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Phase transitions in a two-dimensional lattice gas model of orientable diatomic molecules.

II. Order-disorder transitions of superantiferromagnetic and c(2X2),y phases
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The nature of phase transitions occurring in the two-dimensional spin-1 lattice model with the first- and
second-nearest-neighbor interactions is studied using Monte Carlo methods. This system models the adsorption
of rigid diatomic molecules (A-B) on (100) surfaces of crystals, assuming that each molecule is oriented
perpendicularly to the crystal surface, and the binding energy depends on whether the A atom or B atom is
adsorbed. It is shown that under the condition of a fully filled lattice, the order-disorder transition of the
superantiferromagnetic (SAF) phase may occur via a continuous as well as a first-order phase transition,
depending on the model parameters. The continuous order-disorder transition of the SAF phase is found to be
nonuniversal. The nature of the various phase transitions is analyzed by the finite size scaling method. The
application of this method is also demonstrated for the case of a second-order transition from one ordered
phase to another ordered phase. We have also demonstrated that the phase diagram topology changes with the
model parameters. While at low temperatures a first-order transition between the SAF phase and the
¢(2 X 2) pp-ordered phase corresponding to a half-filled lattice occurs, this transition line at higher temperatures
may terminate either by a triple point or a tricritical point. For the latter case a phase diagram with a different

type of multicritical point is suggested.
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I. INTRODUCTION

Various lattice models have been used to study the behav-
ior of pseudo-two-dimensional adsorbed layers formed on
crystals."? In the case of simple spherically symmetric ad-
sorbates, e.g., atoms and simple molecules such as methane,
the two-state Ising model, known also as the spin-1/2 model,
is often used.! The Ising model Hamiltonian

Hlsingz‘]z Sisj_HE S (1)
(ij) i

can be readily mapped onto the corresponding lattice gas
model Hamiltonian

Hig=u nnj— u 2 n; )
(ij) i

by replacing the spin variables (s;=+1/2) by the occupation
variables [n;=(2s;+1)/2=1,0]. The coupling constant J and
the magnetic field H are then related to the nearest-neighbor
interaction parameter u and the chemical potential w,' re-
spectively, and the chemical potential term may also include
the contribution due to the interaction of adsorbed atoms
with the substrate. Of course, one can use a similar procedure
to treat more complex systems involving longer-range
(second- and third-nearest neighbor and so on) interactions.

Monolayers formed by spherically symmetric adsorbates
on triangular lattices, like those corresponding to the basal
planes of graphite, boron nitride, and lamellar dihalides, have
been found to be best represented by the lattice gas Hamil-
tonians obtained by the appropriate transformation of the
three-state Potts model Hamiltonian.?
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When one considers adsorption of nonspherical mol-
ecules, e.g., rigid diatomic molecules (A-B), the situation
becomes more complex, due to the larger number of possible
configurations. The adsorbed molecule may occupy one or
two lattice sites, depending on whether it assumes the orien-
tation parallel or perpendicular to the surface.*~® In the latter
case, one also has to distinguish between two different states,
corresponding to the cases when different atoms (A or B) are
in contact with the surface. In several experimentally studied
systems, e.g., monolayers of CO on NaCl(100) or MgO(100)
surfaces,” the adsorbed molecules are highly tilted, and
preferentially adsorbed via one atom. This allows one to
model such systems using the spin-1 lattice model, in which
the spin variable can take upon three different values +1 and
0,'° depending whether a lattice site is taken by A, B, or is
empty. In real adsorption systems the corrugation potential is
often too weak to exclude the formation of films in which the
adsorbed atoms assume the positions other than resulting
from the surface lattice structure. But we assume throughout
that the corrugation potential of the substrate is so strong that
adsorption occurs only on the sites of the “preferred lattice”
defined from the minima of this potential, and hence lattice
models are an appropriate description of the system.

Several versions of the spin-1 lattice model have been
proposed!®!7 and applied to study a variety of problems in
condensed matter physics: the description of one and multi-
component fluids,'3-!3 dipolar and quadrupolar orderings in
magnets,'®!® microemulsions,'? ordering in semiconducting
alloys,'” and adsorbed layers.*~%2%2! The model proposed by
Blume, Emery, and Griffiths (BEG)'® was quite successfully
used to describe the phase behavior of liquid helium mix-
tures, consisting of *He and *He isotopes.
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The interest in spin-1 lattice models stems not only from
their possible applications to describe diverse physical sys-
tems, but is also highly stimulated by the observed richness
of their phase diagrams. Already in the case of spin-1 lattice
models involving the first-nearest neighbor interactions only,
different types of ordered phases and several different phase
diagram topologies have been found.'*!4?223 A complex
phase behavior of spin-1 lattice models primarily arises from
competing interactions involving, in the most general case,
the bilinear, biquadratic, and quadrilinear first-nearest-
neighbor interactions and linear as well as quadratic single
spin terms, which describe the effects due to the single spin
anisotropy and the external field.

The situation becomes still more complex when the sec-
ond-nearest-neighbor interactions are taken into account.**
The transfer matrix finite size scaling calculations of Badeh-
dah et al.** suggested that in such a case a rather simple
Blume-Capel (BC) model'®!! may violate the ordinary uni-
versality hypothesis. Extensive Monte Carlo calculations, re-
ported in our previous paper,* have clearly demonstrated that
the extended BEG spin-1 lattice model with the first- and the
second-nearest-neighbor interactions possesses a rich variety
of ordered structures of different symmetry and exhibits
phase diagrams of different topology, depending on the
model parameters.

This paper reports on the results of the Monte Carlo simu-
lation study of the same model, but in other regions of the
parameter space. In particular, we concentrate on a series of
systems which, at sufficiently low temperatures order into
the ¢(2 X 2)sg-ordered phase, corresponding to a half-filled
lattice, and into the dense superantiferromagnetic (SAF)
phase, corresponding to a fully filled lattice. Our primary aim
here is to elucidate the effects of varying the strength of
different coupling constants on the phase behavior and cross-
over between different universality classes of the phase tran-
sitions. It is demonstrated that SAF order-disorder transition
may be either a first- or a second-order transition, and that
the first-order phase transition between the low density c(2
X 2)ap and the high density (SAF) ordered phases may ter-
minate at a triple point or at a tricritical point. In the former
case we have found the peritecticlike phase diagram
topology? at low temperatures, while in the latter case a new
type of multicritical point has been observed, above the tri-
critical point of the ¢(2 X 2),r to SAF transition.

The paper is organized as follows. In Sec. II we recall the
model and define the order parameters used to monitor the
formation of different ordered phases. Section III is devoted
to a description of the Monte Carlo methods applied here.
The results are presented and discussed in Sec. IV. The paper
concludes in Sec. V, where we briefly summarize our find-
ings.

II. MODEL

Although the applied lattice gas model is the same as used
in our earlier work,* nevertheless it seems justified to recall
its basic assumptions again. We consider a simple square
lattice of sites, and to each site i we assign an occupation
variable n;, which is equal to zero (unity) when the site is
empty (occupied).
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Each occupied site hosts a diatomic molecule, which is
assumed to take on only the vertical orientation with respect
to the surface plane and can be bound to the surface via
either atom A or B. The energy of adsorption depends on the
orientation of the adsorbed molecule and is given by

VA? S;i= 1

V(Si) =

3
VB, Si=_17 ( )

where the spin variable s;=1 and —1 corresponds to two
different orientations of the molecule adsorbed at the lattice
site. Then, we assume that a pair of molecules interacts one
with another, whenever they occupy the first- as well as the
second-nearest-neighboring sites. The energy of interaction
between a pair of molecules also depends on their relative
orientation, and can be written as u(s;,s;), where k=1 or 2
for the first- and the second-nearest-neighbor interaction, re-
spectively. We should emphasize that for simplicity, the in-
teraction energy is assumed to depend only on the relative
orientation of both molecules, so that we can define u(s;,s;)
as

Up g §;=;

T k=1,2. (4)

u s.s4):
k( 9] e Si#:Sj’

The Hamiltonian of the above defined model can be writ-
ten as

1 1
H= EE ”i”jul(si»sj) + 52 ninjuz(si»sj)
(i (ij)2

+ 2 V(sdn = p 2 m, (5)

where the first (second) sum runs over all pairs of the first
(second) nearest neighbors, u is the chemical potential, and
the sums in the third as well as in the fourth terms run over
all lattice sites. Here we assume that all energies [uk(s,-,sj)
and V(s;)] are negative (positive) for attractive (repulsive)
interactions.

The ground state properties of the model can be conve-
niently described using the parameters AV=Vp-V,, Au,
=uy ,—uyp and Auy=u, ,—u,,. Throughout this paper we
assume that | V| is taken as a unit of energy and assume that
V,=-2.0, V3=-1.0 so that AV=1.0. Thus the interaction en-
ergies u;,; (k=1,2 and I=a,b), the differences Au, (k=1,2),
as well as all other energylike quantities, such as temperature
and the chemical potential, are expressed in units of |Vj|. A
particular choice of the values of the parameters V, and Vp
was made to make the results compatible with those pre-
sented in our previous work.*

The model predicts that when the first-nearest-neighbor
interactions u;; (k=a,b) are either attractive or repulsive
while the second-nearest-neighbor interactions u,; (k=a,b)
are nonrepulsive, six different ordered structures can appear
in the ground state (see Fig. 1). In the case of nonrepulsive
first-nearest-neighbor interactions only the ordered states of
the total density p=2inﬁv =1, i.e., with all N lattice sites oc-
cupied, are possible. All these structures (F, AF, SAF, and
A3B) are schematically shown in the upper part of Fig. 1. On
the other hand, when the first-nearest-neighbor interactions
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FIG. 1. Schematic representation of different possible ordered
states (T and | denotes molecules adsorbed via the atom A and B,
respectively) and the decomposition of a square lattice into four
equivalent sublattices a, b, ¢, and d.

(uy, and/or u; ;) become repulsive, the two additional or-
dered states of the density p=0.5, in which only half of all
lattice sites are occupied by the adsorbed molecules and la-
beled as c(2 X 2)g and (2 X 2)op (see lower part of Fig. 1),
can also be formed. The regions of stability of the above
listed ordered phases are shown in Fig. 2, which presents the
ground state phase diagram evaluated for AV=1.0.

The locations of three triple points ¢, f,, and 73 are en-
tirely determined by the values of Au;, Au,, and AV as fol-
lows:

1y Aul = OZSAV, AMZ = 00,
1 Aul = OSAV, AMZ = OZSAV,

13: Aul = 00, AMZ =0.25AV. (6)

The above lattice gas model Hamiltonian can be mapped
onto the appropriate spin-1 lattice model Hamiltonian

1 1 1
H, = _IZIE Slejz + _AﬁIE S[Sj+ _1722 SIZSJZ
(i 2 (i ()
1 _ N
+ =M, X S+ VY ST-AVY S;-HY, S, (7)
(i i i i
where the spin variable can assume three different values

S;=s;=%1,0, the occupation variable n; is replaced by Siz,

1 . 1
Uy = E(Mk,a +up), A= E(uk,a — U p), (8)

_ A1
V==(Vy+Vp), AV=5(VB_VA)v 9

N | =

and H is the external field, which can be related to the chemi-
cal potential w. This spin-1 model Hamiltonian is better
suited to define the order parameters representing different
ordered structures because possible symmetries are easily
recognized.

If one decomposes the entire lattice into four interpen-
etrating and fully equivalent sublattices, as shown in the
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FIG. 2. Ground state phase diagram for the systems with AV
=1.0. Horizontal dashed line delimits the regions of stability of low
density ordered phases ¢(2 X 2)g and ¢(2 X 2) or and solid lines de-
limit the regions of stability of the ordered phases of the density
p=1. Symbols (@, <, and *) show the points at which the calcu-
lations have been carried out. Vertical thick dashed lines mark the
paths considered in Ref. 4.

rightmost panel of the lower part of Fig. 1, the average mag-
netization of each sublattice k (a,b,c, and d) is given by

my = %2 S;. (10)
L iek
Of course, one can equivalently work using the lattice-gas
formulation and define sublattice densities instead of the
above defined sublattice magnetizations, but the use of spin
variables is more convenient and simplifies the notation. One
should note that the structure and symmetries of all ordered
phases are quite well described by the sublattice magnetiza-
tions.
Using the above sublattice magnetizations we define the
following four order parameters:

W, =m,—m,—m,+my, (11)
W, =m, +m,—m,—my, (12)
Vs =m,—my,+m.—my, (13)
W, =m,+my,+m,+my. (14)

The order parameters W, and W, represent two components
of the order parameter suitable to detect the presence of the
SAF as well as ¢(2X2)ar phases. In the case of a square
lattice considered here, the two components of the above
order parameter are equivalent and the order parameter is
invariant under global rotation. Thus it is the magnitude of
the order parameter which matters, and we define the order
parameter Wgup as

Woup= ¥+ W3, (15)
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The order parameter W5 describes the ordering character-
istic to AF and ¢(2 X 2)g structures, while W, is suitable for
describing the F phase.

It is also convenient to define the order parameter, which
allows one to distinguish the phases SAF and c¢(2X2)p.
Namely, by dividing the lattice into cells, each containing
four sites belonging to different sublattices, the order param-
eter suitable for detecting the phase SAF can be defined as®

q’S = 2 (Sn,a - Sn,c) (Sn,b - Sn,d)’ (16)

where the sum runs over all cells and S, ; represent the spin
variable of the site belonging to the cell n and the sublattice
k (k=a, b, ¢, or d). The order parameter Vs is equal to zero
in all phases but SAF, for which it is equal to unity.

The order parameters defined above: Wqap, V3, Wy, and
W5 suffice to distinguish all ordered phases considered in this
work. Namely, we exclude from the discussion the systems,
which in the ground state can order into the AzB phase.

III. MONTE CARLO METHOD

The model presented above has been studied by Monte
Carlo methods in the grand canonical ensemble,’®?’ using
the simulation cell of the size (L X L), with L ranging be-
tween 20 and 140 and periodic boundary conditions are ap-
plied in both spatial directions.

In order to study the nature of different phase transitions
predicted to occur in the model, we have applied the histo-
gram reweighting method?®?° as well as the hyperparallel
tempering technique,’*3! supplemented by the finite size
scaling analysis.?’ In particular, the hyperparallel tempering
allows one to investigate several thermodynamic states in a
single run and, due to much faster convergence and lower
fluctuations, is much less time demanding than indepen-
dently performed simulations at each state point.>° These fea-
tures are of particular importance here since it has been
found that in order to obtain reliable results, rather large
systems were necessary.

The length of the Monte Carlo (MC) runs ranged between
10° and 107 Monte Carlo steps, where 1 Monte Carlo step
corresponds to one sweep over the entire lattice.

The recorded quantities were the densities of differently
oriented particles Ps.» the total density p=p_;+p;, the above
defined order parameters, which always are taken to be ab-
solute values, the corresponding susceptibilities

12
X (1) = [P = ([ P)7], (17)
and the fourth-order cumulants®’
(U
Up,;,(T=1-——75. 18
\I',L( ) 3<‘P2>2 ( )

In the above, W denotes any of the order parameters defined
in Sec. II.

Apart from the above defined structural parameters we
have also calculated the average energy (per lattice site), (e)
and the heat capacity Cy, obtained from the fluctuation theo-
rem
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L2
Cy= ﬁ[(ez} —{e)’]. (19)

We recall that since we have assumed AV to be the unit of
energy, the reduced temperature is defined as T =kT/AV,
and the reduced chemical potential is given by u'=u/AV.

IV. RESULTS AND DISCUSSION

The aim of our study is twofold. In Sec. IV A we concen-
trate on the order-disorder transition of the SAF phase, and
consider a rather special case of fully filled lattice. It is dem-
onstrated that this phase transition can be of the first as well
as of the second order, depending on the magnitude of the
model parameters. It is also shown that the continuous order-
disorder transition of the SAF phase is nonuniversal.

Two sets of systems have been considered, characterized
by different values of the model parameters. In the first set of
systems, labeled as S1, we have fixed the value of Au,
=0.6 (u; ,=—1.0 and u; ,=—1.6) and changed the magnitude
of Au,, assuming that u, , is equal to 0.0, while allowing u,
to vary. Thus, we have performed the calculations at the
points marked by stars in Fig. 2.

In the second series of systems, labeled as S2, we have
fixed the value of Auy=0.4 (u,,=0.0 and u,,=-0.4), while
the magnitude of Au; has been varied, between —0.29 and
0.9, assuming that u, , is constant and equal to —1.0. These
parameter combinations are shown by full dots in Fig. 2.

In the second part of this section (Sec. IV B) we attempt
to evaluate the phase diagrams for the systems characterized
by different values of the interaction parameters. It is shown
that the phase diagram topology depends on the relative
magnitudes of interaction energies between the pairs of dif-
ferently oriented molecules. In particular, it is shown that the
lines of continuous order-disorder phase transitions of ¢(2
X 2)ar as well as of SAF phases meet the line of, also con-
tinuous, phase transition between the ¢(2 X 2),r and SAF at
the multicritical point.

In the present paper, we have performed the calculations
at the points marked by diamonds in Fig. 2. Thus, we have
assumed that Auy=0.7 (u,,=0.0, u,,=-0.7), u; ,=0.5, and
allowed u;, to vary between —0.5 and 1.0. Nine different
systems, characterized by the values of u, ; given in Table I,
have been considered.

A. Disordering of the SAF phase on a fully filled lattice

We begin with a discussion of the order-disorder transi-
tion of the SAF structure, occurring under the condition of
the fully filled lattice, p=1.0. This problem has already been
addressed in our previous work,* where we have discussed
the systems with the fixed values of u; ,=-1.0, u;,=-1.2
(Au;=0.2), and u, ,=0.0 and different values of u,  exceed-
ing —0.25, along the path marked by a thick dashed line 2 in
Fig. 2. It has been demonstrated that the critical behavior of
the order-disorder transition is nonuniversal. In particular, we
have found that the fixed point of the order parameter cumu-
lant Ug,p changes with Au, (see Fig. 3) and approaches a
constant value of about 0.64 when Au, becomes large
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TABLE 1. The listing of systems discussed in Sec. IV B and
characterized by Auy=0.7 (u,=0.0, up,=-0.7) and different val-

ues of Auy (u;,=0.5).

Label Au,y
M1 -0.5
M2 0.0
M3 0.3
M4 0.5
M5 0.6
M6 0.7
M7 0.8
M8 0.9
M9 1.0

enough. It has been also shown that, unexpectedly, the criti-
cal exponents vy and v gradually approach Ising values of y
=1.75 and v=1.0 for sufficiently large values of Au, and
gradually increase when Au, approaches the value of 0.25,
which delimits the stability regions of SAF and A;B ordered
phases. We have to admit that it is not clear why the critical
exponents assume the values characteristic to the universality
class of the two-dimensional (2D) Ising model, while the
fixed point value of the fourth-order cumulant of the order
parameter has a much larger value, of about 0.64, than pre-
dicted for the 2D Ising model,>” namely, 0.613. Figure 4
shows the changes of the fixed point value of the order pa-
rameter cumulant and of the order-disorder transition tem-
perature with Au, obtained for the set S1. One readily notes
that for small values of Au, we obtain the results suggesting
that the transition belongs to the universality class of the 2D
Ising model (Ug,z=~0.613) and then increases when Au, be-
comes higher.

The difference between the systems considered in Ref. 4
(cf. Fig. 3) and these discussed here, is that in the former
case the SAF structure meets the region of stability of the

1.0 0.66
©
0.8~ .
T* (s} U
o <—..‘
0.6 | , —0.65
\
\ Q
041 \
MO
Wy
02 O T % ————— E ————— % —0.64
00 \ \ \ \ \ \ \
02 03 04 05 06 07 08 09
Au2

FIG. 3. The changes of the order-disorder transition temperature
and of the fixed point of the fourth-order cumulant U, for the
SAF-ordered phase, plotted against Au,, obtained for the systems
characterized by u; ,=-1.0, u; ,=—1.2 (Au;=0.2), and u, ,=0.0.
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FIG. 4. The changes of the order-disorder transition temperature
and of the fixed point of the fourth-order cumulant U", for the
SAF-ordered phase, plotted against Au,, for the set of systems S1.

A3B phase, for which the order-disorder transition is
nonuniversal,* while in the present case the SAF structure
approaches the stability region of the AF phase when Au, is
lowered. Although we have limited the calculations to the
values of Au, not larger than 0.7, nevertheless it can be an-
ticipated that the cumulant fixed point approaches the value
close to about 0.64 when Au, becomes high enough, just the
same as in the case of Au;=0.2.

The temperature of the order-disorder transition increases
nearly linearly with Au,, just the same as in the case of
Au;=0.2 (see Fig. 3), due to an increase of the attractive
interactions in the system and a gradual departure from the
point at which the structure of the ordered phase changes. In
the case of the set S2 we have also found that the universality
class of the order-disorder transition of the SAF phase
changes with Au, [see Fig. 5(b)].

At the present situation one might expect that the fixed
point value of the order parameter cumulant approaches the

0.40

a) b e @-.. —10.65
0 % 0 0o,
03| O"'-O‘.' . o s~ M .60
T, k o & 1@ U*ar
0.30 — : 9 P —0.55
025l | ! 18 os0
: o o SAF ' |AF
F| : SAF ol 1 —0.45
020 |® s i
o) I i —0.40
0.15—|: 1 1
: . —0.35
) 1 1
| | | o | | | I
0.10 0.30
-04 -02 00 02 04 06 08-04 -02 00 02 04 06 08
AuI Au

FIG. 5. The changes of the order-disorder transition temperature
(a) and of the fixed point of the fourth-order cumulant U” for the set
of systems S2. In (b) black (gray) circles correspond to the second-
(first-) order phase transitions. The second-order transition occurs in
the region between the dash-dotted lines. The open square in (a) and
black square in (b) mark the transition temperature and the fixed
point value of the fourth-order cumulant for the order-disorder tran-
sition of the AF phase. Vertical solid lines show the stability limits
of the SAF phase and the horizontal dashed line marks the value of
U" corresponding to the universality class of a 2D Ising model.
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FIG. 6. Part (a) [(b)] shows the temperature changes of the order
parameter Wq g (of the fourth-order cumulant Uy, ) obtained for
the system belonging to the set S2, with Au;=0.75, for different
sizes of the simulation box [see legend in (a)].

value corresponding to the universality class of the 2D Ising
model when Au; becomes close to the value delimiting the
stability regions of the SAF and AF phases (Au;=0.8) as
well as the SAF and F phases (Au;=-0.3).

We have found, however, that it is not the case. Namely,
as soon as Au; exceeds about 0.60 the order-disorder transi-
tion of the SAF phase changes from continuous to discon-
tinuous. This has been confirmed by the finite size scaling
analysis of the simulation data. First, one should note that for
Au; exceeding 0.60, the fixed point value of the order pa-
rameter cumulant decreases monotonically and falls below
the value predicted for the two-dimensional Ising model [cf.
Fig. 5(b)]. Similarly, the temperature of the order-disorder
transition decreases with Au, and is expected to go to zero
when Au; approaches 0.8.

For intermediate values of Au,, between about —0.23 and
0.61, the transition is continuous and nonuniversal again. In
particular, the fixed point value of the order parameter cumu-
lant reaches the highest values of about 0.64 when Au, is
close to 0.25.

Unlike in the systems considered above, the temperature
of the order-disorder transition does not change monotoni-
cally with Au, [cf. Fig. 5(a)], reflecting the changes in the
stability of the SAF ordered phase. Thus, it reaches the high-
est values for Au; close to 0.25 and decreases when Au,
becomes lower (higher), i.e., when it gradually approaches
the points at which the ordering changes from SAF to F (AF)
(see Fig. 2).

However, our results demonstrated that the order-disorder
transition of the SAF phase becomes a first-order transition
when Au; approaches the values delimiting the stability re-
gion of the SAF phase at both sides, close to the AF as well
as the F phases.

The change of the nature of the order-disorder phase tran-
sition is demonstrated by the plots of temperature changes of
the order parameter as well as of the fourth-order cumulants,
given in Figs. 6(a) and 6(b). It is quite evident that both the
order parameter as well as the fourth-order cumulant behav-
ior is characteristic to the first-order rather than to the
second-order phase transition.>*=37 In particular, the order pa-
rameters obtained for different sizes of the simulation cell
exhibit a crossing point, while the cumulants show the pres-
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FIG. 7. Part (a) [(b)] presents the log-log plot of Xmax (Xeorr)
versus simulation cell size L for two systems of the set S2, charac-
terized by different values of Au;=0.65 (squares), 0.70 (diamonds),
and 0.75 (circles).

ence of minima above the transition temperature. Such a be-
havior has been seen for other thermally driven first-order
phase transitions, e.g., the three-state Potts model in three
dimensions, and is explained by a phenomenological
theory.’’

Figure 7(a) gives the logarithmic plot of the maximum
value of the order parameter susceptibility (Xsar.max) VEIsus
the size of the simulation cell, L. The results suggest that the
power law

Xmax(L) & L (20)

is obeyed in all three cases considered and that /v changes
with Au,. If this behavior were the true asymptotic behavior,
it would imply a second-order transition, with nonuniversal
critical exponents. However, at first sight the first-order char-
acter of the order-disorder transition for the SAF phase in the
region of Au, exceeding 0.6 seems to be at variance with this
conclusion, but this interpretation of the data is not unique.
In fact, in the case of a first-order transition one expects that
the maximum value of the susceptibility scales with the sys-
tem size as>3’

Xmax(L) & (" + x7)/2 + aLl?, (21)

where x* and y~ are the values of the susceptibility in the
two coexisting phases at the transition point, and d(=2) is the
system dimensionality, and « is a constant. Therefore,
Xeorr(L) = Xmax(L) = (X" +X7)/2 scales with L as L?. The val-
ues of yo=(x*+x7)/2 can be estimated from the plot of
Xmax(L) versus L2, by extrapolating the data to L=0. Part (b)
of Fig. 7 gives the log-log plots of x...(L) against L and
demonstrates that the scaling law given by Eq. (21) is also
compatible with the data, for sufficiently large L. The in-
crease of yywith Au, suggests that y, also diverges when
Au, approaches the value delimiting the stability region of
the SAF and AF phases. These problems with x,.(L) clearly
show that in the judgment of the order of phase transitions
special care is needed, when several orderings compete, as in
our model. In addition, it should be noted that there possibly
is a slight but systematic underestimation in our data for
Xmax(L), since at a first-order phase transition the relaxation
time increases exponentially with L.?
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FIG. 8. The changes of the order parameter Wg,r with the chemical potential, for the systems M1 (a) and M2 (b) calculated at the
temperature 7=0.6 for different sizes of the simulation cell, given in the figure.

Of course, when Au; exceeds the value of 0.8, the order-
ing changes and the stable ordered state is the AF phase,
which exhibits the continuous order-disorder transition be-
longing to the universality class of the 2D Ising model at
least if Au; exceeds the transition values (0.8) enough. This
is confirmed by the data given in Fig. 5. On the other hand,
when Au; becomes lower than —0.3 we enter the stability
region of the F phase. Under the condition of a fully filled
lattice this phase disorders gradually, as was demonstrated in
our previous work.*

B. Phase behavior of systems involving the ¢(2X2),p phase

Now, we turn to the discussion of the systems, in which
the first nearest-neighbor interaction between a pair of mol-
ecules with the same orientation is repulsive. Under such a
condition the model predicts the formation of one of the
ordered phases of the density p=0.5 [c(2X2)r and c(2

X 2)ap), depending on the magnitude of Au,, prior to the
formation of dense ordered phases (F, AF, A;B, or SAF).
Similarly to the previously discussed systems, we assume
that both Au; and Au, are such that the fully occupied lattice
orders into the SAF phase at sufficiently low temperatures. It
should be mentioned here that two series of systems, for
which the low density ordered phases c¢(2X2)g and c(2
X 2)ar appear, have been already discussed in Ref. 4. In
particular, we have considered the changes of the model
phase behavior with Au,, for two different values of Au,
equal to 0.0 and 0.5, along the paths marked by thick vertical
dashed lines 1 and 3 in Fig. 2.

Here we present the results obtained for the systems char-
acterized by the parameters listed in Table I. For the assumed
values of the interaction parameters the model predicts that
at sufficiently low temperatures, the condensation occurs via
two first-order phase transitions. The first transition occurs
between a dilute gas and the ordered c¢(2X2),r phases,

0.645
0.64 — E
. 0.644 —
0.62 — b
0.643
0.6 — b
- 1 - 4 0.642
9_& 0.58 —- . »/ . 5_} -
= 177 4= L=80 = 0641
056 47 17
{ = L=100 064 4 7 L=80
0.54 .- i 1 .5 L=100
b L=120 0.639 4+ 3
0.52 - L=120
L 068 ———T—T T T T T T 1
2.2 219 208 207 216 0574 -0572 057 -0568 -0.566
u

FIG. 9. The changes of the fourth-order cumulants Uy,

with the chemical potential, for the system M2, calculated at the temperature

T=0.6 for different sizes of the simulation cell, given in the figure. The data given in (a) corresponds to the order-disorder transition of the
¢(2 X 2) op phase, while (b) corresponds to the order-disorder transition of the SAF phase.
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FIG. 10. (a) shows the changes of the order parameter Wg, with the chemical potential, for the system M2 at T=0.50, obtained for a
different size of the simulation cell (shown in the figure). (b) gives the corresponding changes of the fourth-order cumulants U\pSAF’L in the
region where the disordering of the ¢(2 X 2),p and the formation of the SAF phases was expected to occur. (¢) shows the phase diagram
topology resulting from the analysis of the simulation data for Wgsr and U‘I'SAF,L'

while the second transition occurs between the ¢(2X2)ag
phase and the SAF phase. In the particular case of the system
M1, we have found that these first-order transitions terminate
at the temperatures equal to about 0.45 [gas-c(2 X 2)sr] and
0.395 [c(2 X 2) \p-SAF], respectively.

Figures 8(a) and 8(b) present the changes of Wq,r with
the chemical potential for the systems M1 [(a)] and M2 [(b)]
calculated at the temperature 7=0.6, i.e., above the tempera-
ture range at which the first-order transitions occur, and ob-
tained for different sizes of the simulation cell. One readily
notes that the data presented indicate that there are three
second-order phase transitions present in both systems. This
conclusion is evident from the fact that the (absolute values
of) the order parameters are rather large for small L in the

2.5

¥,0

disordered region near the transition, but decrease monoto-
nously with increasing L, and no crossing points occur. The
first two transitions correspond to the disordering of the
¢(2 X 2) sp-ordered phase (at low and high density regimes),
and hence are expected to be of the same nature. We have
found that both transitions belong to the universality class of
the 2D Ising model [see Fig. 9(a)]. On the other hand, the
third transition, occurring between the disordered phase and
the SAF-ordered phase, is nonuniversal [see Fig. 9(b)]. As is
well known the SAF phase belongs to the universality class
of the 2D XY model with cubic anisotropy,3® which is known
to have nonuniversal critical exponents. In particular, the
fixed point value of the fourth-order cumulant of the order
parameter is equal to about Ug,r=0.642 for the system M2.

P(p)

FIG. 11. (a) shows the distributions of the component W, (the distribution of the component W, is the same) of the order parameter Wgsp
obtained at the transition points between the dilute gas and the ¢(2 X 2) op phases, for the system M2, at T=0.43 and u=-2.770 075 (solid
line), and between the ¢(2X2),r and SAF phases, at 7=0.408 and ©=-0.896 3054 (dotted line). (b) shows the corresponding density
distributions, obtained at the same state points. The values of the chemical potential at the transition points have been determined to high

accuracy using the histogram reweighting technique.
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FIG. 12. Snapshots of configurations recorded at both sides of
the c(2X2),r and SAF phase transition, for the system M2, re-
corded at T=0.50, and the chemical potentials equal to u=-0.93 (a)
and —0.85 (b). Differently oriented molecules are marked by differ-
ent symbols.

In the case of the system M1 we have obtained Ug,p=0.63.
Qualitatively similar results have been found for other values
of Au, up to 0.8, i.e., for the systems M3—-M7, and hence we
concentrate here on the behavior of one system (M2).
Figures 10(a) and 10(b) show that upon the lowering of
temperature to 0.5 the system phase behavior changes con-
siderably. Although the results given in Fig. 10(a) suggest,
again, that three second-order phase transitions occur, never-
theless, a finite size scaling analysis of the order parameter
cumulant Uy, p detects only one phase transition, between a
dilute gas and the ordered c(2X2),p phases. In particular,
Fig. 10(b), which shows in enlarged scale the region in
which the two other phase transitions could be expected to
occur, quite clearly demonstrates that the order parameter
cumulants gradually approach the trivial fixed point value of
2/3 when the system size increases. The results presented do
not indicate the presence of a phase transition between the
¢(2X2),r and SAF phases at intermediate temperatures, be-
tween the end of the first-order coexistence and the region
where there are two continuous transitions involving disor-
dering of the ¢(2 X 2) sy phase, and then the formation of the

PHYSICAL REVIEW B 76, 195409 (2007)
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FIG. 13. Three-dimensional plot of the distribution of W, and
W, of the order parameter Wq,p obtained at the transition point,
determined with the help of histogram reweighting technique,
between the ¢(2X2)ap and SAF phases, at 7=0.408 and u
=-0.896 305 4 for the system M?2.

ordered SAF phase. Such a transition must occur due to the
different symmetry of both phases, however.

One should note that the order parameter Wg,p is not
suitable to distinguish between the phases c(2 X 2),r and
SAF, and it just assumes different values, equal to 0.5 and
1.0 in perfectly ordered ¢(2X2),r and SAF structures, re-
spectively. The same occurs at finite temperatures, as it is
illustrated by the results shown in Fig. 11(a), where the dis-
tributions of the components W, and W, of the order param-
eter Wq,p corresponding to the transitions between the gas-
like and the ¢(2X2)p phases as well as between the ¢(2
X 2)ap and SAF phases are presented [Fig. 11(b) shows the
corresponding density distributions]. In the case of the gas-
to-¢(2 X 2) op transition the distributions of ¥, and ¥, ex-
hibit the maximum at Wg =0, corresponding to the gaslike
phase, as well as two maxima at +W$,., due to the c(2
X 2) ap-ordered phase. In the case of the ¢(2 X 2),g-to-SAF
transition, we find five maxima at the distributions of ¥ and
W,. Two of them, located at +W3, ., are due to the low den-
sity ¢(2X2)p-ordered phase, while the remaining three
maxima, two at +W¢, . and at Wg,p=0 are due to the SAF-
ordered phase. The values +W3,. and W§, . are indicated in
Fig. 11(a). The appearance of the maximum at Wg,r=0 does
not mark the presence of any disordered state, of course, but
is a manifestation of the presence of differently oriented do-
mains of the SAF phase. This is illustrated by the snapshots
of configurations recorded at both sides of the
¢(2X2)sp-to-SAF phase transition, given in Fig. 12. It is
quite well seen that the domains of the SAF phase exhibit
two different orientations. This figure also shows that close
to the transition point there are domains of the ¢(2 X 2) s as
well as SAF ordering present. Of course, at the side of the
c(2X2)r phase the contribution due to the SAF phase is
rather small. Since the two components W, and ¥, of the
SAF order parameter correspond to the domains oriented
along two orthogonal directions, it is not possible that both
of them assume zero values. Figure 13 gives the three-
dimensional plot of the distribution of the order parameter
components, recorded right at the transition point between

195409-9



RZYSKO, PATRYKIEJEW, AND BINDER

PHYSICAL REVIEW B 76, 195409 (2007)

-0.9 -0.89 -0.88 -0.87 -0.86
u

FIG. 14. (a) shows the changes of the order parameter W5 with the chemical potential, for the system M2, obtained for different sizes of
the simulation cell (shown in the figure). (b) gives the corresponding changes of the fourth-order cumulants Uy,L in the region where the

transition between the ¢(2 X 2) s and SAF phases occurs.

the ¢(2 X 2),r and the SAF phases. One observes that when
one of the components is close to zero then another assumes
the values close to =W}, .. Since Wg,p is not suitable to
distinguish between the phases ¢(2X2),r and SAF, its cu-
mulant Uy is not a useful quantity for locating a SAF
—¢(2 X 2) 5p transition.

On the other hand, the order parameter Vs [see Eq. (16)]
is very well suited to distinguish between the ¢(2 X 2) . and
SAF phases, since it is finite in the SAF phase and assumes
vanishing values in the ¢(2 X 2) phase. Figure 14 presents the
changes of the order parameter W (a) and of the correspond-
ing fourth-order cumulant Uy, L (b) for the same system as
considered in Fig. 10. Now, it is quite evident that W5 as-
sumes high values in the SAF phase and vanishes in the
¢(2X2) sr phase and the simulation cell becomes sufficiently
large. The plots of Uy, [cf. Fig. 14(b)] demonstrate that
there is a continuous transition between the ¢(2 X 2),r and
the SAF phases.

In Table II we give the locations of the second-order
phase transitions, involving the order-disorder phase transi-
tions of both ¢(2 X 2),r and SAF phases as well as the tran-
sition between the ¢(2 X 2) ,r and SAF phases, and the fixed
point values of the fourth-order cumulants (Ug,p and U5).

Taking into account the above discussion and the data
given in Table II we conclude that the phase diagram topol-
ogy of the system discussed here is like that depicted in Fig.
15. The lines of the continuous order-disorder transitions in-
volving the phases c(2X2)r (A;) as well as SAF (\,) meet
at the multicritical point, marked by the asterisk in Fig. 15.
Note that we have not attempted to precisely locate the two
tricritical points in Fig. 15.

The data given in Table II show that the fixed point value
of the cumulant U; AF assumes the value corresponding to the
universality class of the 2D Ising model in the density region
up to about 0.7. This region corresponds to the order-disorder
transition of the ¢(2 X 2) sr phase. Then, the results obtained
suggest that there exists a crossover region of density, be-
tween about 0.7 and 0.75, in which the transition changes its

universality. However, our data do not allow one to precisely
estimate the density at which the change of universality oc-
curs. In particular, we cannot say whether the fixed point
value of the cumulant exhibits a jump (which then presum-
ably occurs at the multicritical point) or changes continu-
ously (before the multicritical point is reached). One should
take into account that the fixed point value of the cumulant
obtained at 7=0.6 (cf. row 5 in Table II) has been estimated
using the simulation boxes of L up to 140. We have found
that there are large finite size effects and the estimated cross-
ing point of the cumulant gradually drifts toward lower val-
ues when larger and larger systems are taken into account.
Therefore, it is our opinion that the true fixed point value of
the cumulant should finally converge to the value character-
istic of the 2D Ising model. The above statement is supported
by the fact that the order parameter W5 assumes very low
values and the corresponding cumulants do not exhibit a

TABLE II. The locations of (7, u, p) for the second-order phase
transitions at the phase diagram depicted in Fig. 15 evaluated inde-
pendently using the hyperparallel tempering Monte Carlo method in
grand canonical ensemble. Columns 4 and 5 give the fixed point
values of its fourth-order cumulant of the order parameters Wqsp
and Wy at the transition points.

r H p Upgpe® Uyg*
0.565 —-2.400 0.4458 0.6100
0.6000 -2.177 0.4735 0.6100
0.6250 -1.876 0.5100 0.6100
0.6250 -1.471 0.5730 0.6100
0.6000 -1.212 0.6310 0.6250
0.5475 -0.951 0.7300 0.6550
0.5000 —0.884 0.7840 0.422
0.5475 -0.817 0.8100 0.6510 0.490
0.6000 -0.567 0.8775 0.6420 0.532
0.6500 —-0.178 0.9270 0.641 0.545
0.7000 0.610 0.9750 0.6395 0.547
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FIG. 15. The density-temperature (a) and the chemical potential-
temperature (b) projections of the phase diagram obtained for the
system M2. Solid lines represent the first-order coexistence curves
while filled circles represent the locations of continuous transitions,
obtained from simulation results. The dashed line A corresponds to
the order-disorder transition of the ¢(2 X 2)p structure, belonging
to the universality class of the 2D Ising model, while the dotted line
N\, represents the nonuniversal order-disorder transition of the SAF
phase. The locations of the multicritical point are marked by an
asterisk.

common crossing point at the state point considered here.

The fixed point values of the cumulants given in Table II
demonstrate also that the order-disorder phase transition of
the SAF phase is nonuniversal, as expected. On the other
hand, the corresponding phase transition involving the ¢(2
X 2) phase belongs to the universality class of the 2D Ising
model.

The data obtained for the systems characterized by differ-
ent values of Au, between —0.5 and 0.8 (systems M1-M7
suggest that in all cases the phase diagram topology is the
same. In particular, the locations of the two tricritical points
seem to be only weakly dependent on the magnitude of Au;.

PHYSICAL REVIEW B 76, 195409 (2007)
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FIG. 16. The changes of the cumulants Uyg,,, With obtained
for the system M7 at T=0.45 and the different s1ze of the simulation
cell (shown in the figure).

On the other hand, the maximal critical temperature de-
creases when Au, increases. Figure 16 presents the fourth-
order cumulants of the order parameter W, obtained for the
system M7 at the temperature 0.45. It is evident that there
are three order-disorder transitions present and the values of
the cumulant at the intersection points differ. However, the
chemical potential values, at which these transitions occur,
are already very close to each other, suggesting that the tem-
perature used is rather close to the maximal critical tempera-
ture. We should note that at the higher temperatures, above
0.5, only one phase transition, between the disordered phase
and the ordered SAF phase, appears.

Figure 17 shows the variation of the fixed point values of
the fourth-order cumulants of the order parameter Wg,p cor-
responding to the lines A;, which represents the order-
disorder transition of the low density ordered phase c(2

0.65

R
JJ H%

E
il

0.61

| | | | | | | |
060 -04 -02 00 02 04 06 08 1.0

Au,

FIG. 17. The plot of U; A against Auy, along the lines of con-
tinuous transitions at 7=0.6, evaluated for the systems M1-M09.
Open circles represent the data for the order-disorder transition in-
volving the low density ordered phase ¢(2X2)ap, while the filled
circles correspond to the order-disorder transition of the high den-
sity phase SAF.
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FIG. 18. (a) gives the density distributions obtained for the system M9, calculated along the coexistence line at different temperatures
(shown in the figure) for the simulation cell with L=80. (b) presents a comparison of density distributions at 7=0.35 and a different size of
the simulation cell (given in the figure). (c) shows the distribution of the order parameter component W, at different temperatures, obtained
for the simulation cell size L=80. (d) presents the plots of the cumulants U‘I’SAF,L against u obtained for the same system at 7=0.36 and

different sizes of the simulation cell.

X2)ap> and \,, representing the disordering of the SAF
phase, plotted against Au,. The transition represented by the
line A; belongs to the universality class of the 2D Ising
model, while the transition occurring along the line A\, is
nonuniversal. One should note that in the case of the order-
disorder transition of the SAF phase, the behavior of Us . is
quite similar to that shown in Fig. 5, where we have consid-
ered the same transition but in the limit of completely filled
lattice and at Au,=0.4.

Figure 17 includes the results obtained for still larger val-
ues of Au; equal to 0.9 and 1.0 (systems M8 and M9). How-
ever, in the case of the system M9 the phase diagram topol-
ogy has been found to be different from that given in Fig. 15,
as will now be discussed.

Figure 18(a) shows the examples of the density distribu-
tions evaluated at three different temperatures, close to the
coexistence curve. It is well seen that the low density peak
maximum at 7=0.36 [cf. dashed vertical line in Fig. 18(a)] is
located at the density equal to about 0.47, which is much
higher than expected for a dilute gaslike phase and definitely

much lower than expected for the high density disordered
phase. Moreover, Fig. 18(a) demonstrates that the location of
the low density peak is strongly temperature dependent. The
maximum of this peak moves towards higher densities when
the temperature increases.

One should note that at the lowest temperature used (T
=0.35) the density distribution shows the appearance of the
third, though rather small, peak at intermediate densities.
This might suggest that there appears another phase, between
the dilute gaslike and the high density SAF phases and that
the applied temperature is close to the triple point. It appears,
however, that this third maximum is only an artifact of finite
size effects, as Fig. 18(b) illustrates. Although we have not
performed calculations for the simulation cell larger than L
=80, nevertheless the results presented illustrate our state-
ment quite well. Again it is evident that easily misleading
conclusions could emerge if only a single system size were
examined. The inspection of snapshots recorded at 7=0.35
for the systems of different size has demonstrated that in
small systems, e.g., with L=40, quite large clusters corre-
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FIG. 19. Schematic representation of the phase diagram topol-
ogy for the system M9. The horizontal dotted line shows the loca-
tion of expected triple point temperature. In the particular case of
the system considered here, the chemical potentials at which the
gas-c(2X2)ap and ¢(2X2),p-SAF transitions take place at the
ground state are equal to —2.15 and —1.4, respectively.

sponding to the ¢(2 X 2) sp structure do appear. In larger sys-
tems, we have also found such clusters, but of the sizes de-
creasing when the simulation cell size becomes larger.

Figure 18(c) also shows that there is only one phase tran-
sition present in the system, and that the transition corre-
sponds to the order-disorder transition of the SAF phase.
Despite the fact that the order-disorder transition of the SAF
phase is nonuniversal, the order parameter cumulants fixed
point assumes the value equal to about 0.612, which is prac-
tically the same as in the case of the 2D Ising model [see Fig.
18(d)].

The results of our Monte Carlo simulation suggest that the
phase diagram topology is like that given in Fig. 19. Al-
though we have not been able to find two first-order phase
transitions at the low temperature region [one between the
dilute gas and the ¢(2 X 2) sp-ordered phase and another be-
tween the ¢(2 X 2) ,p- and SAF-ordered phases] due to severe
problems with metastability, nevertheless their appearance
can be anticipated from the ground state considerations and

PHYSICAL REVIEW B 76, 195409 (2007)

the fact that at finite temperatures the ordered c¢(2X2)ar
phase should be stable over a finite range of densities. Our
simulations have always demonstrated only the transition be-
tween the dilute gaslike phase and the dense ordered (SAF)
phase.

Having the phase diagram, given in Fig. 19, the appear-
ance of domains of the ¢(2 X 2) or phase, as discussed above,
can be attributed to the proximity of the triple point tempera-
ture. Note, that below the triple point temperature the system
does exhibit the formation of the ¢(2 X 2) ,p phase. When the
simulation cell is small it is quite likely that large domains of
this phase can appear and the system may stay in such a
metastable state over a certain time. In small systems the
domains of the ¢(2X2)r phase have been found to span
through the system from one side to another, and hence pe-
riodic boundary conditions stabilize such percolating clus-
ters. The percolating clusters are less likely to appear in
larger simulation cells, and hence we observe a gradual de-
creasing of the middle peak at the density distribution func-
tion, as shown in Fig. 18(b).

V. SUMMARY AND CONCLUSIONS

As a generic model for the phase behavior of adsorbed
monolayers of orientable diatomic molecules at surfaces, the
statistical mechanics of a Blume-Capel-type model on the
square lattice is analyzed. This paper presents new results of
Monte Carlo simulation for the spin-1 lattice model with the
first- and the second-nearest-neighbor interactions, consid-
ered in Ref. 4, and we have considered two problems.

The first question concerned the nature of the order-
disorder phase transition of the SAF structure, in the limiting
case of a fully filled lattice. In the previous work* we have
demonstrated that this transition is continuous and nonuni-
versal. It is now shown that this situation occurs only when
the parameter Au, is sufficiently shifted from the values de-
limiting the regions of stability of the SAF and AF as well as
the SAF and F phases. On the other hand, when Au; be-
comes close enough to the values at which the ground state
considerations predict the change from SAF to AF as well as
from SAF to F orderings the order-disorder transition of the
SAF phase is of first order.

The second problem discussed in this paper concerned the
changes in the phase diagram topology in the systems in
which two ordered structures [c(2 X 2),r and SAF] appear
and the relative magnitudes of the first-nearest-neighbor in-
teraction changes, while the second-nearest-neighbor interac-
tion parameters are kept constant (i, ,=0.0 and u, ;,=-0.70).
It has been shown that the order-disorder phase transition of
the ¢(2X2),p structure is universal and belongs to the uni-
versality class of the 2D Ising model, as expected. On the
other hand, the corresponding order-disorder transition of the
SAF structure is nonuniversal, as demonstrated by the results
given in Table II and Fig. 17. One should note that the line \,
presented in Fig. 17 corresponds to the SAF order-disorder
phase transition at the density very close to unity, while the
line \;, which relates to the disordering of the low density
ordered structure c(2 X 2),p, has been obtained at different
densities, between about 0.3 and 0.7, at which the transition
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FIG. 20. (a) and (b) show the scaling plots for the order parameter Wgar (a) and for the conjugated susceptibility (b) for the SAF
order-disorder phase transition obtained for the system M2 at two different temperatures [shown in (a)]. (c) and (d) show the collapsing of
the fourth-order cumulants recorder for different sizes of the simulation cell (shown in the figure), also obtained for the system M2 at the

temperatures equal to 0.6 (c) and 0.7 (d).

in question occurs. The data concerning the disordering of
the SAF phase given in Table I have been obtained along the
transition line (cf. Fig. 15) and hence correspond to different
densities.

One of the most interesting results found in this work is
the phase diagram topology for the system M2, depicted in
Fig. 15. Namely, apart from two tricritical points we have
also found a multicritical point at which the line of the con-
tinuous order-disorder phase transition of the SAF structure
meets the line of critical points associated with the continu-
ous order-disorder phase transition of the c¢(2X2),p struc-
ture. The order-disorder phase transition of the ¢(2X2),g
belongs to the universality class of the 2D Ising model, while
the disordering of the SAF structure is a nonuniversal tran-
sition.

We should emphasize that the accurate estimation of criti-
cal exponents associated with the second-order transitions
appearing in the model is difficult due to very large correc-
tions to scaling. Therefore, even in order to obtain reliable
estimations of phase transition temperatures, using the cumu-
lant intersection method,?’ requires very tedious calculations

involving large simulation cells. Nevertheless, we have at-
tempted to estimate the values of critical exponents charac-
terizing the continuous order-disorder phase transition of the
SAF phase (cf. the line \, in Fig. 15) at two different tem-
peratures of 0.6 and 0.7, using the finite size scaling. Figure
20 shows the log-log plots of the order parameter W, [Fig.
20(a)] and of the maximum value of the conjugated suscep-
tibility [Fig. 20(b)] versus the simulation cell size. One notes
that the values of the critical exponent ratios B/v and y/v
are rather close to the Ising model values, equal to 0.125 and
1.75, respectively. This result is quite consistent with the
earlier study of SAF order-disorder phase transition,* where
it was demonstrated that the nonuniversality concerns only
the exponents, but not their ratios, which stay very close to
the Ising values. An independent estimation of the correla-
tion length critical exponent v was performed using the finite
size scaling of the fourth-order cumulants. Namely, the finite
size scaling theory predicts that the plots of Ugag; versus
LY"(T-T,), where T, is the temperature at which the transi-
tion takes place, for different sizes of the simulation cell
should collapse at a single curve. The results obtained [see
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Figs. 20(a) and 20(b)] demonstrate that 1/v is equal to
1.1£0.1 (»=0.91£0.09) at 7=0.6 and 1.2+0.1 (v=0.83
+0.08) at T=0.7. Despite rather large uncertainties the values
obtained support our conclusion that the SAF order-disorder
transition is nonuniversal.

It has been also shown that the phase diagram topology
changes when the model parameters vary. In particular, when
the parameter Au; becomes high enough, the coexistence
line between the ordered ¢(2 X 2),r and SAF phases termi-
nates at the triple point, leading to the so-called peritectic
phase diagram topology.?> At the temperatures higher than
the triple point temperature, the transition occurs between a
dilute, gaslike phase and the ordered SAF phase. We have

PHYSICAL REVIEW B 76, 195409 (2007)

not been able to estimate the location of that triple point
temperature due to severe metastability problems. Its exis-
tence can be anticipated by considering the fact that the tran-
sition between the two ordered phases exists in the ground
state (7=0).
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