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A theory of both linear and nonlinear electromagnetic responses of a single quantum dot �QD� exposed to
quantum light, accounting for depolarization induced local field has been developed. Based on the microscopic
Hamiltonian accounting for the electron-hole exchange interaction, an effective two-body Hamiltonian has
been derived and expressed in terms of the incident electric field, with a separate term describing the QD
depolarization. The quantum equations of motion have been formulated and solved using the Hamiltonian for
various types of the QD optical excitation, such as Fock qubit, coherent fields, vacuum state of electromagnetic
field, and light with arbitrary photonic state distribution. For a QD exposed to coherent light, we predict the
appearance of two oscillatory regimes in the Rabi effect separated by the bifurcation. In the first regime, the
standard collapse-revival phenomenon does not reveal itself and the QD population inversion is found to be
negative, while in the second one, the collapse-revival picture is found to be strongly distorted as compared to
that predicted by the standard Jaynes-Cummings model. For the case of QD interaction with an arbitrary
quantum light state in the linear regime, it has been shown that the local field induces a fine structure of the
absorbtion spectrum. Instead of a single line with frequency corresponding to the exciton transition frequency,
a duplet appears, with one component shifted by the amount of the local field coupling parameter. It has been
demonstrated that the strong light–matter coupling regime arises in the weak-field limit. A physical interpre-
tation of the predicted effects has been proposed.
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I. INTRODUCTION

The strong coupling regime between condensed matter
and quantum light is a core issue of present day quantum
optics. Realized by exposing the matter with intense quan-
tum field, it can manifest itself in different quantum systems
such as single atoms and ultracold atomic beams,1 semicon-
ductor heterostructures,2,3 Bose-Einstein condensates,4 etc.
Albeit these systems are of different physical nature, their
interaction with quantum light is governed by common rules.
In the strong coupling regime, these systems enable
+generation of different states of quantum light–single
photons,5 Fock states,6 Fock qubits, and quantum states with
an arbitrary photon number distribution.7 These states con-
stitute a basis for the quantum information processing8,9 and
quantum metrology.10 In practice, the strong light–matter
coupling regime can be realized in two ways: by combining
the matter with a high-Q microcavity or by exposing the
matter to an ultrashort intense pump pulse.

To describe strong coupling between an arbitrary two-
level system and quantum light, the Jaynes-Cummings �JC�
model is conventionally used.11 One of the most fundamental
phenomenon predicted within the JC model is the oscillation
of the population between levels with the Rabi frequency
�Rabi oscillations�. However, the standard JC model does not
account for a number of physical mechanisms, which, under
certain conditions, may significantly influence the Rabi ef-
fect. The time-domain modulation of the field-matter cou-
pling constant7,12 and the interplay between classical driving
field and quantized cavity field7 can serve as examples. More
advanced JC models involve additional interaction mecha-
nisms and effects, such as dipole-dipole �d-d� interaction,13,14

electron-phonon coupuling,15,16 and self-induced
transparency.17 In particular, the d-d interaction between two
quantum oscillators leads to their radiative coupling and, as a
result, to an exchange by the excited state. That is, Rabi
oscillations between these two oscillators occur; see Ref. 18
for a theory and Ref. 19 for the experimental observation in
a double quantum dot �QD� system. As a whole, the obser-
vation and intensive study of excitonic Rabi oscillations19–25

motivates the extension of the JC model to incorporate spe-
cific interactions inherent to a confined exciton in a host.

In this paper, we present a microscopic theory of the in-
teraction of an isolated QD with quantum light for both weak
and strong coupling regimes. We incorporate the local field
correction into the JC model as an additional physical
mechanism influencing the Rabi effect in a QD exposed to
quantum light. In particular, the Rabi oscillations are shown
to exist even in the limit of a weak incident field.

In the weak coupling regime, the local field effects in
optical properties of QDs have been theoretically investi-
gated in Refs. 26–34 for classical exposing light and in Ref.
35 for quantum light. In the latter case, it has been shown
that for a QD interacting with Fock qubits, the local field
induce a fine structure of the absorption �emission� spectrum:
Instead of a single line with the frequency corresponding to
the exciton transition, a doublet appears, with one compo-
nent shifted to the blue �red�. The intensities of components
are completely determined by the quantum light statistics. In
the limit of classical light and Fock states, the doublet is
reduced to a singlet shifted in the former case and unshifted
in the latter one.

The role of local fields in the excitonic Rabi oscillations
in an isolated QD driven by classical excitation was investi-

PHYSICAL REVIEW B 76, 195328 �2007�

1098-0121/2007/76�19�/195328�13� ©2007 The American Physical Society195328-1

http://dx.doi.org/10.1103/PhysRevB.76.195328


gated in Ref. 36. Two different oscillatory regimes separated
by the bifurcation have been predicted to exist. The Rabi
oscillations were predicted to be nonisochronous and arising
in the weak excitation regime. Both peculiarities have been
experimentally observed by Mitsumori et al. in Ref. 25,
where the Rabi oscillations of excitons localized to quantum
islands in a single quantum well were investigated.

There exist several different physical interpretations of
local field in QDs and, correspondingly, different ways of its
theoretical description. The first model �scheme A in the ter-
minology of Ref. 30� exploits the standard electrodynamical
picture: By virtue of external field screening by charges in-
duced on the QD surface �the quasistatic Coulomb electron-
hole interactions�, a depolarization field is formed, differen-
tiating the local �acting� field in the QD and the external
incident field. In this model, the total electromagnetic field is
not pure transverse. Alternatively, only the transverse com-
ponent is attributed to the electromagnetic field, while the
longitudinal component is accounted for through the ex-
change electron-hole interactions �scheme B according to
Ref. 30�. Both approaches are physically equivalent and lead
to identical results.

In the present paper, we build the analysis on the general
microscopic quantum electrodynamical approach, where the
local field correction originates from the exchange by virtual
vacuum photons between electrons and holes forming the
exciton and is thus a manifestation of the d-d interaction
between electrons and holes �the dynamical Coulomb
interaction�.13,14 The approach allows us to overcome a num-
ber of principal difficulties related to the field quantization in
QDs.37 In the analysis, an approximate solution of the many-
body problem is built on the Hartree-Fock-Bogoliubov self-
consistent field concept.13 The self-consistent technique leads
to a separate term in the effective Hamiltonian responsible
for the interaction of operators and average values of physi-
cal quantities. Due to this term, the quantum-mechanical
equations of motion become nonlinear and require a numeri-
cal integration.

The paper is arranged as follows. In Sec. II, we develop a
theoretical model describing the QD–quantum light interac-
tion. We formulate a model Hamiltonian with the separate
term accounting for the local field correction and corre-
sponding equations of motion. In Sec. III, we analyze the
manifestation of local fields in the motion of the QD exciton
in the absence of external field. In Sec. IV, we investigate the
QD interaction with arbitrary states of quantum light in the
weak driving field regime. Section V is devoted to the theo-
retical analysis of local field influence on the Rabi oscilla-
tions in the QD exposed to coherent states of light and Fock
qubits. A discussion of the results obtained is presented in
Sec. VI, and concluding remarks are given in Sec. VII.

II. QUANTUM DOT–QUANTUM LIGHT INTERACTION:
THEORETICAL MODEL

A. Interaction Hamiltonian

In this section, we formulate the interaction Hamiltonian
for a QD exposed to quantized field accounting for the local
field correction. Later on, we exploit the Hamiltonian for the

derivation of equations of motion, describing dynamical
properties of this system.

As aforementioned, the local field in QD differs from the
incident one due to the d-d electron-hole interaction. A gen-
eral formalism, accounting for the d-d interactions in atomic
many-body systems exposed to photons, has been developed
in Refs. 13 and 14 and has been applied to nonlinear optics
of Bose-Einstein condensates.13,14 We extend this formalism
to the case of the QD exciton driven by quantized light.

Consider an isolated QD exposed to quantized electro-
magnetic field. The electron-hole pairs in QD are assumed to
be strongly confined; thus, we neglect the static Coulomb
interaction between electrons and holes. We decompose the
operator of the total electromagnetic field into two compo-

nents. The first one, Êv, represents a set of modes that do not

contain real photons. The second component, Ê0, represents
the set of modes emitted by the external source of light �real
photons�. Such a decomposition, as well as the subsequent
separate consideration of the field components, is analogous
to the Heisenberg-Langevin approach in the quantum theory
of damping �see Ref. 1�. The total Hamiltonian of the system
“QD+electromagnetic field” is then represented as

Ĥ = Ĥ0 + Ĥph + Ĥvac + ĤI0 + ĤIv, �1�

where Ĥ0,ph,vac are the Hamiltonians of the QD free charge
carriers, the incident photons and the virtual vacuum pho-

tons, respectively. The terms ĤI0,Iv describe the interaction

of an electron-hole pair with incident quantum field Ê0 and

with vacuum field Êv, respectively. In the dipole approxima-
tion, these Hamiltonians are given by

ĤI0,Iv = −
1

2
�

V

�P̂Ê0,v + Ê0,vP̂�d3r , �2�

where V is the QD volume and P̂�r , t� is the QD polarization

operator. The Hamiltonian Ĥvac is as follows:

Ĥvac = �
k�

��kv̂k�
† v̂k�, �3�

where v̂k�
† and v̂k� are the creation and annihilation operators

of vacuum photons, k is the mode index, indices �=1,2
denote the field polarization. The operator of vacuum elec-

tromagnetic field Êv is determined as

Êv = i�
k�

�2���k

�
ek��v̂k�eikr − v̂k�

† e−ikr� , �4�

where � is the normalization volume and ek� is the polariza-
tion unit vector.

As a first step in the development of our theory, we ex-
clude from the consideration the vacuum photon operators
v̂k� and v̂k�

† . For that purpose, we express them �and corre-

sponding Hamiltonians Ĥvac and ĤIv� in terms of the polar-

ization operator P̂. Recalling the Heisenberg equation

i��v̂k� /�t=−�Ĥ , v̂k��, the expression as follows can be ob-
tained:
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�v̂k�

�t
= − i�kv̂k� + F̂k��t� , �5�

where F̂k��t�=�2��k /���VP̂�r� , t�ek�eikrd3r�. The solution
of Eq. �5� is given by

v̂k��t� = v̂k��− ��e−i�kt + �
−�

t

F̂k����e−i�k�t−��d� , �6�

with the first term describing the free evolution of the reser-
voir modes �quantum noise� and the second one responsible
for the exchange interactions. Further, we neglect the first
term in Eq. �6�, leaving the quantum noise beyond the con-
sideration. Inserting then this equation into Eq. �4� and the
resulting expression into the Hamiltonian �Eq. �2��, after
some algebra we arrive at

ĤIv = − �
k

2�i�k

�
�

−�

t �
V
�

V

P̂	�r,t�P̂
�r�,��

��
�

ek�
�	�ek�

�
�eik�r−r��ei�k��−t�d�d3rd3r� + H.c., �7�

where indices 	 and 
 mark Cartesian projections of vectors.
The summation over repetitive indices is assumed. Using the
relationship1

�
�

ek�
�	�ek�

�
� = �	
 −
k	k


k2 =
1

k2	 �2

�x	�x


− �	


1

c2

�2

�t2
 ,

we proceed to the limit �→� in Eq. �7�. That corresponds
to the replacement

�
k

�·� →
�

�2��3 � �·�d3k .

Then, utilizing the Markov property of the polarization op-

erator, P̂	�r , t�� P̂	�r ,0� �14�, the Hamiltonian �Eq. �7�� is
reduced to

ĤIv = − 4��
0

� �
V
�

V
	 �2

�x	�x


− �	


1

c2

�2

�t�2

�G�0��r − r�,t��P̂	�r,t�P̂
�r�,t�dt�d3rd3r�, �8�

where

G�0��r,t� =
ic2

2�2��3 � eikr

�k
�e−i�kt − ei�kt�d3k

=
1

4��r�
�	 �r�
c

− t
 − �	 �r�
c

+ t
� , �9�

is the free-space Green’s function38 and ��¯� is the Dirac

delta function. An evaluation of Ĥvac in Eq. �3� is carried out

analogously and gives Ĥvac=−ĤIv /2.
As a next step, we adopt the quasistatic approximation,

which utilizes the property of the QD to be electrically small.
The approximation implies the limit �transition� c→� and

neglects the terms ��2 /�t�2 in the Hamiltonian �Eq. �8��.
Then, the Hamiltonians Ĥvac and ĤIv are represented by the
sum as follows:


Ĥ = Ĥvac + ĤIv = −
1

2
�

V
�

V

P̂�r�G� �r − r��P̂�r��d3rd3r�,

�10�

where

G� �r − r�� = �r � �r	 1

�r − r��

 �11�

is the free space Green’s tensor; �r � �r is the operator dy-
adic acting on the variable r. In the quasistatic approxima-
tion, we neglect the line broadening due to dephasing and
spontaneous emission. The latter effect can be introduced in
the model by retaining terms O�1 /c� in the the quasistatic
approximation.

In the preceding analysis, we have suggested that the ex-
change by virtual photons of all modes occurs between all
allowed dipole transitions. That is, on that stage, the problem
was stated as a quantum-mechanical many-body problem.
The analysis can be significantly simplified if we restrict
ourselves to the two-level approximation, assuming the ex-
citon transition frequency to be resonant with the acting field
carrier frequency, and utilize the self-consistent field model.
The self-consistent field is introduced by means of the
Hartree-Fock-Bogoliubov �HFB� approximation, which im-
plies the linearization of the Hamiltonian �Eq. �10�� by the
substitution

P̂�r�P̂�r�� → P̂�r��P̂�r��� + �P̂�r��P̂�r�� . �12�

The HFB approximation �see, e.g., Ref. 39� is widely used
for the description of properties of quasiparticles in con-
densed matter such as Bose-Einstein condensates,40 con-
densed polaritons in disordered microcavities,41 excitons in
bulk semiconductors, quantum wells,42,43 and quantum
dots.44,45 In Ref. 44, which investigates the applicability of
the HFB approximation for QDs, it has been demonstrated
that for a small QD at zero magnetic field and small number
of electrons, the approximation gives highly accurate results.
Since in our paper we consider a single electron-hole pair
strongly confined in the QD at zero magnetic field, our
model satisfies to conditions of the mean-field approximation
applicability formulated in Ref. 44. Also, we have discussed
the application of the HFB approximation to our problem in
previous publications33,35 under a phenomenological deriva-
tion of the Hamiltonian describing the local field in the QD
due to depolarization.

The polarization operator of a two-level system is given
by46

P̂�r� = ���r��2���̂+ + �*�̂−� , �13�

where �̂± are the Pauli pseudospin operators and ��r� is the
wave function of the electron-hole pair. In the strong con-
finement regime, this function is assumed to be the same
both in excited and ground states.47,48
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In the two-level approximation, the carrier motion Hamil-
tonian is represented as

Ĥ0 = �eâe
†âe + �gâg

†âg, �14�

where �g,e and âg,e
† / âg,e are the energy eigenvalues and

creation/annihilation operators of the exciton, respectively;
indices e and g correspond to the excitonic excited and
ground states, respectively. The acting field operator is ex-
pressed by relation �4� where substitutions v̂k�→ ĉq�t� and
v̂k�

† → ĉq
†�t� have been made; ĉq

†�t� / ĉq are the creation/
annihilation operators of the incident �real� photons �the po-
larization index � is included in the mode number q�. For-
mally, relation �6� is also fulfilled for operators ĉq�t� and
ĉq

†�t�, and the first term describes the evolution of real pho-
tons. However, since the exchange interaction is included
into the vacuum field component, the second term in relation
�6� disappears in the case of real photons. Then, the Hamil-

tonian Ĥph is given by relation �3� after the substitutions
v̂k�→ ĉq�−�� and v̂k�

† → ĉq
†�−��. For brevity, we denote

ĉq�−��= ĉq and ĉq
†�−��= ĉq

†.
Note that nonresonant transitions can be approximately

accounted for through a real-valued frequency-independent
background dielectric function �h. Assuming �h to be equal to
the dielectric function of the surrounding medium, we put
further �h=1 without loss of generality. Substitutions in final
expressions c→c /��h and �→� /��h for the speed of light
and the electron-hole pair dipole moment, respectively, will
restore the case �h�1.

As a next step, we introduce the rotating wave
approximation;1 i.e., we neglect in Eq. �8� the terms that are
responsible for the simultaneous creation/annihilation of
exciton-exciton and exciton-photon pairs. Then, using ex-
pressions �2�, �3�, and �8�–�13�, after some algebra we derive
the effective two-particle Hamiltonian

Ĥeff = Ĥ0 + Ĥph + ĤI0 + 
Ĥ , �15�

where

ĤI0 = ��
q

�gq�̂+ĉq + gq
*�̂−ĉq

†� �16�

and


Ĥ =
4�

V
��Ñ� ����̂−��̂+� + �̂+��̂−�� , �17�

where gq=−i�eq
�2��k /�� exp�ikrc� is the coupling factor

for photons and carriers in the QD, and rc is the radius vector
of the QD geometrical center. The depolarization tensor is
given by

Ñ� = −
V

4�
�

V
�

V

���r��2���r���2G� �r − r��d3rd3r�. �18�

Note that the resulting Hamiltonian �Eq. �15�� coincides with
that obtained in Ref. 35 in an independent way.

B. Equations of motions

Let ��̃�t�� be a wave function of a QD interacting with
quantum light. In the interaction representation, the system is
described by the Schrödinger equation

i�
����
�t

= Ĥint��� , �19�

with ���t��=exp�i�Ĥ0+Ĥph�t /����̃�t�� and Ĥint=exp�i�Ĥ0

+Ĥph�t /���ĤI0+
Ĥ�exp�−�iĤ0+Ĥph�t /��. We represent
the wave function ���t�� by the sum as follows:

���t�� = �
�nk��0

�A�nk��t��e� + B�nk��t��g����nk�� , �20�

where A�nk��t� and B�nk��t� are coefficients to be found; ��nk��
denotes the multimode field state with n photons in k mode;
��0k�� is the wave function of the vacuum state of the elec-
tromagnetic field; and �e� and �g� are the wave functions of
the QD ground and excited states, respectively. By inserting
relation �20� into the Schrödinger equation �Eq. �19��, after
some manipulations we arrive at the system of equations of
motion,

i
dA�ml�

dt
= 
�B�ml��

�nq�
A�nq�B�nq�

*

+ �
q

gq
�mq + 1B�ml+�lq�e

i��0−�q�t,

i
dB�ml�

dt
= 
�A�ml��

�nq�
A�nq�

* B�nq� + �
q

gq
*�mqA�ml−�lq�e

−i��0−�q�t,

�21�

with


� =
4�

�V
��Ñ� �� , �22�

as the local field induced depolarization shift.28,35 Here, �0
= ��e−�g� /� is the exciton transition frequency. It can easily
be shown that system �21� satisfies the conservation law,

d

dt
�
�nk�

��A�nk��2 + �B�nk��2� = 0. �23�

System �21� allows us to analyze the interaction between
QD and electromagnetic field of an arbitrary spatial configu-
ration and arbitrary polarization. Letting the coefficients
gq�t� to be adiabatically slow-varying functions, we can ap-
ply Eq. �21� to QDs exposed to an electromagnetic pulse.

C. Single-mode approximation

Among different physical situations described by Eqs.
�21�, the single-mode excitation is of special interest. Indeed,
such a case corresponds, for instance, to the light-QD inter-
action in a microcavity with a particular mode resonant with
the QD exciton. Owing to the high Q factor, the strong
light–QD coupling regime is feasible in microcavity provid-
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ing numerous potential applications of such systems.1,3

For the case of a spherical QD interacting with single-
mode light, only the components ��nk��
= �01 ,02 , . . . ,nq , . . . ,0k , . . . �= �nq�, with q as the number of
interacting mode, are accounted for in the wave function �Eq.
�20��. Then, omitting for brevity the mode number, system
�22� is reduced to

i
dAn

dt
= 
�Bn�

m

AmBm
* + g�n + 1Bn+1ei��0−��t,

i
dBn+1

dt
= 
�An+1�

m

Am
*Bm + g*�n + 1Ane−i��0−��t. �24�

Note that the conservation law �Eq. �23�� holds true for Eqs.
�24�, with the substitution �nk�→n. Equations �21� and �24�
govern the time evolution of the QD driven by quantum
light.

III. FREE MOTION

The free motion regime implies neglecting the QD–
electromagnetic field interaction and thus imposes the condi-
tion g=0 on Eqs. �24�. The wave function for noninteracting
QD and electromagnetic field is factorized, thus allowing an
analytical solution of Eq. �24� in the form of

An�t� = CnA�t�, Bn�t� = CnB�t� ,

where Cn are arbitrary constants satisfying the normalization
condition �n�Cn�2=1. In that case, system �24� is reduced to
the exactly integrable form

i
dA

dt
= 
�A�B�2, i

dB

dt
= 
�B�A�2, �25�

and its solution is given by

A�t� = a0e−i
��b0�2t, B�t� = b0e−i
��a0�2t. �26�

Here, a0 and b0 are arbitrary constants satisfying the condi-
tion �a0�2+ �b0�2=1. This solution describes a correlated mo-
tion of the electron-hole pair, which resulted from the local
field induced self-polarization of the QD. Thus, in the QD,
there appears a quasiparticle with the wave function

��̃�t�� = A�t�e−i�et�e� + B�t�e−i�gt�g� . �27�

It can easily be shown that state �27� satisfies the energy and
probability conservation laws. The inversion, which is de-
fined as the difference between excited-state and ground-
state populations of the QD exciton, for the wave function
�Eq. �27�� remains constant in time: w= �A�t��2− �B�t��2
��a0�2− �b0�2, whereas this state is generally nonstationary.
The quasiparticle lifetime, which is not included in our
model, can be estimated by �sp�1 /�sp, where �sp is the
QD-exciton spontaneous decay rate. For realistic QDs, 
�

�1 /�sp.
36 Consequently, the state ��̃�t�� can be treated as

stationary within the range 1 /
�� t�1 /�sp.
The macroscopic polarization of the QD is described by

�P̂� = ���P̂��� =
1

V
�a0b0

*e−i��0−���t + c.c., �28�

where the parameter ��=w
� plays the role of the self-
induced detuning, which depends on the state occupied by
the exciton and on the depolarization shift. Thus, as follows
from Eq. �28�, the local field induced depolarization shift
�
��0� dictates the nonisochronism of the polarization os-
cillations, i.e., the dependence of the oscillation frequency on
its amplitude. This mechanism also influences the Rabi os-
cillations in the system: the smaller �� is the larger the Rabi
oscillation amplitude is; such a behavior was observed ex-
perimentally in Ref. 25.

Since the inversion w lies within the range −1�w�1, the
frequency �p of polarization oscillations in Eq. �28� may
vary within the limits �0−
���p��0+
�. On the con-
trary, when 
�=0, the polarization oscillates at fixed fre-
quency �0. At first glance, it seems that the discrete level is
transformed into a 2
� band. However, this is not the case.
Indeed, the concept of the band structure corresponds to lin-
ear systems where any arbitrary state is a superposition of
eigenmodes with different frequencies. In contrast, the
electron-hole correlation arises from the nonlinear motion of
the particles in a self-consistent field. Consequently, in the
presence of the light-QD interaction �g�0�, the exciton mo-
tion cannot be described by a simple superposition of differ-
ent partial solutions such as Eq. �26�, but has a significantly
more complicated behavior. In particular, in the strong cou-
pling regime, there are two oscillatory regimes with drasti-
cally different characteristics, separated by the bifurcation
�see Sec. V�.

IV. WEAK-FIELD APPROXIMATION

Consider a ground-state QD exposed to an arbitrary state
of quantum light �ml


�ml�
��ml��, where 
�ml�

are arbitrary
complex-valued coefficients satisfying the condition
��ml�

�
�ml�
�2=1. Then, the initial conditions for Eqs. �21� are

given by

A�ml�
�0� = 0, B�ml�

�0� = 
�ml�
. �29�

In the linear regime with respect to the electromagnetic field
which is realized when gq→0, we can assume that B�ml�

�t�
�
�ml�

=const; i.e., the analysis is restricted to the time in-
terval much less compared to relaxation time of the given
exciton state. Then, system �22� is reduced to

dA�ml�

dt
= − i
��

�nq�
A�nq�
�ml�


�nq�
*

− �
q

gq
�mq + 1
�ml+�lq�e

i��0−�q�t. �30�

For further analysis, we rewrite Eq. �30� in a more conve-
nient matrix notation,
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da�t�
dt

= − i
��a�t� − f�t� , �31�

where a�t�, f�t�=�qfqei��0−�q�t, and � are the columnar ma-
trices �vectors� and a�t�= �A�ml�

�. Vectors fq and � are defined

analogously through the elements fq
�ml�= igq

�mq+1
�ml+�ql�
and 
�ml�

, respectively; �ql is the Kronecker symbol. The
quantity �=��† is the density matrix of quantum light inter-
acting with the QD. This matrix corresponds to the pure state
of the electromagnetic field and satisfies the conditions �n

=� �n�1� and �0=I �where I is the unit matrix�. The inte-
gration of Eq. �31�, imposed by initial conditions �Eq. �29��,
allows us to find the analytical solution

a�t� = − �
0

t

e−i�
��t−t��f�t��dt�. �32�

Using the truncated Taylor expansion49

e−i�
��t−t�� = I − ��1 − e−i
��t−t��� ,

after some standard manipulations we obtain

a�t� = − i�
q

�� − I�fq

1 − ei��0−�q�t

�0 − �q − i0

− �fqe−i
�t �1 − ei��0−�q+
��t�
�0 − �q + 
� − i0

� . �33�

This expression describes the interaction between the QD
and an arbitrary state of quantum field in the weak-field
limit.

Now, let us calculate the QD effective scattering cross
section defined by

���� = lim
t→�

d

dt
�a�t��2. �34�

Substituting Eq. �33� into Eq. �34�, after some algebra we
arrive at

���� = 2� �
�=1,2

�
q

�C�q�2���� − �q� , �35�

where C1q= ��−I�fq, C2q=�fq, and �1=�0. The equation ob-
tained demonstrates a fine structure of the absorption in a
QD exposed to quantum light with arbitrary statistics. In-
stead of a single line with the exciton transition frequency
�1=�0, a doublet appears, with one component shifted to the
blue: �2=�0+
�. The intensities of components are com-
pletely determined by the quantum light statistics. The same
peculiarity has been revealed in Ref. 35 in a particular case
of a QD exposed to the single-mode Fock qubit. Obviously,
this result directly follows from Eq. �35� if we retain in this
equation only terms corresponding the mode considered. The
single-mode Fock qubit is a superposition of two arbitrary
Fock states with fixed number of photons and is described by
the wave function �the mode index q is omitted�

��� = 
N�N� + 
N+1�N + 1� . �36�

Consequently, if N�1, the nonzero components of the vec-
tor fq are f �N−1�= ig�N
N and f �N�= ig�N+1
N+1. It can easily

be found that in that case, Eq. �35� is reduced to Eq. �61� in
Ref. 35. In the case N=0, the only nonzero component f �0�

= ig
1 survives in Eq. �35�, thus reducing this equation to Eq.
�67� in Ref. 35. For the single Fock state, ���= �N� and we
obtain C2=0, i.e., in agreement with Ref. 35, only the shifted
spectral line is presented in the effective cross section.

For the QD exposed to coherent states, the recurrent for-
mula 
n+1=��n� / �n+1�
n can easily be obtained, where �n�
stands for the photon number mean value. Using this for-
mula, the relation �f= f can be obtained, which gives C1=0.
Thus, for this case, only the shifted line in the effective cross
section is manifested. An analogous result has been reported
in Ref. 35 for a QD, driven by a classical electromagnetic
field. Such a coincidence can be treated as the manifestation
of a well known concept: Among a variety of quantum states
of light, the coherent states are the closest to the classical
electromagnetic field.

V. QUANTUM LIGHT–QD STRONG COUPLING REGIME:
RABI OSCILLATIONS

In the case when the coupling constant is comparable in
value with the exciton decay rate, the linearization with re-
spect to electromagnetic field utilized in the previous section
is no longer admissible. The strong coupling regime can be
realized by combining the QD with a high-Q microcavity,
and one of its manifestation is the Rabi oscillations of the
level population inversion in a two-level system exposed to
an intense electromagnetic radiation. In this section, we uti-
lize the system of Eqs. �24� for an investigation of the inter-
action between QD and single-mode quantum light. The
incident-field statistics is exemplified by coherent states and
Fock qubits. In the standard JC model, the Rabi oscillation
picture is characterized by the following parameters:1 �i� the
coupling constant g, �ii� the frequency detuning �=�0−�,
�iii� the initial distribution of photonic states in quantum
light, and �iv� the average photon number �n�. Accounting
for the local field correction supplements this set with the
new parameter, the depolarization shift 
�. For conve-
nience, we introduce the depolarization shift by means of the
parameter36 �=��n� /
�, which compares the shift with the
Rabi frequency ��n�=2�g���n�0��=�E�n� /�, where E�n� is the
acting field strength. To understand the dynamical property
of the Rabi effect, we have investigated the following three
physical characteristics: the QD-exciton inversion,

w�t� = �
n=0

��An�t��2 − �Bn�t��2� , �37�

the time evolution of the photonic state distribution,

p�n,t� = �An�t��2 + �Bn�t��2, �38�

and the normally ordered normalized time-zero second-order
correlation function of the driving field,
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g�2��t� =
�ĉ†�t�ĉ†�t�ĉ�t�ĉ�t��

�ĉ†�t�ĉ�t��2

= �
n=0

n�n − 1�p�n,t��
�
n=1

np�n,t��2
. �39�

The temporal evolution of the inversion can be detected in
single QD pump-probe experiments,21,22 while the photonic
state distribution �Eq. �38�� is measurable in quantum non-
demolition experiments with atoms.50 When extracted from
experiments, the characteristics �Eqs. �37�–�39�� allow esti-
mates of the local field effect in the QD nonlinear optical
response. In particular, the inversion can be detected in the
single QD nonlinear spectroscopy experiments.21,22

A. Coherent state excitation

Let a ground-state QD be exposed to the elementary co-
herent state of light �n=0

� F�n��n�, where1 F�n�
=exp�−�n�0�� /2��n�0��n/2 /�n!. Then, initial conditions for
Eqs. �24� are given by

Bn�0� = F�n�, An�0� = 0. �40�

Figures 1 and 2 show calculated inversion in a lossless QD
as a function of the dimensionless time �= �g�t at the exact
synchronism ��=0� for two different initial photon mean
numbers �n�0�� and for several values of parameter �. Our
calculations demonstrate the appearance of two completely
different oscillatory regimes in the Rabi effect. The first one
manifests itself at ��0.5 and is characterized by periodic
oscillations of the inversion within the range −1�w�t��0
�see Figs. 1�a� and 1�b��. Thus, in this regime, the inverted
population is unreachable. On the contrary, in the second

regime, at ��0.5, the inversion oscillates in the range −1
�w�t��1 �Figs. 1�c�–1�f� and 2�. These two regimes of the
Rabi effect are separated by the bifurcation, which occurs at
�=0.5 for both types of incident coherent states �compare
Figs. 1�b� and 1�c��.

In the limit �→� �
�→0�, the contribution of terms
O�
�� in Eqs. �24� is small. Neglecting these terms corre-
sponds to the elimination of the local field effect. In this
case, system �24� is reduced to that follows from the standard
JC model,1 thus allowing the analytical solution,

w�t� = − �
n=0

�

�Bn+1�0��2
 �2

�n
2 +

4�g�2�n + 1�
�n

2 cos��nt��
− �B0�0��2, �41�

where �n=��2+4�g�2�n+1�. The fundamental effect pre-
dicted by this solution is the collapse-revival phenomenon in
the time evolution of the inversion.1 We have found that at
��40, the numerical simulation by Eqs. �24� leads to the
same result as that of analytical simulation �Eq. �41�� �see
Fig. 1�f��. In the case �→0, the amplitude of Rabi oscilla-
tions tends to zero and w�t��−1.

For a single QD imposed to classical light, the appearance
of two oscillatory regimes in Rabi oscillations separated by
the bifurcation at �=0.5 has been predicted in Ref. 36. Ac-
cording to, Ref. 36, the region ��0.5 corresponds to peri-
odic anharmonic oscillations of the inversion. In contrast, in
a QD exposed to quantum light, the collapse-revival phe-
nomenon takes place in this region �see Figs. 1�c�–1�f� and
2�. As Figs. 1�f� and 2�c� demonstrate, the collapse and the
revivals in the vicinity of the bifurcation are deformed and
turn out to be drastically different from those predicted by
the solution of Eq. �41�.

The collapse-revival effect in the time evolution of the
inversion disappears completely when ��0.5 �see Figs. 1�a�
and 1�b��, where the Rabi effect picture turns out to be iden-
tical to the case of QD excited by classical light.36

FIG. 1. Time evolution of the inversion for a QD exposed to the
coherent state of light with �n�0��=9 and different values of �: 0.2
�a�, 0.49 �b�, 0.53 �c�, 1.2 �d�, 3.5 �e�, and 40.0 �f�.

FIG. 2. Time evolution of the inversion for a QD exposed to the
coherent state of light with �n�0��=36 and different values of �:
0.53 �a�, 1.2 �b�, and 40.0 �c�.
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Let us estimate material parameters that provide observ-
ability of the effects predicted. For a spherical InGaAs QD
with 6 nm radius, the dipole moment was estimated51 to be
��12 D. For this QD, we obtain �
��0.1 meV. Then, for
the range of � presented in Fig. 1, from �=0.2 to �=40, we
obtain ���n��0.02 and ���n��4 meV, respectively. These
values are of the same order as the excitonic Rabi splitting
measured in recent single QD spectroscopy experiments �see
Refs. 21 and 52�. On the other hand, Refs. 53 and 55–57
report the QD-exciton linewidth �hom of the order of 1 �eV
below the temperature of 10 K and lying in the range of
4–10 �eV at T=20 K. Thus, the precondition to observe the
strong coupling regime, ���n���hom, is fulfilled for the
given range of �.

As an illustration, in Fig. 3, we analyze the time evolution
of the inversion in a QD with material parameters given
above, driven by the coherent state with �n�0��=9, at differ-
ent acting field strengths E�n�. Note that according to recent
experimental investigations �see, e.g., Refs. 55 and 56�, the
typical exciton dephasing time varies from 0.1 to 1.2 ns.
This result dictates the choice of the time scale in Fig. 3 and
justifies the neglect of the dephasing in the system for all
field strengths used in calculations. It should be emphasized
that these field strengths are experimentally reachable �see,
e.g., Ref. 58�. As Figs. 3�a� and 3�b� demonstrate, for the
given QD, the bifurcation arises in the range of the acting
field strength lying between 0.19�104 and 0.21
�104 V /cm �which corresponds to �=0.49 and �=0.53, re-
spectively�. The larger the field strength, the smaller the Rabi
oscillation period �Figs. 3�c� and 3�d��. With the driving field
strength increase, the peculiarities of the Rabi oscillations
resulting from the local field diminish and, at E�n��16
�104 V /cm for the given QD, the Rabi effect reduces to a
conventional picture.

As seen from Fig. 3, the incorporation of the local field
impact reduces the acting field strength needed for the Rabi
oscillation manifestation. This conclusion agrees well with
the experimental observation25 of Rabi oscillations even in
the weak excitation density regime.

An important feature of the Rabi effect in quantum light is
the variation of the light statistics during the interaction with

a quantum oscillator, i.e., QD. We shall characterize the
variation by the second-order time-zero correlation function
and the photonic state distribution defined by Eqs. �39� and
�38�, respectively. These characteristics at different acting
field strengths are depicted in Figs. 4 and 5. At relatively
large incident-field strengths, E�n��16�104 V /cm ���40�,
the behavior of the function g�2��t� is identical to the case
when the local field effect is eliminated from the standard JC

FIG. 3. Time evolution of the inversion for a spherical InGaAs
QD with 6 nm radius and dipole moment ��12 D, exposed to the
coherent state of light with �n�0��=9 and different values of
incident-field strength E�n�: 0.19�104 V /cm �a�, 0.21�104 V /cm
�b�, 1.4�104 V /cm �c�, and 16�104 V /cm �d�.

FIG. 4. �Color online� The second-order time-zero correlation
function g�2��t� for a spherical InGaAs QD with 6 nm radius and
dipole moment ��12 D exposed to the coherent state of light with
�n�0��=9 and different acting field strengths E�n�: 16�104 V /cm
�1�, 7.2�104 V /cm �2�, 1.4�104 V /cm �3�, and 0.48
�104 V /cm �4�.

FIG. 5. Photonic state distribution for a spherical InGaAs QD
with 6 nm radius and dipole moment ��12 D exposed to coherent
light with �n�0��=9 for E�n�=0.48�104 V /cm ��=1.2� and differ-
ent points of time: 0 ns �a�, 0.1 ns �b�, 0.25 ns �c�, 0.5 ns �d�, and
1.0 ns �e�.
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model1 �see curve 1 in Fig. 4�. In contrast, in the vicinity of
the bifurcation, the light statistics becomes essentially super-
Poisonnian �g�2��t��1�, as illustrated by curves 3 and 4,
which correspond to �=3.5 �E�n�=1.4�104 V /cm� and �

=1.2 �E�n�=0.48�104 V /cm�, respectively. Note that curve
3 demonstrates a fast growth imposed by small-amplitude
oscillations. These oscillations correspond to regions of re-
vivals in the time evolution of the inversion �compare curve
3 in Figs. 4 and 3�c��. At higher field strengths, E�n�=7.2
�104 V /cm, the correlation function growth is slowed down
�curve 2�. It should be noted that below the bifurcation
threshold, when E�n��0.21�104 V /cm ���0.5�, the func-
tion g�2��t� passes around to a unit and exhibits an oscillatory
behavior.

Figure 5 presents the photonic state distribution p�n , t� for
different time points at a given strength of E�n�=0.48
�104 V /cm. The figure illustrates a consecutive transforma-
tion of the initially Poissonian distribution �Fig. 5�a�� into the
super-Poisonnian in the course of time �see Figs. 5�c� and
5�d��. The transformation corresponds to the increase in
g�2��t� illustrated by curve 3 in Fig. 4. Let us emphasize that
the standard JC model predicts the photon statistics remain-
ing Poissonian, as it takes place in our case only at large �
�curve 1 in Fig. 4�. Our calculation also shows that in the
region ��0.5, the photon distribution p�n , t� remains Pois-
sonian. The invariability of the coherent light statistics in the
limit �→0 corresponds to the absence of the component �
=1 in Eq. �35�.

B. Quantum dot interaction with Fock qubits

Let a ground-state QD interact with electromagnetic field
given by the Fock qubit �Eq. �36��. Then, the initial condi-
tions for Eqs. �24� are given by

An�0� = 0, Bn�0� = �n,N
N + �n,N+1
N+1. �42�

Further, we restrict ourselves to the Fock qubit with N=6,
assuming 
N=
N+1=�1 /2.

Calculations of the inversion time evolution for different
values of � are shown in Fig. 6. At large � �Fig. 6�c��, the
local field effect is eliminated: In agreement with the solu-
tion of Eq. �41�, the inversion exhibits a harmonic modula-

tion of the oscillation amplitude within the range
w� �−1,1�. The oscillation frequency is equal to ��N

+�N+1� /2, while the frequency of the modulation is given by
��N−�N+1� /2. With parameter � decreasing, the modulation
becomes nonharmonic, as depicted in Figs. 6�a� and 6�b�.

Figures 7 and 8 illustrate change in the photonic statistics
as light interacts with QD. The correlation function g�2��t� is
depicted in Fiq. 7 at different values of acting field strengths.
Curve 1 demonstrates that, same as in Fig. 4 and in agree-
ment with the standard JC model, the correlation function

FIG. 6. Time evolution of the inversion of the QD exposed to
the Fock qubit for different values of �: 1.2 �a�, 8.0 �b�, and 55.0 �c�.

FIG. 7. �Color online� Second-order time-zero correlation func-
tion g�2��t� for a spherical InGaAs QD with 6 nm radius and dipole
moment ��12 D, exposed to the Fock qubit for different acting
field strengths E�n�: 22�104 V /cm �1�, 7.2�104 V /cm �2�, 3.2
�104 V /cm �3�, and 0.48�104 V /cm �4�.

FIG. 8. Photonic state distribution for a spherical InGaAs QD
with 6 nm radius and dipole moment ��12 D, exposed to the
Fock qubit at E�n�=0.48�104 V /cm ��=1.2� and different points of
time: 0 ns �a�, 0.1 ns �b�, 0.25 ns �c�, 0.5 ns �d�, and 1.0 ns �e�.
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oscillates in the vicinity of its initial value at relatively large
driving field �E�n��20�104 V /cm�. At relatively weak
fields, the transformation of the sub-Poissonian statistics
�g�2��t��1� into the super-Poissonian one �g�2��t��1�, with a
pronounced maximum at t�0.4 ns, is demonstrated by curve
4. At E�n��7.2�104 V /cm, curve 2 reveals two maxima,
both lying in the region of sub-Poissonian statistics.

Figure 8 presents calculations of the photonic state distri-
bution p�n , t� for 0.48�104 V /cm �curve 4 in Fig. 7� at
different points of time. The standard JC model, when de-
scribing the interaction of a Fock qubit with a two-level sys-
tem, predicts variation of those probabilities p�n , t� �Eq.
�38�� that correspond to Fock states with n=N, N±1 numbers
of photons. In contrast, the incorporation of the local field
effect leads to the appearance in the distribution of states �n�
of photon numbers both smaller and larger than the present
ones in the initial Fock qubit �Fig. 8�a��. Probabilities of
these states are redistributed �Figs. 8�b� and 8�c�� with time,
and light statistics become irregular, which signifies the
transformation of the photonic state distribution in the course
of time �Figs. 8�d� and 8�e��. In turn, this affects the Rabi
oscillation picture and the second-order correlation function
g�2��t�.

C. Vacuum Rabi oscillations

The vacuum Rabi oscillations characterize the interaction
of an excited-state QD with the electromagnetic vacuum.
The initial conditions for Eqs. �24� in that case are given by
Bn�0�=0 and An�0�=�n,0. The numerical solution of this sys-
tem leads to time-harmonic oscillations of the inversion. This
agrees with the analytical solution of the system at 
�=0,
given by the standard sinusoidal law,1

w�t� =
�2

�0
2 +

4�g�2

�0
2 cos��0t� . �43�

The result can be easily understood from the fact that the
vacuum states, like a single Fock state, have zero observable
electric field. Therefore, such states do not induce observable
polarization and, consequently, frequency shift in QDs. For
the same reason, zero frequency shift is inherent to single-
photon states, as it has been revealed under some simplifying
assumptions in Ref. 35.

VI. DISCUSSION

The standard JC model describing the interaction between
a single-mode quantum electromagnetic field and a two-level
system predicts the collapse-revival picture of the time evo-
lution of the level population. The basic physical result of the
analysis presented in our paper is a significant modification
of the Rabi effect due to the local field induced depolariza-
tion of a QD exposed to quantum light. Two oscillatory re-
gimes with drastically different characteristics arise. In the
first regime, the time modulation of the population �the col-
lapse and revivals� is suppressed and the QD population in-
version is found negative. This indicates that trajectories of
charge carriers confined by the QD occupy a finite volume in

the phase space. In the second oscillatory regime, the reviv-
als appear; however, they are found to be deformed and sig-
nificantly different from that predicted by the standard JC
model. The trajectories of charge carriers occupy the entire
phase space. Both regimes of oscillations demonstrate the
nonisochronous dependence on the coherent field strength.

Two regimes of the Rabi oscillations indicate the appear-
ance of two types of motion of the QD exciton. The first one
is a superposition of time-harmonic oscillations with the
Rabi frequencies �n=g�N+1, while the second type is pre-
sented by the frequency band ��p−�0 � �2
�. The resulting
exciton motion is thus determined by a nonlinear superposi-
tion of these two types of motion.

The first mechanism of the motion is conventional for the
Rabi effect; physically, it originates from the dressing of the
QD exciton by the incident-field photons. This type of mo-
tion dominates at large strengths of the incident field when
��n��
�. With the light-QD coupling constant �and, corre-
spondingly, ��n�� decrease, the role of the second type of
motion becomes significant. This is due to electron-hole cor-
relations resulting from the exchange interaction. It can be
interpreted as the QD exciton dressing by virtual photons.
This regime becomes dominating in the comparatively weak
fields when ��n��
�. Thus, the reduction of the threshold
of the acting field strength needed for the Rabi oscillation
appearance, recently observed experimentally,25 can be at-
tributed as a local field effect. The experiment25 has also
elucidated the nonisochronism of excitonic Rabi oscillations
that can be treated as the local field effect as well �see rela-
tion �28� and numerical calculations reported in Ref. 36�.

It should be noted that two oscillatory regimes in the Rabi
effect may appear in other quantum systems where additional
interaction mechanisms exist. As an example, consider a
two-component Bose-Einstein condensate with radio-
frequency coupling of two separate hyperfine states.59 The
temporal evolution of this system is governed by the coupled
Gross-Pitaevskii equations, which are similar to those de-
rived in Sec. II B. The equations combine both linear and
nonlinear couplings. The linear coupling constant character-
izes the interaction between the system and the electric field,
while the nonlinear one accounts for the interaction between
the intra- and interspecies of the condensate.59 Depending on
the ratio of the coupling parameters, the Rabi oscillations
between the condensate components may exhibit both a
well-ordered and a chaotic behavior,59 similar to that de-
picted in Figs. 1�a� and 1�b�. The formation of the Bardeen-
Cooper-Schrieffer state in the fermionic alkali gases cooled
below degeneracy60 can serve as another example. In that
system, the time modulation of the coupling constant leads to
the Rabi oscillations of the energy gap61 with two oscillatory
regimes. The trajectories of individual Cooper pairs occupy a
finite volume in the phase space in the first regime and the
entire phase space in the second one.

Now, let us turn to the weak-field case. The depolarization
induced local field is predicted to entail in a QD exposed to
an arbitrary photonic state a fine structure of the effective
scattering cross section. Instead of a single line with fre-
quency �0, a duplet appears with one component shifted by a
value of 
�. The shifted component is due to electron-hole
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correlations �see Eq. �26��. The correlations change the QD
state and, consequently, provide the inelastic channel of the
light scattering. The elastic scattering channel is formed by
light states inducing zero observable polarization and, con-
sequently, zero frequency shift, such as Fock states, vacuum

states, etc. Now, we take into account the relation �P̂�
=4�	�Ê0�, which couples the observable polarization and

mean value of the incident field; the quantity Ê0 is defined

through the relation Ê0�t�=�o
�Ê0�r ,��d�+H.c. The scalar

coefficient 	 is the QD polarizability of a spherical QD.
Therefore, we conclude that the elastic scattering channel is
formed by incident field with zero mean value �incoherent
component of the electromagnetic field�. Correspondingly,
the coherent field component is scattered through an inelastic
channel. As follows from the solution of Eq. �35�, the elastic
channel is not manifested for pure coherent light �the
Glauber state�.

Let us discuss now the local field induced alteration of the
quantum light statistics. As an example, we consider the
Fock qubit �Eq. �36�� as the incident-field state. For the case

�=0, the photonic state distribution is given by

p�n,t� = �n,N−1�AN−1�t��2 + �n,N��AN�t��2 + �BN�t��2�

+ �n,N+1�BN+1�t��2, �44�

where An�t� and Bn�t� are the exact solutions of Eqs. �24� at

�=0 �see, e.g., Ref. 1�. It is seen that the Fock states with
photon numbers n=N ,N±1 are only presented in the distri-
bution. The probability amplitudes of these states oscillate
with the corresponding Rabi frequencies, �n=N,N±1. In addi-
tion to this set, extra Fock states with both smaller and larger
photon numbers appear in the photonic state distribution
p�n , t� as the local field effect �see Fig. 8�. Therefore, a big-
ger number of Fock states pared to those presented in the
initial Fock qubit broaden the frequency spectrum of Rabi
oscillations, thus providing the chaotic time evolution of the
inversion.

It should be noted that the variation in the quantum light
statistics occurs even in the weak-field limit g→0. To illus-
trate that, consider the observable polarization of the QD
exciton defined in the time domain as

�P̂� =
1

V
�*�

�nq�
A�nq�B�nq�

* e−i�0t + c.c. �45�

Using Eq. �33�, we couple the polarization in the frequency
domain with the complex-valued amplitude of the mean in-
cident field,

�P̂� =
���2/�V

�0 − � + 
� − i0
�Ê0� . �46�

Then, after some simple manipulations, we express the quan-
tum fluctuations of the QD polarization by

P̂ − �P̂� =
���2/�V

�0 − � − i0
�Ê0 − �Ê0�� . �47�

It follows from Eqs. �46� and �47� that the QD electromag-
netic responses to the mean electric field and to its quantum

fluctuation are different: The response resonant frequency is
shifted by the value 
� in the former case �relation �46�� and
remains unshifted in the latter one, as given by relation �47�.
This indicates that the effective polarizability of a QD is an
operator in the space of quantum states of light. It should be
pointed out that this property is responsible for the alteration
of the photonic state distribution in the weak-field regime
and is entirely a local field effect. Note that the notions
“strong �weak� coupling regime” and “strong �weak� field
regime” are not identical as applied to QDs. To illustrate this
statement, we express from Eqs. �46� and �47� the polariza-
tion operator in the weak-field limit,

P̂ =
���2/�V

�0 − � − i0
	Ê0 −


��Ê0�
�0 − � + 
� − i0


 . �48�

This equation is linear in the incident field but includes a
term quadratic in the oscillator strength, O����4�. Nonlinear-
ity of that type violates the weak coupling regime. The split-
ting of the QD-exciton spectral line dictated by Eq. �47� is a
manifestation of the strong light–matter coupling in the weak
incident-field regime. Thus, the light-QD interaction is char-
acterized by two coupling parameters, the standard Rabi fre-
quency and a new one, the depolarization shift 
�.

VII. CONCLUSIONS

In this paper, we have developed a theory of the electro-
magnetic response of a single QD exposed to quantum light,
corrected to the local field effects. The theory exploits the
two-level model of QDs with both linear and nonlinear cou-
plings of excited and ground states. The nonlinear coupling
is provided by the local field influence. Based on the micro-
scopic Hamiltonian accounting for the electron-hole ex-
change interaction, an effective two-body Hamiltonian has
been derived and expressed in terms of the incident electric
field, with a separate term responsible for the local field im-
pact. The quantum equations of motion have been formu-
lated and solved with this Hamiltonian for different types of
the QD excitation, such as Fock qubit, coherent state,
vacuum state, and arbitrary state of quantum light.

For a QD exposed to coherent light, we predict two oscil-
latory regimes in the Rabi oscillations separated by the bi-
furcation. In the first regime, the standard collapse-revival
phenomenon does not reveal itself and the QD inversion is
found negative. In the second regime, the collapse-revival
picture is found to be strongly distorted as compared with
that predicted by the standard JC model. The developed
model can be easily extended to systems of other physical
nature exposed to a strong electromagnetic excitation. In par-
ticular, we expect a manifestation of the local field effects in
Bose-Einstein condensates59 and fermionic alkai gases
cooled below the degeneracy.60

We have also demonstrated that the local field correction
alters the light statistics even in the weak-field limit. This is
because the local fields give rise to the inelastic scattering
channel for the coherent light component. As a result, coher-
ent and incoherent light components interact with QD on
different frequencies separated by the depolarization shift
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�. In other words, the local fields eliminate the frequency
degeneracy between these components of the incident light.

Note that our model does not account for the dephasing.
According to recent experimental measurements54,55 and the-
oretical estimates,15,16 the electron-phonon interaction is the
dominant mechanism of the dephasing in QDs. Thus, further
development of the theory presented requires this dephasing
mechanism incorporation. A next step is the generalization of
our model to multilevel systems. Among them, the systems
with dark excitons interacting with a weak probe pulse in the
self-consistent transparency regime17 are of special interest.

The generalization of the theory developed to the case of
QD ensembles �excitonic composites�, such as self-organized
lattices of ordered QD molecules62 and one-dimensional-
ordered �In, Ga�As QD arrays,63 is of special interest. One
can expect that dipole-dipole interactions between QDs will
manifest itself in a periodic transfer of excited state between
QDs, thus resulting in the collective Rabi oscillations—Rabi
waves.

All in all, we have theoretically investigated the local field
effect in the electromagnetic response of a QD exposed to
the quantized radiation. The developed theoretical model can
serve as a basis for the analysis of luminescence and absorb-
tion spectra of QDs exposed to quantum states of light in
both strong and weak coupling regimes. We hope that the
present paper will stimulate experimental investigations of
the excitonic Rabi oscillations in a QD interacting with non-
classical fields.
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APPENDIX: DEPOLARIZATION SHIFT FOR THE
SPHERICAL QUANTUM DOT

For a spherical QD, formula �22� is reduced to


� =
4�

3�V
���2Tr�N�̃ � . �A1�

Using expression �17�, we obtain

Tr�N�̃ � =
V

4�
�

V

���r���2�
V

���r��2�2	 1

�r − r��

d3rd3r�

=V�
V
�

V

���r���2���r��2��r − r��d3rd3r�

=V�
V

���r��4d3r . �A2�

Consider the 1s state. The normalized wave function in this
case is given by48

��r� =
1

R�2�
J1/2	�

�

R

 , �A3�

where J��¯� is the Bessel function, � is the spherical coor-
dinate, and R is the QD radius. Inserting Eq. �A3� into Eq.
�A2� and integrating the resulting expression, we derive the
correction to the depolarization shift �Eq. �A1��,

Tr�N�̃ � =
4�

3
�

0

� sin4 x

x2 dx � 2.81. �A4�
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