continuous U�1� symmetry is still
present, corresponding to Eq. �2.5d� with continuous 
 t. It is
related to the conservation of quasimomentum, which is vio-
lated only by the umklapp processes. The lowest order term
satisfying the symmetries �2.5� has the form

Hu =
rc

3v�rc�
6 �

��

F���rc����†��̂+����†���̂+��

	��†���̂+�� + H.c.� , �2.16�

where �̂+���̂x+ i�̂y� /2, F�� is symmetric with respect to
permutations of the indices, and

Fxyz = 0,

Fzzz = 2F− + F+,

Fzxx = Fzyy = − F− + F+. �2.17�

Finally, we notice that all the listed terms �2.10�–�2.13�,
�2.14a�, �2.14b�, �2.15�, and �2.16� remain invariant under
the electron-hole �e-h� transformation

e-h: � → �̂zŜx�
*. �2.18�

This electron-hole correspondence will be important for the
discussion of the instability arising in the in-plane magnetic
field, which we will discuss now. �The leading irrelevant
term lifting the e-h symmetry ���†�� does not break any
other interesting symmetries and will not be important for
our purposes.�

III. PHYSICAL REASONS FOR THE INSTABILITY AND
THE ORDER PARAMETER

Having established the form of the Hamiltonian consistent
with the symmetries of the lattice, we turn to the qualitative
discussion of the instability and determine the target space of
the order parameter. The symmetry arguments will allow us
to do this without any actual calculation.

Assume that no symmetries are broken at B=0. Then, the
low lying excitations are fermionic electron- and holelike
excitations with spin 1/2 and the dispersion ��k�=v��k���k�,
as shown in Fig. 2�a�. The magnetic field parallel to the plane
acts only on the spin, and hence, shifts the spectrum of the
excitations, making the creation of the Fermi seas for the
electrons and holes energetically favorable �Fig. 2�b��. As the
electrons and holes have opposite charges, the Coulomb in-
teraction makes them attract each other. On the other hand,
the existence of the finite Fermi surface leads to the Cooper-
like instability first discovered in Ref. 11. This instability
occurs even for an arbitrary weak interaction potential.

As a result, gap �0�T� is formed in the one-particle spec-
trum �Fig. 2�c��. The resulting state is an incompressible ex-
citonic insulator with gapped charge excitations. The neutral
excitations, however, are still quite interesting.

As the electrons and holes can be paired with different
phases, and different valley indices can be involved, the re-
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sulting order parameter has a nontrivial matrix structure,
which will be discussed now. As the exciton condensate is
created by pairing of an electron and a hole with opposite
momenta, the order parameter � has to be of the form
��e�h�. On the other hand, the electron-hole transformation
is defined in Eq. �2.18�. Thus, we obtain

�̂ = �� � �†� = �0�T��̂zŜx. �3.1�

Here, � is an 8	8 matrix acting in the space discussed after

Eq. �2.3�, and the �̂z and Ŝx are defined in Eq. �2.6�.
If only symmetric terms �2.10� and �2.11� were present,

the energy of the system would be invariant with respect to

the replacement �→ Û�Û†, where Û is given by Eq. �2.12c�.
Using Eqs. �3.1� and �2.12c�, we obtain the most general
form of the matrix order parameter

�̂ = �0�T��̂z
AB

� Q̂ , �3.2a�

where Q̂ is the 4	4 Hermitian matrix acting in spin and
valley spaces subjected to the following constraints:

Q̂ = Q̂†;Q̂2 = 1̂KK� � 1̂AB:�1KK� � �̂z
s�Q̂�1KK� � �̂z

s� = − Q̂ .

�3.2b�

The corresponding mean-field single particle spectrum con-
sists of four branches �see Fig. 2�c��:

E±
2 = ���k� ± B�2 + ���2. �3.2c�

In terms of the angles in Eq. �2.12c�, the Q matrix can be
rewritten as �− ,n2→ ,n�

Q̂ = 1̂KK� � �e1�̂
�s�cos  + �n�̂�KK�� � �e2�̂

�s�sin  ,

�3.2d�

where e1,2 are two mutually orthogonal unit vectors in the
plane perpendicular to the spin quantization axis e1
= �cos 
s , sin 
s ,0� and e2= �−sin 
s , cos 
s ,0�.

Another way to parametrize Q from Eq. �3.2b� is to write

Q̂ =  0 V̂

V̂† 0
�

s

, V̂†V̂ = 1KK�, �3.2e�

where V̂ is a unitary 2	2 matrix in the valley space. There-
fore, the order parameter is described by U�2�=SO�3�
	U�1� matrices.

Before writing down the effective action or the free en-
ergy functional, it is better to explain the physical meaning
of different angles in Eq. �3.2d�. To do so we will introduce
the spin density and the “spin flux,” which, in terms of the
original �not smooth� fermionic fields, have the form

s��r� =
1

2
���

†�r������
s
����r�� ,

�� �r� =
i

9 �
j1,j2=1

3

sin
2�j12

3
���

†�r + a� j2
������

s
����r + a� j1

�� ,

�3.3�

where the translation vectors a�1,2,3 are shown in Fig. 1, and
j12= j1− j2.

Using Eqs. �2.1�, �3.1�, �3.2a�, �3.2b�, �3.2c�, �3.2d�, and
�3.2e�, we find

s��r� � e2 sin �nz��uA�r��2 − �uB�r��2� + 2nx Re uA�r�uB�r�

+ 2ny Im uA�r�uB�r�� . �3.4a�

The corresponding spin-density configurations consistent
with the phase factors of the Bloch function of Figs. 1 are
shown in Fig. 3�a�–3�c�. The configuration of =� /2, nz
=1 corresponds to the site centered spin-density wave. It
does not change the periodicity of the original lattice, so the
Bragg peaks in the neutron scattering will remain at the same

positions q� = j1b�1+ j2b�2, and the ordering will affect only
their internal structure. On the other hand, =� /2, nz=0
�see Fig. 3�b� and 3�c�� corresponds to the link centered den-
sity waves. It is easy to see that in that case the unit cell is
tripled so that additional Bragg peaks at the positions q�

= ±K+ j1b�1+ j2b�2 will emerge. Rotation in nx-ny plane corre-
sponds to a smooth transition between Figs. 3�b� and 3�c�

a)

k

ε e K,K’

k

ε h K,K’

� � � �
� � � �
� � � �
� � � �

ε
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FIG. 2. The mechanism of instability in parallel magnetic field,
B. �a� The spectra of the one-particle excitation at B=0. �b� The
shift of the spectra by finite B and the formation of the electron and
hole Fermi seas. �c� The attractive Coulomb interaction between
electrons and holes leads to the instability toward the formation of
the excitonic condensate �Ref. 11�, creating a gap in the one particle
spectrum.
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configurations. Such a smooth rotation can be also under-
stood as a continuous sliding of the superimposed spin-
density wave with respect to the crystal lattice.

The spin flux �Fig. 3�d�� is maximal at =0 and �,

�� �r� � e1 cos ��uA�r��2 − �uB�r��2� . �3.4b�

Unfortunately, it is not coupled to any obvious physical field,
which makes its direct experimental observation unlikely.

IV. FREE ENERGY, THERMAL FLUCTUATIONS, AND
PHASE DIAGRAM

Order parameter �3.2a�, �3.2b�, �3.2c�, �3.2d�, and �3.2e�
allows for smooth rotations between all the states of Fig. 3,
and thus, is subjected to strong thermal fluctuations. Such
fluctuations are governed by the Landau free energy func-
tional, which we are about to describe.

First, we introduce a new definition of � and S matrices
�Eq. �2.6�� as

�̂ = �̂
KK� � 1s, Ŝ = 1KK� � �̂

s , �4.1�

where =x, y, and z, and �̂±���̂x± i�̂y� /2. This modifica-
tion is convenient because there are no gapless rotations pos-
sible in the sublattice space after the value of the mean-field
order parameter is established.

The only possible form for the free energy compatible
with the symmetries of the system �2.5� is given by

Z ��
v

. . . �Nv� DQ̂ exp
−
1

T
� d2rF�Q̂�� ,

F = F� + F� + F�, �4.2�

where �v . . .�Nv stands for a summation over the topological
defects �see Sec. IV A� and � denotes a fugacity of such
defects. A description of the thermodynamics in terms of
matrix Q subject to hard constraints �3.2b� is valid only at
distances larger than the spatial scale

�MF �
v�RB�
�0�T�

, �4.3�

where the scale dependence of the velocity and the length RB
is defined by microscopic theory �see Sec. V D�.

The dominant term in the free energy,

F� =
1

8
	�K�r0�Tr���Q̂�2 +

1

4
��s�r0� − �K�r0��

	�− i Tr ŜzQ̂��Q̂�2� �4.4a�

�new notation is defined in Eq. �4.1��, has a symmetry which
is higher than the symmetry of the original problem �see Eq.
�2.12��. Hereinafter, we will imply the summation over the
repeating index �=x and y.

To facilitate further analysis, we rewrite Eq. �4.4a� using
parametrization �3.2e�

(a)

(b)

(c)

(d)

FIG. 3. Sketches of the spin density from Eq. �3.4a�, for 
=� /2 and �a� nz=1 �N4=1 in the notation of Eq. �4.5��, �b� nx=1
�N2=1�, and �c� ny =1 �N3=1�. Dashed arrowed lines show the
primitive translation vectors of the resulting superstructure. Here,
we choose e2= �1,0 ,0� and e1= �0,0 ,1�. Notice that the coordinate
frame for the spin is rotated with respect to the spatial frame �axis x
for the spin is the direction perpendicular to the plane and y is in
plane whose axis is perpendicular to the magnetic field�. �d� Lines

of the constant spin flux �� �r� ·e1 �dashed lines� from Eq. �3.4b�,
=0 �N1=1�. Those lines can be also thought of as the spin current
lines.
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F� =
1

4
	�K�r0�Tr���V̂†��V̂� +

1

2
��s�r0� − �K�r0��

	�− i Tr V̂†��V̂�2� , �4.4b�

where V̂ is a unitary 2	2 matrix. Further investigation of
free energy �4.4a� is postponed until Sec. IV A.

The remaining contributions, though may be small, are
crucial because they remove artificial symmetries of the sys-
tem. The following terms suppress SU�2� rotations in the
valley space:

F� =
1

8r0
2 �
=x,y,z

��r0�Tr Q̂�̂Q̂�̂, �x = �y = ��,

�4.4c�

F� =
��r0�
16r0

2 �
,�=x,y

Tr Q̂�̂�Q̂�̂�Q̂�̂Q̂�̂. �4.4d�

Finally, the term

F� =
��r0�
4r0

2 Tr��Q̂�̂+�6 + �Q̂�̂−�6� �4.4e�

generated by the umklapp processes reduces the U�1� rota-
tions in the valley space to discrete rotations �2.5d�.

A discussion of the role played by anisotropic terms �4.4c�
and �4.4e� will be continued in Sec. IV B.

A. Isotropic part of the action and topological defects

The sum over discrete topological defects can be replaced
by a path integral over continuous variables—dual fields.
Introduction of dual fields becomes more transparent when
one uses the following parametrization of the order param-
eter �3.2e�:

V = ei
sg, g = N1 + iN4 iN2 + N3

iN2 − N3 N1 − iN4
� , �4.5�

where g is an SU�2� matrix and �i=1
4 Ni

2=1. Then free energy
density �4.4b� acquires the form

F� =
�K

2 �
i=1

4

���Ni�2 +
�s

2
���
s�2. �4.6�

So it appears that the U�1� and SU�2� sectors of the theory
are decoupled. This decoupling, however, breaks down when
one takes into account the topological defects. As we shall
demonstrate, the non-Abelian sector changes the selection
rules for the vortex winding numbers.

As usual for compact theories, the free energy density
expression obtained in the continuous limit has to be supple-
mented by topological defects to take into account the be-
havior of the order parameter in the vicinity of some singular

points r j, where it vanishes: Q̂2�r j�=0; V̂�r j�V̂†�r j�=0. The
absolute value of the order parameter is established at the
distances of the order of �MF �see Eq. �4.3�� and at large
distances, the defect is characterized by a contour integral
around it.

The topological defects are characterized by the winding
number

q =
i

4�
� dx� Tr�V+��V� . �4.7�

The most standard approach would be to keep the g matrix in
Eq. �4.5� single valued and nonsingular, and create
2�-vortex configuration in U�1� field 
s:

ei
s =
�x − xi� ± i�y − yi�

��x − xi�2 + �y − yi�2
,

1

2�
� dx���
s =

i

4�
� dx� Tr�V+��V� = ± 1. �4.8�

If only such excitations were present, U�1� and SU�2� sectors
would remain decoupled and the standard Berezinskii-
Kosterlitz-Thouless �BKT� transition12,13 would occur in the
U�1� sector.

There are, however, other configurations which are ener-
getically more profitable than those of Eq. �4.8�. Indeed, con-
sider the configuration of the form

V̂1/2 = ein·�̂/2� �x − xi� ± i�y − yi�
��x − xi�2 + �y − yi�2

0

0 1
�e−in·�̂/2, �4.9�

where n�r� is a smooth three-dimensional unit vector
�i=1

3 ni
2=1, and �̂i are the Pauli matrices.

Rewriting Eq. �4.9� in the form of Eq. �4.5�, we obtain,
instead of Eq. �4.8�,

q =
i

4�
� dx� Tr�V+��V� ±

1

2
, �4.10�

i.e., configuration �4.9� corresponds to a � or half-vortex in
the U�1� sector glued with a half-vortex in the SU�2� sector.
Since the stiffness in the SU�2� sector vanishes at large dis-
tances, the change of sign of g in large defects does not
require energy. So in the absence of anisotropy, the main
effect of the SU�2� sector is the change in selection rules of
the vortices reflected in their topological invariant �4.7�.

To anticipate the role of the vortex and half-vortex con-
figurations in the thermodynamic properties of the system,
we evaluate their energies. Substituting configurations �4.8�
and �4.9� into Eqs. �4.4b� and �4.6�, we find

E1/2 = 1

2
�2

���s + �K�ln L

�MF
� ,

E1 = ��s ln L

�MF
� , �4.11�

where L is the system size. As �K��s, one can see that the
half-vortices are, in fact, the main configurations responsible
for the disordering of the U�1� sector, which we will, in due
course, incorporate into the corresponding renormalization
group �RG� equations.

To treat the contributions of the topological configurations
�4.8� and �4.10� systematically, we rewrite the partition func-
tion �4.2� �still neglecting the anisotropic parts� in the form
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Z �� DV̂Dĥ exp
−
1

T
� d2rF�V̂,V̂†, ĥ�� ,

F

T
=

1

4
Tr	�K

T
�xV̂

†�xV̂ +
T

�K
��xĥ�2 + 2V̂†�yV̂�xĥ�

+
��s − �K�

8T
�− i Tr V̂†�xV̂�2 + 
 T

8�s
−

T

8�K
��Tr �xĥ�2

−
2�1

r0
2 cos 2�hs −

2�1/2

r0
2

sin ��h� �

��h� �
cos �hs,

V̂V̂† = 1 ,

ĥ = ĥ† = hs1
s + h� · ��̂s, �4.12�

where 2	2 matrix ĥ is the dual field, �̂x,y,z
s are the Pauli

matrices in the spin space, and �1 and �1/2 are fugacities for
the vortices and half-vortices, respectively. Though it may
appear that Eq. �4.12� breaks the rotational symmetry, all the
physical correlation functions calculated using Eq. �4.12� are
rotationally symmetric. The derivation of Eq. �4.12� is rel-
egated to Appendix A.

Summing up the leading logarithmic series within the first
loop renormalization group scheme, we find the following
equations for the corresponding fugacities:

d�1/2

d ln r0
= 
2 −  1

22��T ��K + �s���1/2. �4.13a�

They are valid for �1/2 ,��1 and also �K T.
The fugacity for the conventional vortices evolves as

d�1

d ln r0
= 2 −

��s

T
��1 �4.13b�

for �1�1. Equations �4.13a� and �4.13b� are analogous for
the simple estimate of the energy of the defects �4.11�; how-
ever, they allow for a renormalization of the stiffness �s
caused by the bound pairs of �half�vortices and �half�antivor-
tices, and of the stiffness �K caused by the bound pairs of
half-vortices and anti-half-vortices, as well as by thermal
fluctuations of the order parameter. The latter renormaliza-
tion, for �1/2 ,��1 and �K T, can be represented in the
form

d�K

d ln r0
= −

T

�
− �1/2

2 �K
�1/2���K,�s� , �4.14a�

d�s

d ln r0
= − �1/2

2 �s
�1/2���K,�s� − �1

2�s
�1���s� . �4.14b�

Functions � in Eqs. �4.14a� and �4.14b� are difficult to obtain
explicitly for arbitrary stiffnesses. However, such forms will
not be necessary for further consideration.

As the initial fugacities of the half-vortices �1/2 are not
much smaller than the fugacities for the vortices �1, the lat-
ter ones being less relevant can be neglected in the descrip-
tion of the phase transition. In the limit of �1/2�1, one can

also neglect the half-vortices in the renormalization of �K.
Then, from Eq. �4.14a�, we obtain the following equations:

�K�r0� =
T

�
ln
�K

r0
, �K = �MF exp����MF�

T
� , �4.15�

for �MF!r0!�K. At r0��K, the perturbative renormalization
group is no longer valid, and the SU�2� sector enters into the
strongly disordered regime. Hence, length �K is the correla-
tion length of the order parameter.

At r0 �K, the non-Abelian stiffness vanishes: �K→0. We
can then use Eq. �4.13a� to obtain the value of the Kosterlitz
jump at the phase transition:

��s�TKT − 0�
T

= 2 � 22. �4.16a�

This value is modified in comparison with the pure U�1�
model

��s�TKT − 0�
T

= 2 �4.16b�

due to the presence of half-vortices and the SU�2� sector
being disordered.

Assuming that �1/2��MF��1, we can also use Eq. �4.16a�
to estimate TKT:

��s�TKT�
2TKT

= 22 + O��1/2��MF�� . �4.17�

In Sec. V, we will use Eq. �4.17� to relate TKT to the mean-
field transition temperature TMF.

The main conclusions of these sections are the following:
�i� spin U�1� and valley SU�2� rotations are coupled to each
other in the presence of half-vortices, and �ii� the U�1� sector
acquires the algebraic order at T"TKT, whereas the isotropic
version of the valley rotations always remain disordered.

The purpose of the next two sections is to analyze how
the disorder in the valley space is affected when the artificial
symmetries are lifted by the leading anisotropies.

B. Effect of weak anisotropies

Let us assume that the BKT transition in the U�1� sector
has already occurred so that the half-vortices are not rel-
evant, and SU�2� sector is decoupled. �This assumption will
be lifted in Sec. IV C.� Then the thermal fluctuations lead to
the renormalization of the anisotropies in the same fashion as
the first term in the right-hand side of Eq. �4.14a�. In the first
loop approximation, we find

d�
d ln r0

= 
2 −
2T

��K
��,

d�

d ln r0
= 
2 −

8T

��K
�� ,

d�

d ln r0
= 
2 −

12T

��K
�� . �4.18�
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Solving Eq. �4.18� with the help of Eq. �4.15�, we obtain

��r0� = ���MF� r0

�MF
�2� ln

�K

r0

ln
�K

�MF

�
2

,

��r0� = ���MF� r0

�MF
�2� ln

�K

r0

ln
�K

�MF

�
8

,

��r0� = ���MF� r0

�MF
�2� ln

�K

r0

ln
�K

�MF

�
12

. �4.19�

These equations are valid for r0!�K.
Thus, the effect of the anisotropies is determined by their

value at distances of the order of �K. If they are still small,
i.e.,

���MF�! T �MF

�K
�2ln

�K

�MF
�2

,

���MF�! T �MF

�K
�2ln

�K

�MF
�8

,

���MF�! T �MF

�K
�2ln

�K

�MF
�12

, �4.20�

then the SU�2� sector remains disordered and the conclusions
of the previous section remain qualitatively valid. If, how-
ever, one or several conditions �4.20� are violated, the
anisotropies are important in determining the phase diagram
of the system.

The phase diagram obviously depends on the relative val-
ues of the coupling constants �, �, and � and their signs. The
latter are determined by the microscopic coupling constants
�2.13�, �2.14a�, �2.14b�, �2.15�, and �2.16� �see also Sec. V�.
Since such couplings cannot be established on merely sym-
metric grounds, we will analyze the phase diagrams in the
most possible general case and then construct the “physical”
phase diagram in Sec. V E.

Let us assume

�̄��MF� � ��
2��MF��1/2# T �MF

�K
�2

ln2 �K

�MF
, �,� � �̄ .

�4.21�

Then, at the distance

R* � �MF T

�̄��MF�
ln2 �K

�MF
�1/2

, �4.22�

we have

�̄�R*� � �K�R*� , �4.23�

so that the anisotropy becomes more important than the stiff-
ness, and the perturbative treatment �4.18� is no longer valid.

Instead, one has to identify the remaining soft modes still
compatible with the anisotropy potential �4.4c� and consider
the fluctuations for those modes only. To achieve this goal,
let us rewrite Eq. �4.4c� using the parametrization �4.5�:

F� =
1

R*
2 ���� + �z�N1

2 + ��z − ���N4
2� , �4.24�

and the isotropic part is given by Eq. �4.6� and �i=1
4 Ni

2=1.
If there were no thermal fluctuations at all, the direction

of the order parameter would be obtained by minimizing the
expression �4.24� with the results summarized on Fig. 4.

The regions �I� and �II� in Fig. 4 correspond to the Ising-
type anisotropy, and region �III� corresponds to the XY
model. Hence, deep inside the regions �I� and �II�, the system
is ordered, whereas region �III� is characterized by an alge-
braic order. At the lines separating those regions, the system
possesses extra degeneracies, which will be analyzed sepa-
rately.

1. Vicinity of the line ��=0, �z"0

Near this line, one can neglect the fluctuations of N2,3 and
consider N1,4 only. Then, the relevant part of the free energy
�see Eqs. �4.6� and �4.24�� acquires the form

F14 =
�K

2
����N1�2 + ���N4�2� +

��

R*
2 �N1

2 − N4
2� , �4.25�

with N1,4 constrained by N1
2+N4

2=1. Representing N1
=cos $ and N4=sin $, and introducing dual field 
 to de-
scribe the vortices with a core size !R*, we find

Z �� D$D
 exp−
F14

T
� ,

F14

T
=
�K

2T
��x$�2 +

T

2�K
��x
�2 + i�x
�y$

+
��

R*
2T

cos 2$ +
�14

R*
2 cos�2�
� . �4.26�

(II)

3

1
N = N = 0

44
N = 12

1
N = 12

(III)(I)

2
N + N = 12 2

z

η

η

FIG. 4. Phase diagram in the absence of the thermal fluctuation.
For the pictorial representation of the states in terms of physical
spins, see Fig. 3.
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The derivation of Eq. �4.26� is completely analogous to the
derivation of Eq. �4.12� �see also Appendix A.�

The first loop scaling equations for the anisotropy �� and
the vortex fugacities �14 are

d�14

d ln r0
= 2 −

��K

T
��14,

d��

d ln r0
= 2 −

T

��K
���. �4.27�

They have the obvious solutions

�14�r0� = �14�R*�R*

r0
����K−2T�/T

,

���r0� = ���R*�R*

r0
��T−2��K�/��K

. �4.28�

If ���R*�=0, the system undergoes Berezinskii-Kosterlitz-
Thouless transition at TBKT=��K /2, from the high tempera-
ture vortex-dominated disordered state to a phase with power
law correlations.

At nonzero ��, the ordered phase has a finite correlation
length since below ��K /2 the anisotropy �� is a relevant
perturbation. Therefore, phase $ is locked and the system is
ordered with a finite correlation length �14 determined by the
condition ����14��T so that

�14 � R* T

���R*�
���K/�2��K−T�

. �4.29�

From Eq. �4.29�, one may conclude that the transition be-
tween phases �I� and �II� of Fig. 4 is a continuous one, with
smoothly varying correlation length exponent along the tran-
sition line. However, we will see shortly that this conclusion
is an artifact of neglecting the higher order anisotropy �4.4d�.

At temperatures above ��K /2, both the anisotropy �order�
and the vortices �disorder� are relevant. The corresponding
operators compete with each other since 
 and $ cannot be
locked simultaneously. To estimate the location of the tran-
sition line and the length scale �I at which criticality becomes
important, we require

����I�
T

� �14��I� � 1,

which yields, assuming as usual that �14�R*��1,

�I � R* 1

�14�R*�
�T/�2T−��K�

,

�c��K� = T��14�R*���T/����2��K−T�/�2T−��K�. �4.30�

At distances larger than �I, the anisotropy is the largest
scale in the problem, so that N1 �N4� becomes massive and
the vortices provide the possibility for N4

2 �N1
2� to change on

the scale of the order of �I. The resulting transition, therefore,
involves only one soft mode, and thus, belongs to the Ising
model universality class �see Appendix B for more accurate
calculation in the vicinity of ��K=T�. The corresponding
correlation length � is, then, given by

�� �I

��
c

��� − ��
c �

, ��� − ��
c �! ��

c . �4.31�

So far, we ignored the higher order anisotropy term. In
fact, those terms are important only in the vicinity of �I�-�II�
transition line, where they change the order of the phase
transition.

To see this, we rewrite Eq. �4.4d� using parametrizations
�3.2e� and �4.5�:

F�

T
=
��R*�
TR*

2 Re�Nx + iNy�4 =
��R*�
TR*

2 cos 4$ . �4.32�

Equation �4.32� should be added to Eq. �4.26�.
The coupling in Eq. �4.32� is renormalized by thermal

fluctuations. The first loop RG equation and its solution are
given by

d�

d ln r0
= 2 −

4T

��K
�� ,

��r0� = ��R*�R*

r0
��4T−2��K�/��K

. �4.33�

At ��K%2T, the quartic anisotropy � is a relevant perturba-
tion, so that the phase $ becomes locked, and the system is
ordered in locally stable state even for ��=0, so that the

correlation length �14 is always limited by �̃14, which is

found from the condition ���̃14��T. It yields

�14! �̃14 � R* T

���R*���
��K/�2��K−4T�

. �4.34�

The length �̃14 diverges when the approaching the multicriti-

cal point ��K=2T, ��=0. At length scale large than �̃14, the
nonvanishing order parameter is found by minimization of
the expression

F̃

T
=
����̃14�

�̃14
2 T

cos 2$ + sgn � cos 4$ �4.35�

with respect to $, which produces two second order �Ising
type� phase transitions for �%0, and the first order phase

transition for �"0 �in the former case, �̃14 serves as prefac-
tor for the diverging correlation length similarly to Eq.
�4.31��.

At ��K"2T, the quartic anisotropy becomes irrelevant
and we obtain from Eqs. �4.33� and �4.30�

���I� = ��R*� 1

�14
�2/��K

" T , �4.36�

i.e., it cannot affect the position and the universality class of
the Ising phase transitions.

The resulting structure of the phase diagram in the vicin-
ity of the line ��=0,�z"0 is summarized in Fig. 5.

2. Vicinity of the lines �z%0,��= ±�z

In the vicinity of the line �z%0, ��=−�z, anisotropy
�4.24� generates mass for the field N4 so that the free energy
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for the remaining soft modes �see Eqs. �4.6� and �4.4e�� is

F =
�K�R*�

2 �
i=1

3

���Ni�2 +
���R*�

R*
2 N1

2 +
��R*�

R*
2 Re�N2 + iN3�6,

N1
2 + N2

2 + N3
2 = 1,

���R*� � �z�R*� + ���R*� , �4.37�

where length scale R* and the coupling constants are defined
in Eqs. �4.22�, �4.15�, and �4.19�. The vicinity of the line
�z%0, ��=�z does not require a separate consideration as it
is also described by the free energy density �4.37� after the
replacement

N1 → N4, ���R*� → − ���R*� . �4.38�

At r0%R*, the scaling of the couplings in Eq. �4.37� is gov-
erned by the first loop renormalization group equations

d�K

d ln r0
= −

T

2�
, �4.39a�

d��

d ln r0
= 
2 −

3T

2��K
��� , �4.39b�

d�

d ln r0
= 
2 −

21T

2��K
�� , �4.39c�

where we neglect the effect of the anisotropies on the renor-
malization of the stiffness, which, however, will be sufficient
for our purposes.

The solution of Eq. �4.39a� is

�K�r0� =
T

2�
ln
�H

r0
, �H = R* exp2���R*�

T
� ,

�4.40a�

which is consistent with the well known fact that the classi-
cal SU�2�/U�1� sigma model is always disordered by the
thermal fluctuations, with �H being the correlation length for
these fluctuations.

Anisotropies may lead to ordering. To estimate the posi-
tions of the phase transition lines, we solve Eqs. �4.39b� and
�4.39c� with the help of Eq. �4.40a� and find

���r0� = ���R*� r0

R*
�2� ln

�H

r0

ln
�H

R*

�
3

,

��r0� = ��R*� r0

R*
�2� ln

�H

r0

ln
�H

R*

�
21

. �4.40b�

First, let us neglect the hexadic anisotropy, �=0. Then, the
anisotropy is important if ����r0�2�H��%T. Equations
�4.40b� and �4.40a� give us approximate positions of the
phase transition lines

����R*�
T

= �

2��K�R*�
T

�3

exp−
4��K�R*�

T
� ,

��I�R*�
T

= − I
2��K�R*�

T
�3

exp−
4��K�R*�

T
� ,

�4.41�

shown in Fig. 6. The numerical prefactors I,� of order unity
cannot be obtained within a perturbative RG scheme.

Line ��I corresponds to the second order phase transition
from the disordered phase to the phase characterized by
�N1��0. This phase transition belongs to the universality
class of the two-dimensional Ising model. Additional hexa-
dical anisotropy �finite but small �� cannot affect this transi-
tion.

Line ��� corresponds to the phase transition from the
disordered phase to the phase characterized by algebraic cor-
relations for N2,3, i.e., to the Berezinskii-Kosterlitz-Thouless
transition. Contrary to the Ising transition, the hexadic term
may cause a further ordering and an additional Berezinskii-
Kosterlitz-Thouless type transition between the algebraically
ordered phase and the long-range ordered phase.

To describe those two transitions, we put N1=0 in Eq.
�4.37� and introduce the field $, so that N2=cos $ and N3

a)

b)

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

1,4

> 0κ

<N > = 01

<N > = 04

<N > = 01

< 0

4<N > = 0

κ

<N > = 01,4

<N > = 01,4

<N > = 01

<N > = 0

b

c

A d

b

c

d’

d

<N > = 04

4

A

<N > = 0

<N > = 01

πρ

η

Kπρ

η (R )*

(R )*

*

(R )*

T

1

T

2T

1

K(R )

2T

(

(

FIG. 5. Phase diagrams in the vicinity of the line ��=0, �z

"0. Lines A-b and A-c are always of the Ising type. �a� Line A-d is
�weak� first order phase transition line at �"0. �b� Lines A-d and
A-d� are second order phase transitions �Ising type� at �%0. At �
=0, the A-d line is a continuous phase transition, with the varying
indices given by Eq. �4.28�.
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=sin $, and the dual field 
 to describe the vortices.
The singular part of the partition function is given by

Z �� D$D
 exp−
F23

T
� ,

F23

T
=
�K

2T
��x$�2 +

T

2�K
��x
�2 + i�x
�y$ +

�

R�
2 T

cos 6$

+
�23

R�
2 cos�2�
� , �4.42�

where the coupling constant are described by Eqs. �4.15� and
�4.40b�, and R�"RH is found from the requirement
�K�R������R��. This yields

R�

�H
ln

R�

�H
=  ����R*�
�

3 ���R * ��
1/2

. �4.43�

Once again, the scaling of the vortex fugacity �23 and of
the hexadic anisotropy � can be determined from the first
loop renormalization group equations

d�23

d ln r0
= 
2 −

��K

T
��23, �4.44a�

d�

d ln r0
= 
2 −

9T

��K
�� . �4.44b�

In the limit of �23, ��1, Eqs. �4.44a� and �4.44b� enable us
to refine the definitions of � �requiring ��K�R��=2T� and
to find the boundary of the ordered phase �6�R*� �requiring
��K�R��=9T /2�. With the help of Eqs. �4.43� and �4.40a�,
we find

� �
e2

24/3 � 2.9,

�6 � 4e9

9e4�2

�� � 4.3	 103��, �4.45�

i.e., even though the boundaries of the two phases have the
same functional form, they are very well separated due to
numerical reasons.

In the previous discussion, we implied that ��R���1.
This condition is clearly violated on the lines �6, ��, and �I
if ��K /T→� �see the second equation of Eqs. �4.40a� and
�4.40b��. The large power of the logarithm allows one to use
the saddle point expression, and we obtain from condition
��R��#1:

���R*�
2T

%
21

8
+ 21

32
ln

T

��R*�
�1/2

. �4.46�

At larger stiffness, the phase transition occurs by the locking
of the order parameter due to the hexadic term, and the fluc-
tuations become unimportant. Minimizing the potential part
of the free energy �4.37�, we obtain a first order phase tran-
sition at ��R*����R*�.

The only way of connecting the critical lines on the phase
diagram, allowed by the symmetries of the system, is shown
in the inset of Fig. 6.

C. Effect of strong anisotropies

In Sec. IV B, we assumed that U�1� sector was ordered
and the half-vortices were not important in ordering the
SU�2� sector. It was justified by the assumption of the weak
enough anisotropy so that the parameter �̄ �see Eq. �4.21� is
constrained by �̄��MF��T. In this case, the renormalization
of the stiffness �K is so strong that �K�R*���s �see Eq.
�4.22�� and separation of the scale was justified. We will see,
however, in Sec. V D that for some ranges of the in-plane
magnetic field, the opposite limits of the strong anisotropies,
�̄��MF�#T, are more relevant.

In this case, the logarithmic renormalization of the stiff-
ness �K �see Eq. �4.14a�� and of the anisotropy parameters
�see Eq. �4.18�� are no longer strong and one has to investi-
gate the soft modes in Eq. �4.24� already on the scale of the
order of �MF. Similar to the approach of Sec. IV B, only the
lines of extra degeneracies require further investigation. The
difference is that U�1� sector and the half-vortex configura-
tions have to be taken into account. To simplify further ma-
nipulations, we introduce the parameter

��
�K�R*�
�s�R*�

" 1. �4.47�

All the results of the previous section correspond to the lim-
iting case �→0.

1. Vicinity of line ��=0, �z"0

Let us generalize Eq. �4.26� by including the half-
vortices. Substituting parametrization �4.5� with N2,3=0, N1
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FIG. 6. Phase diagrams in the vicinity of the line ��=�z+��

=0, �z%0. Here, N+=N2+ iN3. Lines ���,6 are the Berezinskii-
Kosterlitz-Thouless phase transitions. Line �I is the Ising-type
phase transition. The double line is the first order phase transition.
Point C is the bicritical point and point B is the critical end point.
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=cos $, and N4=sin $ into Eq. �4.12�, representing 2ĥ
=diag �
+hs ;
−hs�, we obtain

Z �� D$D
D$sD
s exp−
F14

T
� ,

F14

T
= 
 �K

2T
��x$�2 +

T

2�K
��x
�2 + i�x
�y$ +

�14

R*
2 cos�2�
�

+
��

R*
2T

cos 2$� + 
 �K

2�T
��x
s�2 +

T�

2�K
��xhs�2

+ i�xhs�y
s +
�1

R*
2 cos�2�hs�� +

�1/2

R*
2 cos��hs�cos��
�

�4.48�

�procedure to obtain �14 term by generating vortices is com-
pletely analogous to Eq. �4.26��. Here, � is given by �4.47�,
�14 is a fugacity for the creation of a vortex in $ field �we
will call them “N1–N4 vortices”�, the vortices in 
s field �we
will call them “vortices in the U�1� sector”� are governed by
the fugacity �1, and �1/2 is the fugacity for the half-vortices.

The first loop RG equations are analogous to Eqs. �4.13a�,
�4.13b�, and �4.27�:

d�1/2

d ln r0
= 
2 −

��K

4T
1 + �

�
���1/2,

d�14

d ln r0
= 2 −

��K

T
��14,

d�1

d ln r0
= 2 −

��K

�T
��1,

d��

d ln r0
= 2 −

T

��K
���. �4.49�

We will see that �=1/4 is a special point where the N1–N4
vortices have the same scaling dimension as the half-vortices
for the disordered valley sector. Another special point is �
=1/3, where the half-vortices become more relevant in the
disordering of the N1–N4 sector than the simple vortices.

The phase diagram for �"1/4 is shown in Fig. 7. The
physics in the vicinity of the multicritical point A is still
determined by N1–N4 vortices, whereas the half-vortices are
irrelevant in this region. Inside the N1–N4 disordered region,
any deformation in $ causes only a finite energy,

�cos �
� � 0.

Therefore, the half-vortices in U�1� sector are allowed and
the condition �4.16a� determines the value of the Kosterlitz
jump. In fact, cos �
 is proportional to the disorder operator
� of the Ising model �see Ref. 14�. We will use this analogy
shortly.

On the other hand, deep in the ordered sector, the half-
vortices are confined and the disordering of the U�1� sector
occurs due to the vortices and, thus, the Kosterlitz jump is
determined by Eq. �4.16b�.
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FIG. 7. The phase diagram in the vicinity of the line ��=0 for
different values of �. �a� �"1/4; the zigzag line denotes either the
first order phase transition or pair of the Ising transition �see Fig. 5�.
The asymptotics of the Berezinskii-Kosterlitz-Thouless lines are
given by Eqs. �4.53� and �4.56� for points D1,2 and D1,2� , respec-
tively. �b� 1/4"�"4/15; the asymptotics of the Berezinskii-
Kosterlitz-Thouless lines are given by Eqs. �4.53� for points D1,2.
�c� 1/3"�"1/4. The difference between the slopes of the Ising
line and the Berezinskii-Kosterlitz-Thouless line near multicritical
point B is given by Eq. �4.53�. Finite � leads to the modification of
the multicritical point B.
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Only the vicinities of the tricritical points D1,2 and D1,2� in
Fig. 7�a� deserve a special consideration. In their vicinity, �1
term in Eq. �4.48� is irrelevant, and �14 and �� terms con-
spire to produce an Ising critical point. Therefore, at �1/2
=0, we have two decoupled critical theories: the Ising one
described by $ ,
 fields and the U�1� model described by
�
s ,hs� fields. At the Ising model critical point, the operator
cos 
 behaves as the disorder parameter field of the Ising
model and has scaling dimension 1/8. Hence, the corre-
sponding RG equation for �1/2 is

d�1/2

d ln r0
= 
2 −

1

8
−
��s�r0�

4T
��1/2, �4.50�

where we restored �s using Eq. �4.47�.
The scale invariance requirement for the fugacity �1/2

gives the stiffness at the multicritical points D1,2

��s
c�r0 → ��

2Tc
=

15

4
" 4. �4.51�

If �s"�s
c, the half-vortex fugacity �1/2 grows according to

Eq. �4.50� as

�1/2�r0�
�1/2�R*�

=  r0

R*
�15��s

c−�s�/8�s
c

�4.52�

The growth �4.52� has to be stopped at the correlation length
of the Ising transition

�I �
��

c

��� − ��
c �

.

At the lengths larger than �I, the Ising model becomes or-
dered, so the half-vortices are confined. However, their fu-
sion produces usual vortices with the fugacity �1��1/2

2 ��I�.
The requirement for the resulting parameters of the remain-
ing U�1� theory to be on the line of the Berezinskii-
Kosterlitz-Thouless transition leads to the estimate �1/2��I�
�1 or �see also Fig. 5�a��

ln
�c

��
KT − ��

c =
8�s

c

15��s
c − �s�

+ O�1� . �4.53�

For the spin stiffnesses, in the interval

�s
c" �s" �s

c,2,
��s

c,2

2�
= 4, �4.54�

the fugacity for the half-vortices �4.52� vanishes at r0→�. If
one tries to deviate from the line �=�c toward the ordered
side, those half-vortices fuse into vortices which are also
irrelevant.

Let us now consider the deviation from the tricritical
point toward the disordered side of the Ising sector. In this
region, cos 
 can be replaced by its average. As we have
mentioned above, near the Ising model critical line, cos 

�� �the disorder operator of the Ising model�. Hence, we
find

cos �
 cos �hs → ��� − �c
��1/8 cos �hs. �4.55�

The latter operator is irrelevant in the region �4.54� as well.
Therefore, the line �=�c, �s

c"�s"�s
c,2, is the transition line

both for the valley and the spin sectors.15

At �%�s
c,2, the half-vortices in limit of zero fugacity �1/2

become irrelevant and U�1� sector is algebraically ordered.
The correction to the vertical line can be evaluated using

�s − �s
c,2 � �1/2��I� � ��� − �c

��1/8. �4.56�

This estimate is valid near points D1,2� .
The case �%1/4 needs further investigation as the critical

points D1,2� cross the point A �see Figs. 7�b� and 7�c��. For
simplicity, we will neglect the quartic anisotropies: �=0.

Let us first consider 1 /4"�"4/15. If ���R*�=0, the
system undergoes Berezinskii-Kosterlitz-Thouless transition
and ��K /2T=1, where N1–N4 vortices become relevant,
�cos 2�
��0. At the same time, �cos �
��0 and the re-
maining factor of the half-vortex operator becomes relevant,
with the dimensionality ��K /4�T. As a result, the U�1� sec-
tor also becomes disordered.

Initial steps in the consideration of ���0 are the same as
in the derivation of Eqs. �4.30� and �4.31�, and we obtain two
lines of the Ising phase transitions. The scaling of the half-
vortex fugacity on the Ising line is still governed by Eq.
�4.50� so that the conclusions of Eqs. �4.51� and �4.53� re-
main intact �see Fig. 7�b��.

The peculiarity of the 4/15"�"1/3 regime is that the
half-vortex operator becomes relevant in the whole Ising
line, whereas it is still irrelevant in the ordered region. As a
result, the points D1,2 on Fig. 7�b� collapse �see Fig. 7�c��.
The positions of the Berezinskii-Kosterlitz-Thouless lines
still can be estimated using Eqs. �4.51� and �4.52�.

The most delicate case which we were not able to solve is
�%1/3. In this situation, the half-vortices are always more
relevant than the vortices and the transitions both in U�1� and
in N1–N4 sectors occur due to the half-vortices. The corre-
sponding free energy obtained by keeping only half-vortices
in Eq. �4.48� is

F14

T
=
�K

2T
��x$�2 +

T

2�K
��x
�2 + i�x
�y$ +

�K

2�T
��x
s�2

+
T�

2�K
��xhs�2 + i�xhs�y
s +

�1/2

R*
2 cos��hs�cos��
�

+
��

R*
2T

cos 2$ . �4.57�

We do not know the critical property of this model in the
strong coupling limit.

2. Vicinity of lines �z%0, ��= ±�z

The analysis of those lines relies on the materials of Secs.
IV C 1 and IV B 2. Near the line �z%0, ��= ����−�z��z,
we have to generalize Eq. �4.37� �see also Eq. �4.38�� to
include U�1� sector. In this section, we also neglect the hexa-
dic anisotropy �=0. The resulting theory is obtained from
Eq. �4.12� by putting an extra constraint on the unitary ma-

trix V̂
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V̂† = − V̂, ��" 0,

V̂† = �̂yV̂�̂y, ��% 0. �4.58�

One case is mapped to the other by the substitution V̂

→ i�̂yV̂, and therefore, only one of them has to be studied.
The line ��I �see Eq. �4.41�� is of the Ising type, and all the
analyses of Eqs. �4.50�–�4.56� are still valid.

What remains is the vicinity of the Berezinskii-Kosterlitz-
Thouless transition line ��� �see Fig. 8�. The theory de-
scribing phase transition in this case �compare with Eq.
�4.42�� can be written in terms of dual fields only,

Z �� DhsD
 exp−
F23

T
� ,

F23

T
=

T

2�K�R**�
���
�2 +

T

2�s
���hs�2

+
�23����

R**
2 cos 2�
 +

�1/2����
R**

2 cos �hs cos �
 ,

�4.59�

where �s �K�R**� because of the strong logarithmic renor-
malization at distances where the valley sector is almost iso-
tropic. It has a sequence of two phase transitions shown in
Fig. 8 by lines ��� and ��1/2.

D. Resulting phase diagram

In Secs. IV B and IV C, we analyzed the vicinities of the
point degeneracies and the vicinities of the line degeneracies
of Fig. 4. The results of this analysis enabled us to construct
the phase diagrams in terms of the plane defined by anisotro-
pies ��z�R*� ,���R*�� �see also Eqs. �4.21� and �4.22��. In-
deed, there can be no other singularities than those we have
already considered, because for all the other regions of the
phase diagrams, the SU�2� sector is massive due to the
anisotropies. Therefore, the character of the singularities
along the phase transition line remains the same.

Bearing this in mind and expressing �K�R*� in terms of
anisotropies using Eq. �4.23�, we construct the “global”
phase diagram shown in Fig. 9. The relation of this phase
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FIG. 8. Phase diagrams in the vicinity of the line ��=�z+��

��z, �z%0 for finite value of � �see Eq. �4.47�� and in the absence
of the hexadic anisotropies, �=0. Here, N+=N2+ iN3. Lines
���,1,1/2 are the Berezinskii-Kosterlitz-Thouless phase transitions.
Line �I is the Ising-type phase transition. The asymptotics of the
lines ��1,1/2 are given by Eqs. �4.53� and �4.56� for points D and
D�, respectively �those points are equivalent to the multicritical
points of Fig. 7�a� with the same notation�. The transitions across
the lines ��1,� are controlled by the unbinding of the vortices, and
��1/2 is governed by the half-vortices.
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FIG. 9. The overall phase diagram for �a� decoupled valley and
spin sectors, �→0, and �b� for �"1/4. The positive quartic aniso-
tropy, �%0, is assumed. The more detailed behavior near the mul-
ticritical points A, B, C, and D are shown in more detail in Figs.
5–8. The notation for those points here is consistent with that for
Figs. 5–9.
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diagram to the physical coordinates B, T will be found in
Sec. V E after the microscopic theory for the parameters of
Landau free energy is built.

V. LOGARITHMIC RENORMALIZATIONS AND MEAN-
FIELD TRANSITION

The specifics of the problem at hand is that it has three
different intervals of the logarithmic renormalizations: �i� en-
ergies larger than the Zeeman splitting; �ii� energies larger
than the temperature, but smaller than the Zeeman splitting;
and �iii� classical renormalizations considered in the previous
section. As those renormalizations are contributed by differ-
ent degrees of freedoms, they have to be considered sepa-
rately. The result will be the microscopic expressions for the
coupling constants in the free energy, which will enable us to
construct the physical phase diagram in Sec. V E.

A. Logarithmic renormalizations at energies larger than the
Zeeman splitting

At such energies, the Zeeman splitting is not important
and can be considered perturbatively if necessary. We will
also assume that the short-range interaction and umklapp
terms are not strong enough to lead to any reconstruction in
the state of the system at high energies, so they also can be
considered within the perturbation theory, leading to a simple
modification of the coupling constants which are not well
known anyway.

The only terms which require special attention are those
related to the long-range Coulomb interaction. Indeed, a
simple dimensional analysis of the Hamiltonian �2.10� and
�2.11� points to logarithmic divergences in the simple pertur-
bation theory �first identified in Ref. 6 for the three-
dimensional gapless semiconductors�.

As usual, a summation of the leading logarithmic diver-
gences is performed within the renormalization group
scheme. However, the loop expansion would not be suitable
for the description of the graphene as the dimensionless in-
teraction strength e2 /v�rc� is not small at distances rc�a.

Instead, the expansion in terms of N—the number of in-
dependent fermion species entering the Hamiltonian �2.10�
and �2.11�—will be used. For the problem at hand, we have
the valley and spin degeneracies, so that N=4. The results,
which will be obtained, indicate that 1 /N corrections are
quite small for N=4, so that 1 /N expansion seems to be a
reasonable approximation.

To make the calculations compact, we will utilize the
standard imaginary time diagrammatic technique.16 Analytic
expressions for the corresponding lines are given in Fig. 10.

Performing the renormalization group procedure, we
change the smallest spatial scale in the problem from rc

" to
the exponentially larger scale rc

%. It amounts to taking into
account all the diagrams where the momenta q going through
the Coulomb interaction propagator belong to the region
1/rc

%" �q �"1/rc
". This cutoff procedure does not violate the

gauge invariance or other symmetries of the problem. Then,

we rescale fermionic fields as �→ �1+�Z /2�� , �̄→ �1
+�Z /2��̄ in order to keep the term �̄��� intact. �In this

scheme, the scalar vertex and the Zeeman splitting term are
not renormalized also, as a consequence of the gauge invari-
ance. This can be checked by explicit calculation of the dia-
grams of Figs. 11�e� and 11�f�.�

For the high-symmetry part of the Hamiltonian �see Eqs.
�2.10� and �2.11��, the only coupling which renormalizes is
the velocity v�rc�. This renormalization is a consequence of
the non-Lorentzian invariance of the Coulomb interaction.

Introducing the dimensionless interaction strength

g�rc� =
�e2N

8v�rc�
, �5.1�

and calculating the diagrams of Fig. 11�d�, we obtain

d ln g

d ln rc
= −

8

�2N
fv�g� , �5.2�

where dimensionless function fv is given by

fv�g� = 1 −
�

2g
+�

arccos g

g�1 − g2
, g� 1

arccosh g

g�g2 − 1
, g& 1.� �5.3a�

It is easy to see that the function fv�g� is monotonously in-
creasing and analytic for all g%0 �see Fig. 12�. The
asymptotic behavior of this function is

�,�k
= −Ĝ(�,�k)

= −v(rc)�k�̂Σ; Ĝ =
1

i� + �

= −BŜz;

ω, �q
= −2πe2

|�q|

=
1
2
λw(rc)v(rc)rcΛ̂z

�
(kx + iky)2

�
Σ̂x + iΣ̂y

�
+ h.c.

�
;

= −rcv(rc)
�

α,β=x,y,z

Fαβ(rc)Σ̂αΛ̂β ⊗ Σ̂αΛ̂β

− rcv(rc)
�

α=x,y,x

�
JΣ

α (rc)Σ̂α ⊗ Σ̂α + JΛ
α (rc)Λ̂α ⊗ Λ̂α

�

= r3
cv(rc)

�
α,β,γ=x,y,z

�
Fαβγ(rc)Σ̂αΛ̂+ ⊗ Σ̂βΛ̂+ ⊗ Σ̂γΛ̂+ + h.c.

�

FIG. 10. Basic elements for the diagrammatic calculation for
Hamiltonian �2.9�–�2.13�, �2.14a�, �2.14b�, and �2.15�–�2.17�, at
distances rc!RB�v�RB� /B.
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fv�g� � �
�g

4
−

2g2

3
+ O�g3� , g� 1

1 −
�

2g
+

ln 2g

g2 + O 1

g4� , g 1.� �5.3b�

Equations �5.2� and �5.3a� were first obtained in Ref. 7 for
N=1, where they are not applicable beyond the first term in
the expansion �5.3a� and �5.3b� for g�1. The validity of
those formulas for N 1 was pointed out in Ref. 8, but the
numerical coefficients here are different from the latter ref-
erence.

Solution of Eq. �5.2� with the help of the asymptotics
�5.3b� yields

g rc

R� � �

2

N�
ln rc

R� + 1�−1

, rc#R

R
rc
�8/�2N

� R
rc
�0.20

, a� rc!R ,� �5.4�

where R is the only relevant spatial scale generated by the
interaction. This scale can be estimated as

ln
R
a

��
�2N

8
ln g�a� , g�a�# 1

−
�N

2g�a�
, g�a�! 1,� �5.5�

where a is the scale of the order of the lattice constant at
which the continuous description becomes applicable.

For the graphene sheets, the reported velocity �see, e.g.,
Ref. 17� is v�a��108 cm/s. We estimate g�2–4 �the uncer-
tainty is associated with the dielectric properties of the sub-
strate as well as the uncertainty of the linear scale at which
the velocity is measured� and we find from Eq. �5.5�

R � 102 – 103a a . �5.6�

For all further considerations, we assume that the relation
R a is fulfilled.

The Coulomb interaction strongly affects the scaling of
the low-symmetry terms of the Hamiltonian. Let us start
from the trigonal warping term �2.13�. By calculating the
diagrams shown in Fig. 13�a�, we find

d ln �w

d ln rc
= − 1 +

4

�2N
fw�g� , �5.7�

a)
+=

b) δZ =
i∂

∂�
k = 0

c) ω, q = −Π(q, ω) =
N

16
q2

�
ω2 + v(rc)2q2

d)

δ � = 0= δZ × +

e)

δ = δZ × + = 0

+ + =0

f)
δ = δZ × + = 0

(

(

(

(

(

(

FIG. 11. Diagrammatic representation for the leading 1/N renor-
malization of the parameters of the highly symmetric part of the
Hamiltonian �see Eq. �2.10��. All the basic elements are defined in
Fig. 10. The integration over the momentum q going through the
wiggly line is restricted by 1/rc

%" �q �"1/rc
".

g

v

−1.5

−1

−0.5

0.5

−2

1

0

wf (g)

4 6 8

f (g)

0 2

FIG. 12. Plots of functions fv�g� and fw�g� entering into renor-
malization group equations.

a)
δ = δZ × +

b)

δ = 2δZ × + 2 × + 2 × + 2 ×

c) δ = 3δZ × + 3 ×

+ 3 × + 3 ×

(

(

(

FIG. 13. Diagrammatic representation for the leading 1/N
renormalization of the parameters of the low-symmetry part of the
Hamiltonian �see Eqs. �2.13�, �2.14a�, �2.14b�, and �2.16��. All the
basic elements are defined in Figs. 10 and 11. The integration over
the momentum q going through the wiggly line is restricted by
1/rc

%" �q �"1/rc
".
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where the negative monotonous analytic function

fw�g� = −
28

15
+

13�

8g
+

10

g2 −
11�

2g3 −
6

g4 +
3�

g5

+ −
4

g
+

7

g3 −
3

g5�	�
2 arccos g
�1 − g2

, g� 1

2 arccosh g
�g2 − 1

, g& 1�
�5.8a�

is also plotted in Fig. 12.
The asymptotic behavior of this function is

fw �� −
5�g

16
+

64g2

105
+ O�g3� , g� 1

−
28

15
+

13�

8g
+

10 − 8 ln 2g

g2 + O 1

g3� , g 1.�
�5.8b�

Solution of Eq. �5.7� with the help of Eq. �5.8b� yields

�w�rc�
�w�R�

� �
R
rc
�
 2

N�
ln rc

R� + 1�−5/8

, rc#R

R
rc
�1+�112/5�2N�

� R
rc
�1.57

, a� rc!R ,�
�5.9�

where

�w�R� � �w�a� a

R�1.57

� 10−3 – 10−5. �5.10�

Thus, we see that the Coulomb interaction tends to suppress
drastically the warping term, making the energy surfaces
more and more isotropic.18

On the other hand, the Coulomb interaction leads to the
enhancement of the short-range interaction terms in the
Hamiltonian �2.14a� and �2.14b�. Calculating the diagrams of
Fig. 13�b�, we find

d ln F+
z,�

d ln rc
=

d ln J+
�,�

d ln rc
=

d ln J−
�

d ln rc
= − 1,

d ln F−
z,�

d ln rc
=

d ln J−
�

d ln rc
= − 1 +

40

�2N
fv�g� , �5.11�

where function fv�g� is defined in Eq. �5.3a�. �Notice that the
“mean-field analysis” of Ref. 5 of the excitonic instabilities
at zero magnetic field corresponds to accounting for only the
third diagram in the right-hand side of Fig. 13�b�, and thus, is
false even within 1/N approximation.�

Equations �5.11� can be easily solved with the help of Eq.
�5.2�, and we find

F+
z,��rc�

F+
z,��a�

=
J+
�,��rc�

J+
�,��a�

=
J−
��rc�

J−
��a�

=
a

rc
, �5.12a�

F−
z,��rc�

F−
z,��a�

=
J−
��rc�

J−
��a�

=
a

rc
 g�a�

g�rc�
�5

. �5.12b�

Couplings in the Eq. �5.12a� are irrelevant. The interactions
in Eq. �5.12b� are strongly enhanced by the long-range Cou-
lomb interaction. This enhancement becomes especially pro-
nounced at intermediate distances rc!R. Using Eq. �5.4�,
we find

F−
z,��rc�

F−
z,��a�

=
J−
��rc�

J−
��a�

�  rc

a
��40/�2N�−1

�  rc

a
�0.01

,

i.e., naively dimensionally irrelevant couplings become
weakly relevant. Though, such small value of indices is
clearly beyond the accuracy of the 1/N approximation for
N=4, this formula indicates, however, that the effect of the
short-range interaction lowering the symmetry of the system
is much stronger than it was thought before. Whether or not
this enhancement may lead to instability at zero magnetic
field requires further improvement of the renormalization
group scheme, which is beyond the scope of the present pa-
per. Here, we simply note that at large distances, g
→1/ ln�rc� �see Eq. �5.4��, so that the coupling of Eq. �5.12b�
becomes irrelevant again. It indicates that at zero magnetic
field, the excitonic instability can occur only as a first order
phase transition. In all subsequent consideration, we will as-
sume that such transition does not occur. This assumption is
in accord with all the experimental findings accumulated so
far.

For further use, let us recast the answers �5.12a� and
�5.12b� for the most important constants, in the form similar
to Eq. �5.9�. Because of estimate �5.6�, the second digits in
the exponents are not observable and will be omitted:

F−
z,��rc� � � F−

z,��R� , rc!R

F−
z,��R�

R
rc

 2

N�
ln rc

R� + 1�5

, rc#R , �
F−

z,��R� � F−
z,��a� � 1. �5.13�

Finally, the umklapp terms are also enhanced by the interac-
tion. Calculating the contributions shown in Fig. 13�b�, we
obtain the renormalization group equations

d ln F+

d ln rc
= − 3,

d ln F−

d ln rc
= − 3 +

64

�2N
fv�g� . �5.14�

Similar to Eqs. �5.12a� and �5.12b�, the solution of Eq. �5.14�
is

F+�rc�
F+�a�

=  a

rc
�3

,
F+�rc�
F+�a�

=  a

rc
�3 g�a�

g�rc�
�8

. �5.15�

In particular, at the intermediate distances rc!R, we find

F+�rc�
F+�a�

�  a

rc
�3−�64/�2N�

�  a

rc
�1.4

,
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i.e., the three-particle umklapp interaction remains irrelevant
though it is strongly enhanced by the Coulomb interaction.

To conclude this section, we notice that the short-range
interaction terms are vital in the consideration of the quan-
tum Hall effect ferromagnets,19,20 and the effect of warping
on the weak localization was considered in Ref. 21. The
results of this section indicate that the estimates done in
those works are hardly reliable.

B. Logarithmic renormalizations at energies smaller than the
Zeeman splitting: Separation of the electron-hole and

Cooper channels

In the previous section, we considered the Zeeman split-
ting as a perturbation. This is legitimate up to the spatial
scale rc"RB, where the length RB is found from the equation

vRB

R � = BRB. �5.16�

The scale dependent velocity v is determined from Eqs. �5.1�
and �5.2�, and we highlighted that this dependence may in-
clude only one spatial scale R. To solve Eq. �5.16� and fa-
cilitate further discussion, we introduce the natural scale for
the Zeeman splitting, B0, according to

B0 =
v�rc = R�

R
, �5.17�

rough estimate for B0 is B0�10–102 K. Then the solution of
Eq. �5.16� takes the universal form

RB = RfB B

B0
� , �5.18�

where the function fB�x� is the solution of the equation

v�fB�x�� = xv�1� ,

fB�x� � 1/x1.25, x# 1,

fB�x� �
2

N�x
ln1

x
� +

1

x
, x! 1. �5.19�

At rc%RB, Zeeman splitting freezes some electronic de-
grees of freedom and, on the other hand, gives rise to the
finite density of states for the other ones �see Fig. 2�b��.

To make use of such separation, we will include the Zee-
man splitting in the denominator of the Green function and
decompose the result as

Ĝ =
1

i� − v�RB�k���̂ − BŜz

= Ĝ + �Ĝ ,

Ĝ = P̂�n��
1

i� − �Ŝz

, �Ĝ = �1 − P̂�n���
1

i� + �� − 2B�Ŝz

,

�� B − v�RB��k��, n� =
k�

�k�
, �5.20�

where

P̂ �
1

2
�1 − n� · ��̂ Ŝz�, P̂2 = P̂ �5.21�

is the projection operator to the branches of the electron
spectrum, which may produce excitations with the energies
smaller than B.

The �G component of the Green function �5.20� does not
have a resonant denominator and may be neglected. For the
logarithmically divergent contributions, only �!B are im-
portant, so that the integration over the momentum can be
replaced by

� d2k

�2��2 ¯ →� dn�

2�
�

−B

B
d�

2�v2�RB�
. . . . �5.22�

Usual calculation of the second order correction to the
interaction vertex shown on Figs. 14�a� and 14�b� reveals
two logarithmically divergent contributions, which can be
readily identified as �a� electron-hole and �b� Cooper chan-
nels. It is worthwhile to emphasize that those contributions
are associated with the presence of the Fermi surface, and
have a structure very different from the high-energy logarith-
mic terms of the previous section.

To collect the leading logarithmic divergences, we look at
the third order diagram and find that only those correspond-
ing to the ladder series �see Figs. 14�b� and 14�d�� are pro-
portional to the second power of the logarithm. The sublead-
ing terms �see Fig. 14�e�� can be combined as a perturbative
�in 1 /N, or the interaction strength� renormalization of the
coefficients in the second order diagram and, therefore, can
be neglected.

Finally, it is easy to check that the signs of the diagrams in
Figs. 14�a� and 14�c� are the same, whereas the signs of the
diagrams in Figs. 14�b� and 14�d� are different from each
other. The latter corresponds to the repulsive interaction in

= −Ĝ; Ĝ = P̂(�n)
1

i� − ξŜz

a)

�,�k, ↑

�,�k, ↓
∝ ln

�
rc

RB

�
; b)

�,�k, ↑ (↓)

−�,−�k, ↑ (↓)

∝ ln
�

rc

RB

�
;

c)
∝ ln2

�
rc

RB

�
; ∝ ln2

�
rc

RB

�
;

e) ∝ ln
�

rc

RB

�
; ∝ ln

�
rc

RB

�
;

∝ ln
�

rc

RB

�
; ∝ ln

�
rc

RB

�
;

(d)

((

(

(

FIG. 14. ��a�–�d�� Leading and �e� subleading logarithmic diver-
gences at rc%RB. Series �a� and �c� corresponds to the excitonic
instability �Ref. 11� in the electron-hole channel studied in the
present series. The interaction in the Cooper channel ��b� and �d�� is
repulsive and, therefore, renormalizes to zero.
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the Cooper channel, which, thus, renormalizes to zero. The
former one describes the attractive interaction of electron and
hole, and leads to the excitonic instability.

Therefore, the only relevant diagrammatic series is the
ladder series in the electron-hole channel, which should be
summed up in all orders of the perturbation theory. The fact
that the logarithmic divergence occurs only in one channel
justifies the mean-field approximation, which will be em-
ployed in the next section.

C. Mean-field transition

After the leading divergent series is identified, it can be
summed within the standard mean-field approximation16

shown in Figs. 15�a�–15�c�. Simple examination of the mo-
mentum q and frequencies ' transferred through the interac-
tion wiggly line shows that all the momenta q" 2

RB
contribute

almost equally into the formation of the order parameter,
whereas the approximation '�0 is valid with logarithmic
accuracy. The finite order parameter � changes the polariza-
tion operator only for small q�� /v�RB��1/RB. This modi-
fication may produce an effect only of the order of �2 /B2

and it will be neglected �see Figs. 15�c� and 15�d��.22

The resulting mean-field equations are obtained from
Figs. 15�a� and 15�b� with the interaction propagator Fig.

15�c� using the approximation �p�1− p� ��2/RB sin 1
2n� ;n1

�ˆ ,
valid once again with logarithmic accuracy, and the integra-
tion rule �5.22�. It results in

�̂�n�� = T �
�n=�T�2n+1�

� dn1

2�
V�n�:n1

�ˆ �P̂�n1
� �

	�
−B

B Bd�

2�v2�RB�
i�n − �Ŝz + ��n�1�

�n
2 + �2 + P̂�n1

� ���n�1�2
,

�5.23�

where

V�� =
2�v2�RB�

NB � 8g

2� sin
��
2

+ 8g� ,

Vn � �
−�

� d

2�
V��cos n . �5.24�

Substituting �̂�n�� of the form

�̂�n�� = Ŝx�̂z��0�T�P̂�n�� + �1�T��1 − P̂�n���� �5.25�

into Eq. �5.23�, we find

�1�T� =
V1 − V0

V1 + V0
�0�T� ,

and the self-consistency relation involving �0�T� only. At T
=0, the gap is given by

1 =
�V0 + V1�B
4�v2�RB�

ln
2B
�0

, �5.26�

where the constants V0,1 are given by Eq. �5.24�.
Substituting Eq. �5.24� into Eq. �5.26�, we obtain after the

integration

�0�T = 0� = 2B exp�−
2N

f� �

4g�RB��� , �5.27�

where f��x�"1 is a dimensionless function of the scale de-
pendent interaction strength �5.1�, and RB is defined by Eq.
�5.16�.

The explicit expression for this function is

f��x� =�
4

�

�x2 − 1

x2 arccosh x −
1

x
+
�

2x2� , x& 1

4

�

−

�1 − x2

x2 arccos x −
1

x
+
�

2x2� , x� 1�
�5.28a�

and its asymptotic behavior is given by

f��x� � �1 −
4x

3�
+

x2

4
+ O�x3� , x� 1

4

�x
ln

2x

e
+

2

x2 + O 1

x3� , x 1.�
�5.28b�

To write down the explicit expression for the zero-
temperature gap, we use the scale of the magnetic field in-
troduced in Eq. �5.17�. If the magnetic field is weak, B
�B0, then RB R and the effective interaction is also weak,
g�RB��1. Using asymptotics Eqs. �5.4� and �5.28b� in Eq.
�5.27�, we find

�n, �k
= −Ĝ∆(�n, �k); �n = πT (2n + 1);

a) = +

b) = −∆̂(�n) = ;

c) ω, q≈ −Π
�

∆0

v(RB)
� |q| ≤ 2

RB
; ω = 0

�
=

N

2π

B
v2(RB)

d) ω, q ≈ −2πv2(RB)
NB

�
8g(RB)

π|q|RB + 8g(RB)

�

(

(

(

(

FIG. 15. Mean-field equations corresponding to the summation
of the most divergent series �Figs. 14�a� and 14�c��.
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�0�T = 0� � 2B exp�−

�
ln
B0

B
+

N�

2
�

4 ln
ln
B0

B
+

N�

2
�� .

�5.29a�

For the strong magnetic field, B B0, the result reads

�0�T = 0� � 2B exp	− 2N
1 +
1

3
B0

B �8/�2N�� ,

�5.29b�

i.e., the dependence slowly approaches the linear function.
To complete this section, we consider the effect of finite

temperature. As for the usual BCS mean field, Eq. �5.23�
gives the temperature dependence of the width of the mean-
field gap �0�T�, which contains the scale �0�0� only:

ln
TMF

T
+ �

n=0

� 	 1
��n + �1/2��2 + ��0�T�2/4�2T2�

−
1

n + �1/2��
= 0, �5.30�

where Tc is related to �0�0� by the usual weak coupling BCS
relation

TMF = �e−C�0�0� � 1.76�0�0� �5.31�

and C is the Euler constant.
Equations �5.31� and �5.30� enable us to estimate the up-

per bound for the mean-field crossover temperature. For N
=4, we find

TMF! 10−3B , �5.32�

where B is the Zeeman splitting. As the electron g factor in
graphene is equal to 2, we estimate for the parallel magnetic
field B�40 T, TMF�60 mK, which does not seem to be
nonrealistic. The other experimental realization could be put-
ting the appropriate insulating ferromagnet on the top of the
graphene film, so that the Zeeman splitting is caused by the
corresponding exchange fields. The effective Zeeman split-
ting in this case may reach thousands of Kelvin.23

In the vicinity of the mean-field crossover Tc−T�Tc, we
obtain from Eq. �5.30�

�0�T�2 =
8�2

7��3�
Tc�T − Tc� � 9.38TMF�T − TMF� ,

�5.33�

and ��x� is the Riemann � function.

D. Microscopic calculation of the coefficients in the free
energy and effective action

Using the symmetry arguments of Sec. III or by explicit
calculation, one finds that the solution of the form �5.25� is
not unique and, in fact, any order parameter of the form

�̂�n�� = �̂z
AB

� Q̂��0�T�P̂�n�� + �1�T��1 − P̂�n����

�5.34�

solves Eq. �5.23�, i.e., the fluctuation effects, studied in Sec.

IV, are important. Here, 4	4 matrix Q̂ is given by Eqs.
�3.2a�, �3.2b�, �3.2c�, �3.2d�, and �3.2e�.

The free energy and the effective action describe the con-
tribution of configurations of the order parameter slowly
varying in time and space. The time and space gradient terms
describe the cost of creating an inhomogeneous configura-
tion, whereas the anisotropy leads certain modes to become
massive. To calculate the latter ones, it is sufficient to con-
sider the homogeneous and time independent configurations

of the order parameter Q̂ �see Eqs. �3.2a�, �3.2b�, �3.2c�,
�3.2d�, and �3.2e�, whereas to find the former, one has to

expand in small gradients of Q̂. �In principle, one can per-

form the gauge transformation Q̂→ ÛQ̂U†ˆ = Ŝx, and expand
the fermionic determinant in terms of the non-Abelian scalar,

Û†��Û, and vector,Û†��Û, potentials. We have chosen not to
do it here to avoid careful considerations of the terms arising
from the non-gauge-invariant integration cutoff in Eq.
�5.22��.

1. Stiffness

To find the gradient terms, we expand the order parameter
as

Q�r� = Q̂
1 −
1

2
�Q̂2�r�� + �Q̂�r� ,

�Q̂�r� =� d2k

�2��2eik�r��Q̂k. �5.35�

In order to preserve the constraints �3.2b� up to the second

order perturbation theory in �Q̂, we require

Q̂ = Q̂†, Q̂�Q̂ + �Q̂Q̂ = 0,

�1KK� � �̂z
s��Q̂�1KK� � �̂z

s� = − �Q̂ . �5.36�

Calculating the diagram in Fig. 16, we obtain for the iso-
tropic part of the free energy

F� =
1

2
� d2q

�2��2T�
�m

� d2k

�2��2 �Tr ĜQ��m,k� + q��

	�Q̂qĜQ��m,k���Q̂,−q

− Tr ĜQ��m,k���Q̂qĜQ��m,k���Q̂−q� , �5.37�

where �m are the fermionic Matsubara frequencies. The term
in the last line is local and it comes from the interaction part
of the Hamiltonian. Its explicit calculation is not necessary
because �Q'=0,k=0 corresponds to the motion along the de-
generate manifold which cannot produce any contribution to
the free energy—this requirement fixes the term unambigu-
ously.

Expanding the Green functions in powers of small mo-
mentum q, we find
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F� = −
1

4
� d2q

�2��2T�
�m

� d2k

�2��2

	
q2 �
�=x,y

Tr �k�
ĜQ��m,k���Q̂q�k�

ĜQ��m,k���Q̂−q� .

Then, the simple power counting shows that the integral is
contributed by �, vk�B, and therefore, the integration rule
�5.22� may be used. Finally, using the explicit expression for
the Green function from Fig. 16 and Eq. �5.36�, we obtain
after simple algebra

F� =
�K�T�

8
Tr� d2r��Q̂�2,

�K�T� =
B

4�
f� �0

2�T
� , �5.38�

where

f�x� = �
n=0

�
x2

��n + 1/2�2 + x2�3/2

� � 1 − �xe−2�x + O�e−4�x� , x 1

7��3�x2 −
93��5�

2
x4 + O�x6� , x� 1, �

�5.39�

and ��x� is the Riemann � function.
At low temperatures, ��T� T, we find

�K =
B

4�
�5.40�

independent of any logarithmic renormalization from higher
energies.

In the opposite case, ��T��T, only constant in time fluc-
tuations are important and we obtain S�=F� /T, where F� is
given by Eq. �4.4a� and the stiffnesses on the mean-field
correlation length, �MF �see Eq. �4.3��, are given by

�K��MF� = �s��MF� =
B

2�
TMF − T

TMF
� , �5.41�

where we used Eq. �5.33�.

2. Leading anisotropies

The quadratic anisotropies �4.4c� arise both due to the
warping of the single electron spectrum �2.13� and the short-
range interactions �2.14a� and �2.14b�. The diagrammatic
calculation of these anisotropies is straightforward and it is
shown in Fig. 17�a�.

We find F�=F
�

�1�+F
�

�2�, where the first contribution is due
to the warping

F�
�1� = − Tr Q̂�̂zQ̂�̂z

�w
2 �RB�B3

16�v2�RB�
f� �0

2�T
� , �5.42a�

where f� is given by Eq. �5.39�.
The second diagram of Fig. 17�b� describes the effect of

the short-range interaction �2.14a� and �2.14b�. We take into
account only the most relevant terms as specified in Eq.
�5.12b�. The term proportional to J−

� does not contain the
intervalley � matrices and, thus, does not cause the aniso-
tropy. We find

�n, �k
= −GQ(�n, �k);

GQ(�n, �k) = P̂(�n)
−i�n − ξŜz − Q̂ ⊗ σ̂AB

z ∆0

�2n + ξ2 + ∆2
0

S◦ = −1
2

δQ̂ω,qδQ̂−ω,−q

FIG. 16. Microscopic calculation of the stiffness and the collec-
tive mode velocity v* in the effective action. Notation is defined in
Eqs. �5.20� and �5.21�.

=
λw(RB)B

2
Λ̂z

�
(nx + iny)

2
�
Σ̂x + iΣ̂y

�
+ h.c.

�
;

a) F⊥ = −1
2

− 1
2

b) F� = −1
2

* − 1
2

− 1
2

c) F� = −1
8

*

− 1
4

− 1
2

− 1
2 *

− 1
2

− −

(

(

(

FIG. 17. Microscopic calculation of the anisotropic terms in the
free energy. Diagrams containing the largest power of ln�B /�0� are
marked by a star.
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F�
�2� = − 
F−

z �RB�Tr�Q̂�̂z�2 + F−
��RB� �

�=x,y
Tr�Q̂�̂��2�RBv�RB�

	
T�
n
� Bd�

2�v2�RB�
�0�T�

�n
2 + �2 + �0�T�2�2

. �5.42b�

The logarithmic integral in Eq. �5.42b� is eliminated using
Eq. �5.26�, and we obtain Eq. �4.4c� at the scale r0=�MF �see
Eq. �4.3�� with the couplings

�z = − B��w
2 �RB�B2

2��0�0�2
�0
2�0�
�0

2�T�
f��0�T�

2�T
�� + 2F−

z �RB�

	� 2N

�f� �

4g�RB���
2

� , �5.43a�

�� = − 2BF−
��RB�� 2N

�f� �

4g�RB���
2

, �5.43b�

where f��x� is defined in Eq. �5.28a�.
Equations �5.43a� and �5.43b� give complete expressions

for the anisotropies in the free energy �4.4c� in terms of the
microscopic coupling constants defined on the scale RB.
Equations �5.9�, �5.12�, �5.13�, �5.4�, �5.18�, �5.19�, �5.28a�,
�5.29a�, and �5.29b� enable us to find the magnetic field de-
pendence of the anisotropy constants. In the case of the
strong magnetic field B#B0 �see Eq. �5.17��, it yields

�z � − B	�w
2 �R�68B

B0
�3.9
�0

2�0�
�0

2�T�
f��0�T�

2�T
��

+ 12.9F−
z �R�� ,

�� � − 12.9BF−
��R� . �5.44a�

For the weak magnetic field, B!B0, we find

�z � − B��w
2 �R� B

5.1B0
�2

exp� �
ln
B0

B
+ 6.28�

2 ln
ln
B0

B
+ 6.28��

	
�0
2�0�
�0

2�T�
f��0�T�

2�T
��
0.15 lnB0

B � + 1�−13/4

+ 12.9F−
z �R� B

B0
�
0.15 lnB0

B � + 1�4� ,

�� � − 12.9BF−
��R� B

B0
�
0.15 lnB0

B � + 1�4

.

�5.44b�

Comparison of the anisotropies from Eqs. �5.44a� and
�5.44b� with the expressions for stiffness �5.41� together with
the estimates F−

z,��R��1 indicates that the weak anisotropy
case is possible only for B�B0, and at the strong magnetic
field, the anisotropy is dominating already at the mean-field
correlation length �see Sec. IV C�.

The very peculiar situation arises if F−
z �R�"0, as we ex-

plained before; the value and the sign of this constant are
determined by the details at the distances of the order of the
lattice constant. In this case, the exchange and the warping
produce the contribution of the different signs, and intersec-
tion of the Heisenberg line, �z%0, ����= ��z� �see Sec.
IV B 2� becomes possible. Using Eq. �5.44a� and estimates
�5.10� and �5.13�, we find the estimate for such field BH

BH � 10−2B0 �F−
z �R� + �F−

��R���

�w
2 �R� �0.26

� 1 – 10B0# B0.

�5.45�

The manifestation of this line on the phase diagram will be
considered in Sec. V E.

Calculation of the other anisotropies is self-explanatory
from diagrams in Figs. 17�b� and 17�c�. Though, formally,
they are of the same order in perturbation theory, they still
can be classified in powers of ln�B /���1. Taking into ac-
count only the leading logarithmic contributions, and re-
expressing the logarithmic expression using the mean-field
equation �5.26�, we find for anisotropy coefficients in Eqs.
�4.4d� and �4.4e�

���MF� =
B

2��N�F�
− �R� − 3J�

��R��

�f� �

4g�RB�� �
2

f��0�T�
2�T

� ,

�5.46a�

���MF� =
2B
�

�F−�R��2D� N

�f� �

4g�RB�� �
	�0�T�
�0�0� �

2

f��0�T�
2�T

� , �5.46b�

where D�x�=xe−x, and the functions f�,� are defined in Eqs.
�5.39�, �5.28a�, and �5.28b�. Deriving Eq. �5.46a�, we took
into account that � is important only if ��→0 �see Sec.
IV B 1�. Thus, the irrelevant constants �see Eqs. �5.12a�� had
to be taken into account.

Expressions �5.46a� and �5.46b� together with Eqs.
�5.12a� and �5.15� show that those anisotropies are very
small, so we will not analyze their asymptotics further.

E. Phase diagram in B−T plane

This section combines the symmetry analysis of Sec. IV
with the microscopic calculation of the free energy couplings
in Sec. V D. As a result, we will construct the phase diagram
in the plane determined by the Zeeman splitting B and by the
system temperature T. As we have discussed in Sec. IV, the
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interesting phase transitions are determined by the thermal
fluctuations, and it is convenient to introduce the dimension-
less Ginzburg-Levanyuk parameter

Gi �
4TMF

B
� 1, �5.47�

characterizing the strength of such fluctuations. Here, the
mean-field transition temperature is given by Eqs. �5.31�,
�5.27�, �5.28a�, �5.28b�, �5.29a�, and �5.29b�.

Apparently, not all the regions of the phase diagram of
Fig. 9 can be explored by varying B and T, and we will
restrict ourselves with two most realistic, as we believe,
cases. Namely, we assume that the absolute values of the
interaction constants �F−

z,��a���1. For the sake of concrete-
ness, we assume F−

��a�%0. �The case of F−
��a�"0 is ob-

tained by the replacement N1↔N4.�
Let us consider, first, the case of F−

z"0. Then, according
to Eqs. �5.43a� and �5.43b�, one finds �z,�"0. The mean-
field diagram obtained from Fig. 4 is trivial and includes the
continuous transition from the disordered normal state to the
spin-flux state �Fig. 3�d�� of the excitonic insulator �see Fig.
18�.

The fine structure of the phase diagram �Fig. 18�b�� is
obtained from the general Fig. 9 by using the microscopic
expression for the free energy couplings derived in Sec. V D.
The topological structure of the phase diagram is most easily
obtained by the mapping of the paths in B, T plane to the
path in the ��z ,��� plane, as shown in Fig. 18�c�.

The positions of the transitions lines on the phase dia-
grams are obtained by combining the phenomenological re-
sults of Sec. IV and the microscopic analysis of Sec. V D.
For instance, using Eqs. �4.15� and �5.41�, we obtain in the
limit of the small vortex fugacity

TMF − T

TMFGi
� 	4 line �i�

1 line �ii� .
� �5.48a�

Analogously, using Eqs. �4.20�, �4.14�, and �5.44b�, we ob-
tain the position of the Ising line. With logarithmic accuracy,
we find for line �iii� of Fig. 18�b�

TMF − T

TMFGi
�� 1

4 ln
B0Gi

B
, B0 exp−

1

Gi
�! B� B0Gi

→0, B# B0Gi .
�

�5.48b�

The case of F−
z"0 is more sophisticated. As we noticed in

Sec. V D, coefficient �z changes its sign as a function of the
magnetic field and, at some point, crosses the Heisenberg
line at field BH. At the mean-field level, it corresponds to the
continuous transition between two kinds of excitonic insula-
tor: spin-flux state �see Fig. 3�d�� and the link centered spin-
density wave �see Figs. 3�b� and 3�c��.

Similar to the previous case, the fine structure of the
phase diagram �Fig. 19�b�� is obtained from the general Fig.
9 by the mapping of the paths in B, T plane to the path in the
��z ,��� plane, as shown in Fig. 19�c�.

The Berezinskii-Kosterlitz-Thouless transition lines �i�
and �ii� in Fig. 19�b� are still determined by the expressions
�5.48a�. Ising line �iv� and the Berezinskii-Kosterlitz-
Thouless line are found from Eqs. �4.40a�, �4.40b�, and
�5.41�. Expanding

��� B − BH

BH
���,

we obtain with logarithmic accuracy for BH exp�−Gi�� �B
−BH ��BH:

1
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FIG. 18. Phase diagram of graphene in a parallel magnetic field
for the short-range interaction constant F−

z%0. �a� Mean-field struc-
ture of the phase diagram. �b� The “fine” structure of the phase
diagram in the close vicinity of the mean-field transition tempera-
ture, TMF�B�. �c� Relation of the phase diagram �b� to the more
phenomenological phase diagram of Fig. 9.
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TMF − T

TMFGi
��

1

8
ln

BH

B − BH
line �iv�

1

8
ln

BH

BH − B
line �v� .� �5.49a�

For larger B, the Ising line �iv� approaches the mean-field
temperature. The Berezinskii-Kosterlitz-Thouless transition
line �v� for B�BH can be found using Eqs. �4.20�, �4.14�,
and �5.44b�. For the fields B0 exp�−1/Gi�!B�B0Gi, this
yields

TMF − T

TMFGi
�

1

4
ln

B0Gi

B
line �v� . �5.49b�

The Berezinskii-Kosterlitz-Thouless line �vi� turns out to lie
outside the fluctuation region due to the large numerical fac-
tor in Eq. �4.44� and the smallness of � in Eq. �5.46b�. We
will not write down its asymptotic behavior.

This completes our analysis of the structure of the phase
diagram of graphene in the parallel magnetic field character-
ized by the Zeeman splitting B.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have discussed two problems concerning
clean graphene: �i� possible effects of in-plane magnetic field
in facilitating the formation of excitonic condensate and �ii�
the role of the long-range Coulomb interaction and its influ-
ence on other interactions in the system. The second topic is
more general than the first, and has a broader significance,
though, as far as the paper is concerned; it was discussed in
the second part.

In zero magnetic field, graphene is a gapless semiconduc-
tor with two Fermi points in the Brillouin zone �valleys�.
In-plane magnetic field pushes up- and down-spin bands in
opposite directions, transforming the system into a metal
with extended Fermi surfaces for electrons and holes of op-
posite spins. There are two such Fermi surfaces, correspond-
ing to two possible valley indices. Electrons and holes attract
through the Coulomb interaction, which creates a possibility
of exciton condensation along the lines first described by
Keldysh and Kopaev.11 The maximal possible symmetry of
the order parameter is U�2�; lattice effects bring it down to
U�1�. The system in its low temperature phase is an insulator
with a gapless collective mode, corresponding to fluctuations
of spin density in the directions transverse to the applied
magnetic field. The above is a brief summary of the discus-
sion of Secs. II–IV. Section IV also contains a detailed phase
diagram. The discussion in these sections dealt with the
Landau-Ginzburg free energy functional written purely on
symmetry grounds, where various energy scales of the sys-
tem enter as parameters.

Section V contains a microscopic analysis tailored espe-
cially for graphene. The ultimate goal was to obtain esti-
mates for the critical temperature and various parameters of
the phase diagram, but a by-product of the analysis is a study

of how the strongest interaction in graphene—the Coulomb
interaction—affects the spectrum and renormalizes other in-
teractions �such as the short-range exchange�. As is well
known, the Coulomb interaction in graphene, measured by
its dimensionless value g=�e2 /2v, is quite strong at energies
of the order of the bandwidth. We have found, however, that
the effective coupling steadily diminishes at low energies
and asymptotically vanishes at E=0. The scale dependence
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FIG. 19. Phase diagram of graphene in the parallel magnetic
field for the short-range interaction constant F−

z"0. �a� Mean-field
structure of the phase diagram. �b� The fine structure of the phase
diagram in the close vicinity of the mean-field transition tempera-
ture, TMF�B�. �c� Relation of the phase diagram �b� to the more
general phenomenological phase diagram of Fig. 9. Cross sections
denoted by , �, and � are shown in Fig. 18�c�.
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of g is rather slow and is given by Eq. �5.4�. This formula
includes an important scale R, which we estimate for
graphene as being of order 102–103 lattice constants. This
scale separates the region of relatively strong interaction,
where g�r� decreases as a power law, from the region of
weak coupling, where g�r���ln r�−1. It also sets the scale B0

for the magnetic field �5.17� �our estimate is B0
�10–100 K�.

The renormalization process is drastically altered at ener-
gies of the order of the applied magnetic field B. The field
sets the ultraviolet cutoff for the physics of the excitonic
insulator. However, the upper cutoff for its collective excita-
tions is much lower, and is set by the value of the mean-field
gap �0. One may anticipate that the latter energy scale is
exponentially small in comparison with the cutoff B. This is
indeed the case, but, fortunately, the inverse coupling con-
stant 1 /g�r�B−1�, which stays in the exponent, depends
rather weakly on the magnetic field �see Eqs. �5.29a� and
�5.29b�� so that the magnitude of �0 is not that small. Our
estimate is that in fields of the order of or stronger than 10 T,
the mean-field temperature is TMF�10−3B. This makes it
possible to observe the excitonic effects described in this
paper in the temperature range of tens of mK �see more
discussion in Sec. V C�.

Though the long-range Coulomb interaction is certainly
the main player, its renormalization drags with itself weaker
interactions, such as the short-range exchange, strengthening
them at low energies. Such interactions break the U�2� sym-
metry present at low energies when only the long-range Cou-
lomb interaction is taken into account. The analysis of Sec.
V C 2 demonstrates that the U�2� symmetry survives in the
excitonic insulator only at B�B0 when the estimated transi-
tion temperatures are probably too low for the effect to be
observed. In the realistic region B&B0, the anisotropy is
strong. The expected phase diagrams in the B-T plane are
given in Figs. 18 and 19 �they differ by a sign of a certain
interaction parameter which, in the current stage, remains
unknown�. Strong fields of the order of 10 T or more, which
are required to make the excitonic insulator observable at
temperatures above tens of mK, will probably put one in the
regime marked by � or � on the phase diagram of Figs. 18
and 19. The spin configuration corresponding to this regime
is depicted in Fig. 3�d� and corresponds to the spin-flux
phase.
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APPENDIX A: DERIVATION OF EQUATION (4.12)

Let us rewrite Eq. �4.4b� in a form

F� =
�K

4
Tr ĵ�

2 +
�s − �K

8
�Tr ĵ��2, �A1�

where

ĵ� � − iV̂†��V̂ . �A2�

The topological defects �4.8� and �4.10� are determined by
the condition

1

2�
� dx� Tr ĵ� = ± 1; ±

1

2
, �A3�

i.e.,


 =
− i

2
Tr ln V̂ �A4�

must be a multivalued function of the coordinate.
In order to avoid the consideration of the multivalued

field, we introduce cuts parallel to, say, the x axis, connecting
each vortex or half-vortex with the boundary of the system
�any physical quantity, obviously, does not depend on the
choice of the cut� �see Fig. 20�, and consider all the matrices
to be single-valued functions but the phases experiencing the
discontinuity on the cuts.

The current �A2� should be continuous, thus, we modify
the definition as

ĵx = − iV̂†�xV̂ ,

ĵy = − iV̂†�yV̂ + ��
j=1

N�1�

lj
�1���y − yj

�1��sgn�x − xj
�1��

+ � �
j=1

N�1/2�

lj
�1/2�1 + m j · �

2
��y − yj

�1/2��sgn�x − xj
�1/2�� ,

�A5�

where N�1� and N�1/2� are the number of the vortices and the
vertices, respectively, xj and yj are their coordinates, Ij = ±1
is the corresponding vorticity, and m j is the unit vector char-
acterizing the spin of the jth half-vortex.

Writing the summation over the vortex and half-vortex
coordinates explicitly, we obtain

FIG. 20. Cuts on the x-y plane attached to each topological
defect in the five-vortex configuration.
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Z � �
N�1�=0

�
�1

N�1�

N�1�! �
j=1

N�1�

�
lj
�1�=±1

� dxj
�1�dyj

�1�

r0
2 �

N�1/2�=0

�
�1/2

N�1/2�

N�1/2�! �
j=1

N�1/2�

�
lj
�1/2�=±1

� dxj
�1/2�dyj

�1/2�dm j

4�r0
2

	� DV̂ exp	−� dxdy
 �K

4T
Tr ĵ�

2 +
�s − �K

8T
�Tr ĵ��2�� , �A6�

where the matrix current ĵ� is given by Eq. �A5�.
After introducing the dual 2	2 matrix field ĥ= ĥ†, Eq. �A6� acquires the form

Z � �
N�1�=0

�
�1

N�1�

N�1�! �
j=1

N�1�

�
lj
�1�=±1

� dxj
�1�dyj

�1�

r0
2 �

N�1/2�=0

�
�1/2

N�1/2�

N�1/2�! �
j=1

N�1/2�

�
lj
�1/2�=±1

� dxj
�1/2�dyj

�1/2�dm j

4�r0
2

	� DV̂Dĥ exp	−� dxdy
 �K

4T
Tr ĵx

2 +
T

4�K
Tr��xĥ�2 +

�s − �K

8T
�Tr ĵx�2 +  T

8�s
−

T

8�K
��Tr �xĥ�2 + i Tr ĵy�xĥ�� , �A7�

Substituting Eq. �A5� into Eq. �A7�, integrating the terms with � functions by parts, and summing over lj, we find

Z �� DV̂Dĥ �
N�1�=0

�
�1

N�1�

N�1�! �
j=1

N�1�

� dxj
�1�dyj

�1�

r0
2 2 cos � Tr ĥ�rj

�1�� �
N�1/2�=0

�
�1/2

N�1/2�

N�1/2�! �
j=1

N�1/2�

	� dxj
�1/2�dyj

�1/2�dmj

4�r0
2 2 cos �
Tr ĥ�rj

�1/2��
1 + m j · ��

2
�exp	−� dxdy
 �K

4T
Tr �xV̂

†�xV̂ +
T

4�K
Tr��xĥ�2

+
�s − �K

8T
�− i Tr V̂†�xV̂�2 +  T

8�s
−

T

8�K
��Tr �xĥ�2 + Tr V̂†�yV̂�xĥ�� . �A8�

After the summation over N�1/2� and N�1�, and integration
over m j, we obtain Eq. �4.12�.

APPENDIX B: ANALYSIS OF THE ISING PHASE
TRANSITION

In the vicinity of T=��K, where the mutually dual cosines
have the same scaling dimension 1, partition �4.26� can be
mapped to the quantum many-body problem at zero tempera-
ture and then refermionized. The reader can consult Ref. 14,
where the necessary information about the two-dimensional
Ising model is provided. Choosing the y coordinate for
imaginary time, we rewrite the classical Eq. �4.26�

Z � Tr exp− Ly� dxĤ� ,

Ĥ =
�K

2T
��x$̂�2 +

T

2�K
��x
̂�2 +

��

R*
2T

cos 2$̂ +
�14

R*
2 cos�2�
̂� ,

��x$̂�x�; 
̂�x��� = i��x − x�� . �B1�

Then using the fermionization rules

R̂�x� � exp�i$̂�x� + i�
̂� ,

L̂�x� � exp�− i$̂�x� + i�
̂� , �B2�

we write down the corresponding one-dimensional quantum
fermionic Hamiltonian density as

Ĥ = i�L+�xL − R+�xR� + ��T/�K − 1�R+RL+L + ���R+L

+ L+R� + �34�R+L+ + LR� . �B3�

It is convenient to decompose the Dirac spinor into the real
�Majorana� components:

R = r1 + ir2, L = l1 + il2, �B4�

where the corresponding operators are real �ra=ra
+ , la= la

+�
and satisfy the following commutation relations:

�ra�x1�,rb�x2�� = �ab��x12� ,

�la�x1�,lb�x2�� = �ab��x12�, �ra�x1�,lb�x2�� = 0. �B5�

Then Eq. �B3� becomes

H =
i

2
�la�xla − ra�xra� + ��l1r1��l2r2� + i���/T + �34�r1l1

+ i���/T − �34�r2l2, �B6�

where �= �T / ���K�−1�. Hamiltonian �B6� describes two
quantum Ising models coupled by the energy density opera-
tors. The original order parameter operator can be expressed
in terms of order and disorder parameters of the Ising models
� and � �see Ref. 14 for the corresponding definitions�:
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ei$ = �1�2 + i�1�2. �B7�

The sign of the Majorana mass in the Ising model plays
an important role, determining which operator �� or �� ac-
quires a vacuum expectation value. Then from Eq. �B7�, it is
clear that this operator acquires a finite expectation value
when the masses of the two species of Majorana fermions
have the same sign, so that either �a or �a fields condense
simultaneously. The high temperature phase is characterized
by masses of different signs.

At small ����1, we can use perturbation theory to write
the equations for the masses �let us choose ��%0�:

m1 = ���/T + �34�% 0,

m2 = ��

T
− �34� +

�

2�
m1 ln 1

R*�m1�� . �B8�

It follows that m2 changes sign at

Tc

��K
− 1 =

��/T − �34

��/T + �34
ln 1

R*��� + �34�
� , �B9�

where the second order phase transition from disordered
�high temperature� to ordered �low temperature� state takes
place. Equation �B9� agrees with Eq. �4.30�.
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