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Transition energies and oscillator strengths of excitons in dependence on magnetic field are investigated in
types I and II semiconductor nanorings. A slight deviation from circular �concentric� shape of the type II
nanoring gives a better observability of the Aharonov-Bohm oscillations since the ground state is always
optically active. Kinetic equations for the exciton occupation are solved with acoustic phonon scattering as the
major relaxation process, and absorption and luminescence spectra are calculated, showing deviations from
equilibrium. The presence of a nonradiative exciton decay leads to a quenching of the integrated photolumi-
nescence with magnetic field.

DOI: 10.1103/PhysRevB.76.195326 PACS number�s�: 78.20.Bh, 71.35.Ji, 78.67.Hc, 71.35.Cc

I. INTRODUCTION

The Aharonov-Bohm effect �ABE� rests upon the action
of the vector potential on quantum mechanical particles. The
idea behind is quite simple: A charge particle orbiting around
a region with nonzero magnetic flux �B=�B ·dS aquires an
energy which is a periodic function of the magnetic flux �B,
the period being given by the magnetic flux quantum h /e.
Shortly after its theoretical prediction,1 the ABE has been
observed experimentally.2,3 Doped semiconductor nanorings
are among actual realizations4 where the ABE could be de-
tected with high precision.

The exciton Aharonov-Bohm effect is a more recent in-
vention: The neutral exciton consisting of electron and hole
is predicted to show a similar oscillating behavior. Origi-
nally, a related many-body system has been studied by Wen-
dler and co-workers5,6 who have considered the Coulomb
effect when placing two electrons into a quantum ring—
instead of electron and hole as in the present exciton case.
They form a kind of Wigner molecule with interesting prop-
erties such as crystallization. The approximations used origi-
nally allowed for an analytic solution of the ground state and
the related persistent current. Later on, a full calculation was
carried out, but always using a rigid lateral confinement in
the ring.7

For the exciton Aharonov-Bohm effect �X-ABE�, the lim-
iting case of a nanoring with zero width has been studied first
as well.8,9 The simplicity of the model allowed to investigate
many aspects of X-ABE such as the Berry phase and persis-
tent current,10 absorption,11 or deviation from circular sym-
metry due to the presence of impurities.12,13 One basic result
was that the X-ABE can only be observed as long as the ring
diameter is comparable or below the exciton Bohr radius aB.9

Since the ring size cannot be made arbitrarily small, a better
idea is to increase aB, i.e., to weaken the exciton. This can be
achieved by separating electron and hole using a static elec-
tric field,14,15 or going to type II material combinations where
electron and hole are confined in different regions.12,13,16,17

Finally, we remark that in any presently achievable experi-
mental setup, the nanorings will be threaded by a magnetic
field, giving rise in addition to the ABE also to a B2 energy
dependence.

First calculations for excitons in a circular nanoring with
finite width and homogeneous penetrating magnetic field18–20

could not find the X-ABE for the ground state. Theoretical
progress was made by calculations on two-dimensional an-
nular lattices.21 X-ABE oscillations were found but the B2

energy shift was not included. Our recent calculations for
types I and II nanorings with finite width in Ref. 22 have
clearly shown that the ground state energy has an oscillatory
component, which is related to the exciton persistent current.
For extracting its amplitude, we have proposed to calculate
the second derivative of the energy with respect to B. On the
search for optimal nanoring parameters, we have discussed
in detail different material combinations for type II nano-
rings.

Compared to Ref. 22, the present work deals with noncir-
cular geometry and gives a detailed study of exciton kinetics
in order to calculate exciton occupation which is not neces-
sarily in equilibrium with the lattice temperature. We restrict
ourselves to incoherent and steady-state excitation following
Ref. 23. A first attempt to calculate the exciton photolumi-
nescence �PL� in zero width nanorings with a single impurity
�and also quantum dots with respect to X-ABE� has been
presented recently in Ref. 12. As a simplification, however,
an equilibrium Maxwell-Boltzmann distribution for the exci-
tons has been assumed, and only the integrated PL intensity
was shown. We have started with a more realistic exciton
kinetics, still in the zero width model for circular nanorings
in Ref. 24. Nonradiative decay channels have been identified
to be responsible for the decrease of the integrated PL signal
with increasing magnetic field, which is named PL quench-
ing.

The experimental situation for the X-ABE is far from
clear: An ensemble of InP /GaAs type II quantum dots has
been studied in Ref. 25 and a theoretical explanation based
on Ref. 26 indicated some X-ABE oscillations in a single
dot. Later on, the noncircular shape of the quantum dot �D1
and D2 symmetries �see Sec. II�� has been taken into
account.12 Furthermore, in a recent single dot experiment27

on InP /GaAs quantum dots �grown under different condi-
tions�, no oscillations have been observed. This is consistent
with our recent calculation for embedded InP /GaAs quan-
tum dots in Ref. 28. In a nanoring, only the ABE for nega-
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tively charged excitons—trions—has been observed.29 The
X-ABE in nanorings still waits for its unambigous experi-
mental verification.

The paper is organized as follows. The exciton Hamil-
tonian is given in Sec. II in radial and angular variables, and
its matrix elements are analyzed according to the ring sym-
metry using arguments of group theory. Examples for ener-
gies, oscillator strengths, and oscillation amplitudes of the
X-ABE are shown in Sec. III for both type I and type II
structures. Kinetic equations for the exciton occupation in-
cluding acoustic phonon scattering and several decay chan-
nels are discussed in Sec. IV. Its numerical solution allows us
to plot absorption and photoluminescence spectra for various
parameters �Sec. V�. The paper is concluded in Sec. VI,
while more technical details are deferred to the Appendix.

II. EXCITON HAMILTONIAN

For the heavy-hole exciton in nanostructures, effective
mass theory with appropriate in-plane �ma� and growth di-
rection masses �ma,z� is used often. The subscript denotes
electron �a=e� and hole quantities �a=h�. Within this ap-
proximation, we will investigate a structure which consists of
a narrow quantum well with confining potentials Ua�za� into
which a nanoring of general symmetry is embedded. The
corresponding lateral confinement is given by Va�ra�. The
three-dimensional vector r is decomposed into its two-
dimensional in-plane part and the z component in growth
direction, ra= �ra ,za�. The ring structure is schematically
plotted in Fig. 1. Including a constant B field in the z direc-
tion �perpendicular to the quantum well�, we have the single
exciton Hamiltonian,

Ĥ = �
a=e,h

� 1

2ma
�p̂ra

� eA�ra��2 +
1

2ma,z
p̂za

2 + Ua�za�

+ Va�ra� ± ga
*�BB�a

z� −
e2

4��0�S	re − rh	
, �1�

where the upper �lower� sign refer to electron �hole�. ga
* are

effective g factors, �B=e� /2m0 is the Bohr magneton, and
�a

z the Pauli spin matrix �along z�. The vector potential is
used in symmetric gauge, A�r�= 1

2B� r. The Coulomb poten-
tial between electron and hole �last term� is screened by the
static dielectric constant �S of the semiconductor material.

Angular momentum and spin parts of the wave function
can be separated for the heavy-hole exciton, forming a qua-
druplet with the z projection of the total angular momentum
M = ±1 �optically active or bright states, with circular polar-
ization �±� and M = ±2 �dark states�. Combining electron and
hole g factors into effective exciton g factors30,31 as gX,±1

*

= ± �gh
*+ge

*� and gX,±2
* = ± �gh

*−ge
*� allows us to write the

spin-dependent contribution to the exciton energy as

EM
spin =

1

2
gX,M

* �BB , �2�

which gives rise to the Zeeman splitting linear in B. In the
following, this spin contribution is not written explicitly
since its addition to the exciton energies is straightforward.
The exciton exchange interaction gives rise to an additional
fine structure splitting which is neglected here in view of the
dominant B-field effects.

Due to the confinement strength in the z direction, we
factorize from the total wave function the product of sublevel
wave functions32 of the lowest electron and hole states in the
quantum well. The remaining in-plane part of the wave func-
tion has to be calculated from the z-averaged Hamiltonian.22

Introducing polar coordinates and difference and sum angle
�	=	e−	h, �= �	e+	h� /2�, we arrive at

Ĥ = �
a=e,h


−
�2

2ma

1

ra

�

�ra
�ra

�

�ra
� +

1

2mara
2�i�
 �

�	
±

1

2

�

��
�

−
eB

2
ra

2�2

+ Va�ra,� ±
1

2
	�� − VC�re,rh,	� , �3�

where 
 ��� sign refers refers to electron �hole�. The con-
finement averaged Coulomb potential VC�re ,rh ,	� has been
defined in Ref. 22.

The exciton eigenfunction of the state � as solution of

Ĥ� = E�� �4�

is expanded into the basis of angular momentum eigenfunc-
tions,

��re,rh,	,�� =
1

2�
�
l,L

ul,L,��re,rh�eil	eiL�. �5�

The azimuthal boundary conditions have the usual form,

��re,rh,	e,	h� = ��re,rh,	e + 2�,	h� ,

��re,rh,	e,	h� = ��re,rh,	e,	h + 2�� , �6�

which leads using Eq. �5� to the following relation between l
and L:

FIG. 1. Schematic drawing of the investigated noncircular �ec-
centric� nanoring �shaded� embedded in a quantum well.
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L even:l integer, L odd:l half integer. �7�

The expansion functions ul,L,��re ,rh� obey a coupled system
of Schrödinger equations. The confining potential produces
the matrix elements,

�lL	Va�ra,	a�	l�L� = �l−l�,±�L−L��/2VL−L�
a �ra� ,

Vk
a�ra� =

1

2�
�

0

2�

d	aVa�ra,	a�eik	a, �8�

where again 
 ��� sign corresponds to the electron �hole�.
From the reality of Va�ra ,	a� follows Vk

a= �V−k
a �*.

The confining potential can have an arbitrary symmetry
�see Fig. 2, for example� which is classified by the two-
dimensional point group. There are two types: �i� Cn which
consists of all rotations about the origin by multiples of the
angle 2� /n and �ii� Dn which adds to the rotations of Cn
reflections with respect to n axes passing through the origin.
Within Cn, the potential Va�ra ,	a� is invariant under rota-
tions by multiples of the angle 2� /n. Changing the integra-
tion variable in Eq. �8� by 	a�=	a+2� /n, we obtain

Vk
a�ra� =

1

2�
�

0

2�

d	aVa�ra,	a�eik�	a+�2�/n��. �9�

Comparison with Eq. �8� shows that only elements with
k= jn �j integer� can be nonzero. Using similar arguments,
the reflections in Dn imply Vk

a=V−k
a to hold. The symmetry

properties are summarized in Table I.
In the absence of any symmetry �C1�, all matrix elements

in Eq. �8� can be nonzero. For increased symmetry �Cn or Dn,
n�1�, the matrix decomposes into n block matrices,
since the matrix elements �lL	Va	l�L� are nonzero only if
L−L�=n. In the limiting case of large n, the point groups Cn
and Dn converge to the point group of the circle O�2�. Due to

the rotational invariance of the circle, one degree of freedom
can be factorized. This is the total angular motion since the
corresponding commutator with the Hamiltonian vanishes,

�Ĥ ,−i�� /���=0.
The Coulomb potential VC�re ,rh ,	� depends only on the

relative angle, and its matrix elements are diagonal in L,

�lL	VC�re,rh,	�	l�L� = �LL�Vk
C�re,rh� ,

Vk
C�re,rh� =

1

2�
�

0

2�

d	VC�re,rh,	�cos�k	� . �10�

Putting all terms together, the matrix elements of the Hamil-
tonian are given by

�lL	Ĥ�re,rh,	,��	l�L�

= �ll��LL� �
a=e,h


 �2

2ma
�−

1

ra

�

�ra
�ra

�

�ra
�

+
1

ra
2�l ±

L

2
+

eB

2�
ra

2�2�� − �LL�Vl−l�
C �re,rh�

+ �l−l�,�L−L��/2VL−L�
e �re� + �l�−l,�L−L��/2VL−L�

h �rh� .

�11�

The azimuthal kinetic terms can be rewritten as

�
a=e,h

�2

2mara
2�l ±

L

2
+

eB

2�
ra

2�2

=
�2

2�XrX
2 �l +

eB

2�
rX

2 +
L

2
p�2

+
�2

2�mere
2 + mhrh

2�
� eB

2�
�re

2 − rh
2� + L�2

, �12�

with the exciton reduced mass �X=memh / �me+mh�. Further,
rX is an effective ring radius for the exciton and p a phase
shift, defined as

rX
2 =

re
2rh

2�me + mh�
mere

2 + mhrh
2 , p =

mhrh
2 − mere

2

mhrh
2 + mere

2 . �13�

Equation �12� resembles the zero-width ring model discussed
in Ref. 22. For L=0, the last line is responsible for the over-
all increase of energies quadratically in B, while the second
line is the source of the X-ABE oscillations. We will use Eq.
�12� in Sec. III for extracting a reasonable estimate of the B
oscillation period.

For dipole-allowed optical interband transitions, the oscil-
lator strength f� of the exciton state � is given by the ampli-
tude of finding electron and hole at the same place,33

f� = dcv� dr ���r,r� , �14�

where dcv is the interband dipole matrix element. Introducing
the single sublevel approximation and the expansion Eq. �5�,
we find

TABLE I. The symmetry of the ring geometry leads to restric-
tions for the matrix elements of the in-plane potential Eq. �8�.

Point group of the ring Nonzero elements of Vk
a at

Cn k= jn �j integer�
Dn k= jn �j integer� and Vk

a=V−k
a

O�2� k=0

FIG. 2. Schematic picture of nanorings with different
symmetries.
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f� = dcv�
l
�

0

�

dr r ul,0,��r,r� . �15�

Only the wave function component with L=0 contributes to
the oscillator strength. States with nonzero oscillator strength
are called bright states, while dark states have f�=0.

As an example of a structure with low symmetry, we in-
vestigate a ring with D1 symmetry. Our simple model has
two circles as boundaries. The inner one is centered at the
origin �radius r1�, while the outer one �radius r2� is displaced
by b, as indicated in Fig. 3. Electron energy spectra have
been investigated for such a structure in Ref. 34, calling the
ring eccentric. We will use in what follows noncircular and
eccentric as equivalent names, contrasting to concentric and
circular. The potential is assumed to be constant with a value
V0

a between these two rings, and set to zero outside. In the
figures, however, zero of energy is set to the confinement gap
of the quantum well made from the ring material.

The matrix element Eq. �8� reduces to

Vk
a�ra� =

V0
a

2�
�

−�

�

d	 eik	��ra − r1���r2
2 − �ra cos�	� − b�2

− ra
2 sin2�	�� . �16�

The unit step functions determine the integration boundaries
to be ±� or ±	�ra�, where

cos�	�ra�� =
1

2

b2 + ra
2 − r2

2

rab
. �17�

The result can be given analytically,

Vk
a�ra� = V0

a��k,0��ra − r1���r2 − b − ra��17�

+
1

k�
sin�k	�ra����ra − r2 + b���r2 + b − ra�� ,

�18�

which properly satisfies the relation Vk
a=V−k

a inherent to D1
symmetry.

The circular ring is contained as a special case: Setting
b=0, only the first line in Eq. �18� contributes,

Vk
a�ra� = V0

a�k,0��r2 − ra���ra − r1� . �19�

Consequently, the Hamiltonian matrix is fully diagonal in L,
and the wave function expansion Eq. �5� reduces to the sum
over l, while L=L� is fixed and therefore a good quantum
number.

III. EXCITON AHARONOV-BOHM EFFECT OF THE
EXCITON GROUND STATE

We begin with a discussion of the X-ABE for the exciton
ground state in concentric and eccentric nanorings of types I
and II, as schematically plotted in Fig. 4. The material pa-
rameters used are summarized in Table II. The effective
masses are chosen according to the material in which the
particle is found predominantly. The values of the mass den-
sity, the sound velocity, and the deformation potentials are
taken for the ring material.

In the calculation, B-field strengths up to B=25 T are
used which can be easily achieved in experiment. The radial
coordinates in Eq. �11� have been discretized on a grid of 40
points with a grid step of 0.5 nm. The expansion of the wave
function into l and L components has been checked for con-
vergency of the results, leading to a truncation of 	l	�13 and
	L	�10. The subsequent numerical diagonalization was per-
formed with the improved Lanczos method41 and checked
with the Leapfrog method.42,43

A. Type I nanoring

First, a nanoring of GaAs embedded in the surrounding
material Al0.23Ga0.77As is considered. This type I structure
has a confinement of both electron and hole within the nano-
ring.

The dependence of the lowest three exciton energies on
magnetic field is plotted in Fig. 5�a�. In the case of circular

FIG. 3. Schematic picture of a nanoring with D1 symmetry.
Within the gray region, the potential is nonzero. Inner and outer
ring boundaries are circles with radii r1 and r2, the centers of which
are displaced by b. FIG. 4. Schematic view of in-plane geometry �top� and energy

profiles for conduction and valence band �bottom� for the investi-
gated nanorings of �a� type I and �b� type II. Specific electron and
hole positions are visualized.
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symmetry �b=0 nm, black curves�, the states can be sorted
according to their quantum number L�. The ground state has
L�=0 �solid� and the first and the second excited ones
L�=1 �dashed� and L�=−1 �dotted�, respectively. The ener-
gies of the first excited states are degenerate at B=0 T. This
degeneracy is lifted at B�0 with a relatively small splitting
since the effective radial distance between electron and hole
is small. In order to see this dependence more clearly, let us
look upon Eq. �12�. Due to the strong radial confinement, the
coordinates ra in Eq. �12� can be replaced by their expecta-
tion values Ra= �ra. Their values being rather close in the
present case �Re=8.0 nm, Rh=7.8 nm�, we realize that
L= ±1 gives only a minor difference in the energy.

The case of noncircular symmetry �b=1 nm, red �gray�
curves in Fig. 5�a�� is qualitatively not different from the
circular one since the energetically lowest states for different
quantum numbers L do not cross. Their mixing leads to a
larger splitting among states and lifts the degeneracy at
B=0 T. More important are the changes in the oscillator
strength �Fig. 5�b��. The D1 symmetry of the eccentric nano-
ring implies that there is one symmetry axis, let us say the x

axis, with reflection operator T̂x. The wave function trans-
forms in the following way:

T̂x��xe,ye,xh,yh� � ��xe,− ye,xh,− yh�

= ± ��xe,ye,xh,yh� . �20�

With respect to this symmetry operation, all states can be
grouped into even and odd ones. The odd states have zero
oscillator strength which follows immediately from Eq. �20�.
The doubly degenerate states of the concetric nanoring at

B=0 T can form an even and odd linear combination with

respect to T̂x. As the symmetry is lowered these combina-
tions get mixed. The energetic order of even and odd states
can be estimated for the lowest ones. The ground state is
always even, as shown in Fig. 5�b�. The first excited is odd
since the contribution of the Coulomb interaction is still
large as in the ground state, while the kinetic energy is lower
than for the next even state. Further excited states have dif-
ferent Coulomb contributions and that is why their order
cannot be determined in general.

All lines in Fig. 5�a� seem to shift upward quadratically in
B, which is indeed the dominant part of the diamagnetic
shift. In order to extract the tiny amplitude of the X-ABE
oscillations, we have proposed in our previous publication
Ref. 22 to calculate the second derivative of the exciton en-
ergy with respect to the B field. This is shown in Fig. 5�c�.

The period can be estimated from the second line of Eq.
�12�, assuming that due to the confinement both �re and �rh
are almost constant, as

TABLE II. Confinement potentials V0
a, static dielectric constant

�S, in-plane effective masses ma, g factors ga
*, mass density �M,

sound velocity s, and deformation potentials for conduction �Dc�,
and valence band �Dv�.

GaAs /Al0.23Ga0.77As InP /Ga0.51In0.49P

V0
a �meV� −257b −600c

V0
d �meV� −110b 50c

�S 12.5e 12.6c

me /m0 0.067e 0.077c

mh /m0 0.36e 0.6f

ge
* 0.1g 1.6d

gh
* −1.2g −3.0d

�M �kg m−3� 5370e 4810a

s �m/s� 5330e 5230a

Dc �eV� 7.0e 6.0a

Dv �eV� −3.5e −0.6a

aReference 39
bReference 37.
cReference 36.
dReference 40.
eReference 35.
fReference 38.
gReference 30.

(a
rb

.
u
n
it

s)

a) d)

FIG. 5. �Color online� Calculated exciton properties in nano-
rings in dependence on magnetic field. The left column refers to a
type I system �GaAs /AlGaAs� with ring radii r1=4 nm and
r2=12 nm, while for the right column, a type II system
�InP /GaInP� with r1=8 nm and r2=16 nm has been considered.
Results for a circular ring �b=0� are shown in black, while red
�gray� curves are obtained for a noncircular ring �type I: b=1 nm,
type II: b=0.5 nm�. The lowest exciton levels are shown in �a� and
�d� �for details see text�. The spin-dependent Zeeman energy is not
included. In �b� and �c�, the corresponding oscillator strengths f�

2

are plotted. The lowest panels ��c� and �d�� show the second deriva-
tive of the ground state energy which quantifies the X-ABE
oscillations.
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BP =
2�

e

1

RX
2 , �21�

which is BP=20.6 T in the present case. The minima of the
oscillatory component of the energy are found at B= jBP, j
being integer, and maxima at B= jBP /2. Consequently, the
minimum of the second derivative is found at around half of
the oscillation period in all cases �BP /2=10.3 T�.

The oscillation amplitude is reduced for the eccentric
nanoring. Here, the nonuniform ring width tends to push the
exciton wave function into the broader part, thus weakening
its ring topology which is a necessary ingredient for X-ABE
oscillations. Note that for b�r2−r1, the confinement poten-
tial reduces to a banana-shaped quantum dot, and the ring
topology is lost completely.

B. Type II nanoring

Secondly, we investigate a type II nanoring consisting of
InP in the ring and Ga0.51In0.49P outside, embedded into an
AlAs barrier along z. Strain effects are taken into account
only in so far as the hole is always found inside, rh�r1. A
full inclusion of strain would modify the exact potential pro-
file but not the O�2� or D1 symmetry.

For the concetric type II ring, Fig. 5�d� illustrates the
crossings among states with different quantum numbers L�

�black solid L�=0, dashed L�= ±1, and dotted L�= ±2�. This
crossing resembles more the ABE for individual carriers and
can be traced back to the much reduced exciton effect in the
present type II nanoring. In order not to overload Fig. 5�d�,
some higher states have been omitted. If the symmetry is
reduced to D1 �red �gray� curves�, all states are mixed similar
to the types I nanoring. Consequently, all crossings become
anticrossings and the energy dependence on the magnetic
field differs not much from the type I nanoring, with reduced
X-ABE oscillations �Fig. 5�f��.

The difference between types I and II nanorings becomes
apparent when the oscillator strength is studied, as depicted
in Fig. 5�e�. The oscillator strength corresponding to differ-
ent exciton states changes with the magnetic field as the
character of the exciton wave function changes itself: The
main component of the ground state wave function is L=0 at
B=0 T and shifts to L=1 at B=10 T. This results in a de-
crease of the oscillator strength which is transferred to the
first excited state �and increased due to the larger electron-
hole overlap�. Later on, it is transferred to the second and
higher excited states where different quantum numbers L
mix strongly. Even though there is no any strict rule for the
oscillator strength conservation, Fig. 5�e� suggests that it is
approximately valid for the lowest exciton states. The rapid
decay of the ground state oscillator strength with increasing
magnetic field has interesting implications for the exciton
kinetics �Sec. IV�.

Unlike the type I nanoring, the oscillation period changes
with b �Fig. 5�. This is also accompanied by a decrease of the
oscillation amplitude due to the loss of the ring topology
with increasing b. The oscillation period is now determined
by the periodic change of the ground state main component
from L to L+1, thus by the center-of-mass motion. The ex-

citon relative motion with the period BP in Eq. �21� plays
only a minor role for every value of b�0. The value of the
center-of-mass period can be estimated from the last term of
Eq. �12� assuming again strong radial confinement,

BP,2 =
2�

e

1

Re
2 − Rh

2 . �22�

In the present case, taking Re= �re=12.3 nm and Rh= �rh
=4.4 nm, we obtain BP,2=9.9 T, which agrees well with the
observed period in Fig. 5�f�.

In Fig. 6, correlated one-particle densities are plotted.
They are defined as conditional probability to find a particle,
either electron or hole, in the exciton while fixing the coor-
dinates of the other particle at a certain position marked by a
large dot. For the formal definition �see Eqs. �A1� and �A2��.
This concept has been used also for analyzing the two-
electron Wigner molecule in a quantum dot.7 An inspection
of Fig. 6 reveals how the loss of the circular symmetry in the
eccentric nanoring modifies the wave function. By fixing the
hole position at the right �wide� side of the ring, most of the
electron density is found there as well �Fig. 6�a��, which
resembles the situation in a concentric ring �not shown�. The
same is true for the hole �Fig. 6�c��. On the other hand, by
fixing either the electron or the hole on the opposite narrow
side of the ring, the picture changes. Due to the strength of
the ring confinement and the weakness of the Coulomb in-
teraction in type II structures, the electron is still found on
the right where the confinement energy is minimal �Fig.
6�b��. Since the electron density is very small on the opposite
side, the Coulomb correlation seen by the hole is tiny, and an

FIG. 6. Correlated electron and hole densities of the exciton
ground state at zero magnetic field for a noncircular type II nano-
ring �InP /GaInP, r1=8 nm, r2=16 nm, b=2 nm�. The black dot
indicates the chosen coordinates of the other particle.
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almost circular—i.e., one-particle-like—hole density is
found in Fig. 6�d�.

Finally, let us briefly consider the case of a free electron-
hole pair which has been investigated for type I nanorings in
Ref. 34. Formally, we switch off the Coulomb interaction VC
in the Hamiltonian �Eq. �1��. The free electron-hole transi-
tions shown as dashed curves in Fig. 7�a� are dominated by
the electron level since the hole part refers to an almost fixed
angular quantum number due to the small effective hole ra-
dius of 4 nm. Therefore, the first levels can be characterized
by the electron quantum numbers le=0,−1, +1. Their degen-
eracy at zero magnetic field is lifted when switching on the
Coulomb interaction �solid curves�, similarly to Fig. 5�d�.
The overall down shift in energy is a measure of the exciton
binding energy.

The second derivative displayed in Fig. 7�b� shows that
the diamagnetic shift �being proportional to the relative dis-
tance� of the free electron-hole pair is larger than in the ex-
citon. The reason is the Coulomb attraction in the exciton
which brings electron and hole closer together. The oscilla-
tion amplitude, however, is getting stronger for the exciton.
We conclude that the ring topology of the electron part is
stabilized due to the Coulomb attraction with the hole.
Therefore, surprisingly in the specific type II example, the
ring eccentricity is felt not as strong for the exciton com-
pared with the free electron-hole pair.

To summarize this section, we have demonstrated that the
amplitude of X-ABE weakens when going from circular to

noncircular symmetry since the wave function tends to lose
its ring topology. However, if the asymmetry is weak and
electron and hole are spatially separated as in type II struc-
tures, the ground state still exhibits oscillations in its energy,
while being always bright and observable by optical means.

IV. KINETIC EQUATIONS

For calculating the photoluminescence emitted from the
nanoring, we need to know the occupation N� of each exci-
ton states. For the linear density regime and incoherent ex-
citation, the relevant set of kinetic equations has been de-
rived in Ref. 23,

dN�

dt
= g� + �

�

���N� − �r� + d� + �
�

����N�. �23�

Here, g� is a state dependent generation term which stands
for the last term in a chain of optical phonon emission events
after optical interband excitation.35 The radiative decay rate
r� of a localized exciton state contains emission into both TE
and TM polarizations and is found proportional to the
squared oscillator strength,44

r� =
4

3

Eg
3nR

�4c3 	f�	2, �24�

where nR is the refractive index and Eg the band gap. In Eq.
�23�, d� is a phenomenological nonradiative decay rate, rep-
resenting processes as, e.g., exciton annihilation via impuri-
ties, escape into the wetting layer, or Auger processes. These
processes are not treated explicitly in the present theory.

The acoustic phonon scattering rates ��� are defined as

��� =
2�

�
�
q

	t��
q 	2��nB���q� + 1���E� − E� − ��q�

+ nB���q���E� − E� + ��q�� , �25�

where nB���q� is the Bose-Einstein distribution of acoustic
phonons with dispersion ��q=�sq �s—sound velocity�.
They obey the relation of detailed balance between in- and
out-scatterings of a given state,

��� = ���e�E�−E��/kBT, �26�

with the phonon �i.e., lattice� temperature T. Strictly speak-
ing, lattice vibrations in nanostructures differ from the re-
spective bulk ones,45 but for the present purpose this refine-
ment is of minor importance.46 The evaluation of the
exciton-phonon matrix elements t��

q for deformation poten-
tial scattering is given in the Appendix.

In the exciton scattering with acoustic phonons, we have
taken into account only the spin diagonal part. Indeed, there
is nondiagonal scattering �“spin-flip”� as well due to the lack
of the inversion symmetry in nanostructures—Rashba
effect.47 Under linearly polarized excitation, the initial gen-
eration g� is spin independent. Assuming that in the final
stage of thermalization spin-flip processes can be neglected,
we expect an equal occupation of spin up and down bright
states. This is supported by recent experiments showing al-
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FIG. 7. �Color online� Calculated exciton �solid� and free
electron-hole pair �dashed� properties in noncircular nanorings of
type II �InP /GaInP� with r1=8 nm, r2=16 nm, and b=2 nm as a
function of magnetic field. The ground state in black, the first and
the second excited state in red �dark gray�, and green �light gray�
are shown in �a� �the spin-dependent Zeeman energy is not in-
cluded�. In �b�, the second derivative of the ground state energy is
depicted.
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most no difference in intensities between �+ and �− polar-
ized lines.48

The kinetic equations are solved numerically for the
steady state situation dN� /dt=0. The resulting occupations
N� enter the photoluminescence spectrum I�E�,

I�E� = �
�

r�N���E − E�� . �27�

Note that the linear absorption spectrum D�E� does not de-
pend on the occupations,

D�E� = �
�

r���E − E�� . �28�

Again, a constant prefactor has been omitted.
Summing Eq. �23� over all states �, the phonon scattering

terms cancel, and the following conservation law for the total
pump rate P is found:

P � �
�

g� = �
�

�r� + d��N�. �29�

We will exploit this relation in Sec. V in the discussion of PL
quenching, i.e., a decrease of the PL intensity with B field.

V. ABSORPTION AND PHOTOLUMINESCENCE

Since in type I nanorings, the exciton energies and oscil-
lator strengths do not depend much on the magnetic field,
interesting effects such as PL quenching are not to be ex-
pected. Therefore, we focus here on a type II system and
investigate InP /GaInP nanorings with radii r1=8 nm and
r2=16 nm. Results for an eccentric nanoring �c� are com-
pared with a sligthly eccentric one �n�, having a center dis-
placement b of 0.5 nm, as used in Fig. 5 �right panel�. The
radiative rates of the lowest state �=0 are rather small
�r0

c =0.042 ns−1 and r0
n=0.027 ns−1 at B=0 T� due to the tiny

overlap between electron and hole in the wave function, as
specific for any type II structure. Similar small radiative rates
have been calculated for spatially indirect excitons in
coupled quantum wells.49 The exciton-phonon scattering

rates from the first excited state down to the ground state are
�01

c =102 ns−1 and �01
n =138 ns−1 at B=0 T. These numbers

clearly indicate that the exciton-phonon scattering dominates
the kinetics.

The absorption spectra of the circular and noncircular
nanorings plotted in Fig. 8 are calculated for linearly polar-
ized light where both spin components Eq. �2� with M = ±1
are present. Therefore, all lines appear as Zeeman splitted
doublets.

The absorption spectra plotted in Fig. 8 show pronounced
differences between both nanorings: In the concetric nano-
ring, only two doublets having quantum number L�=0 are
visible �Fig. 8�a��. Above B=5 T, the lower state is not any
longer the ground state �compare Fig. 5�d��. In the eccentric
ring, the oscillator strength is transferred from the ground
state to higher states with increasing magnetic field �Fig.
8�b��, as already discussed in detail in Sec. III B. Although
the oscillation of the lowest bright state can be hardly seen in
both cases, their second derivatives reveals them clearly �see
Fig. 5�f��. The excited states exhibit much stronger oscilla-
tions since here the Coulomb attraction between electron and
hole acts much less. Both periods agree well with Eqs. �21�
and �22�, respectively.

In view of an easier interpretation of the calculated spec-
tra, we envisage in Figs. 9 and 10 a PL detection with circu-
larly polarized light �+. Thus, only the lower Zeeman splitted
lines are seen. For solving the kinetic equations, nine exciton
states were taken into account. First, we investigate the case
without nonradiative decay, d�=0 �Fig. 9�. Due to the large
energy difference between the first and the second bright
state, only the lowest one is visible for both temperatures

FIG. 8. Calculated absorption spectra of circular �b=0 nm� and
noncircular �b=0.5 nm� type II nanorings �InP /GaInP, r1=8 nm,
r2=16 nm� including the spin contribution Eq. �2�. All spectra are
Gauss broadened with variance �=0.1 meV and displayed using a
linear gray scale.

FIG. 9. Calculated photoluminescence spectra of ��a� and �c��
circular and ��b� and �d�� noncircular type II nanorings as in Fig. 8.
Exciton occupations are calculated from the kinetic equation �Eq.
�23��, fixing the phonon temperatures as indicated. Without nonra-
diative decay, d�=0.
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�Fig. 9�a� and 9�c��. The results for the eccentric ring are not
so simple. Although the oscillator strength of the ground
state goes down appreciably �at B=25 T, it is less than 10−2

of its value at B=0 T�, the luminescence line at T=4 K �Fig.
9�b�� has almost constant intensity, and no line quenching is
seen. This is a consequence of the conservation law Eq. �29�
and will be discussed below in more detail. At elevated tem-
perature, other lines are seen as well, but their intensities
have a different B dependence compared to the absorption,
which signals the role of exciton occupation �Fig. 9�d��.

Second, nonradiative decay is included in Fig. 10. For the
discussion, three rates respectively times are important: �i�
the radiative rate r� �tens of nanoseconds�, �ii� the exciton-
phonon scattering rate ��� �several picoseconds�, and �iii�
the nonradiative rate d� which is a phenomenological input
here. With the assumption d�=1 / �100 ps�, we use a value
which dominates over the extremely small radiative rate, but
is well below the phonon scattering rate. We start again with
the discussion of the circular ring where the situation is
simple. Due to the change of the ground state from bright to
dark one at B�5 T, these excitons decay predominantly
nonradiatively, which results in a distinct line quenching
�Figs. 10�a� and 10�c��. On the other hand, for the noncircu-
lar nanoring more lines are seen in the PL, in particular, at
low temperatures �Figs. 10�b� and 10�d��. Obviously, com-
plete equilibration with the lattice temperature is no longer
reached. For the unrealistic case of nonradiative rates being
stronger than the phonon scattering, the exciton occupation is
simply given by the ratio between pump rate g� and decay
d�. Keeping both quantities constant, the exciton occupation
gets constant, and the PL spectra would coincide with the
absorption spectra. Although this extreme limit is not
reached with the actual parameters, the tendency is clearly
observable in Fig. 10.

Let us now concentrate on the integrated photolumines-
cence I which follows from Eq. �27� as

I �� d�I��� = �
�

r�N�. �30�

Its relation to the pump rate P will be called photolumines-
cence yield Y,

Y �
I

P
=

�
�

r�N�

�
�

g�

. �31�

Without nonradiative decay �d�=0�, the conservation law
Eq. �29� gives immediately Y =1 independent of B—each
excited exciton �or in general electron-hole pair� decays into
one emitted photon �full curve in Figs. 11�a� and 11�b��.

Things change a lot if nonradiative decay channels are
included, d��0. Due to the extremely small radiative rates,
these processes can even dominate the exciton decay, leading
to a yield much below unity �Figs. 11�c� and 11�d��. Since
the ground state of the concentric ring is getting dark at
around B=5 T, a steep decay of the yield follows. In the
eccentric nanoring, the yield goes down not as abruptly since
the oscillator strength of the ground state decays more
slowly. The slight oscillations seen in the full curve of Fig.
11�d� are related to the changing level distances which influ-
ence the individual phonon scattering rates. We conclude that
the quenching of the total PL is intimately related to nonra-
diative processes. The quenching is not as dramatic at el-
evated temperatures since higher exciton states contribute
more and more to the total emission �not shown�.

FIG. 10. Calculated photoluminescence spectra as in Fig. 9, but
here with a state independent nonradiative rate of d�=10 ns−1.

FIG. 11. �Color online� The photoluminescence yield Y for ��a�
and �c�� circular and ��b� and �d�� noncircular nanorings of Fig. 8 at
T=4 K and two values of the nonradiative decay rate �a� d�=0 and
�b� d�=10 ns−1. The full solution �Eq. �31�� �full, solid� compared
to the assumption of a Maxwell-Boltzmann distribution with con-
stant pump rate �Eq. �32�� �MB, dotted� and with constant exciton
density �Eq. �34�� �MBN, dashed� is plotted.
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In all cases studied here, the phonon scattering rates are
dominant. Therefore, it can be expected that the occupations
of the different exciton states deviate not too much from
equilibrium which in the present low-density case, in accor-
dance with Eq. �26�, is characterized by the Maxwell-
Boltzmann �MB� distribution,

N� = C exp�− �E�� , �32�

with �=1 /kBT. Within this approximation, the PL yield is
given by

YMB =

�
�

r�e−�E�

�
�

�r� + d��e−�E�

, �33�

and shown as dotted curves in Fig. 11, indeed not very much
different from the full calculation. This is the right place to
discuss Ref. 12 which was the first attempt to calculate the
exciton PL for a nanoring. Concerning the exciton kinetics,
they �i� have assumed a Maxwell-Boltzmann distribution for
the excitons and �ii� normalized the integrated PL to constant
exciton density N=��N�—and not to pump rate
P—resulting in

YMBN =

�
�

r�e−�E�

�
�

e−�E�

. �34�

This normalization makes a pronounced difference when
nonradiative processes are absent �dashed curve in Fig.
11�a��, but gives nearly identical results with Eq. �33� when
these dominate �dashed curve in Fig. 11�b��. YMBN has been
normalized to YMB at B=0 T.

While this discussion refers to PL quenching, in Ref. 12
PL blinking was proposed, too: The integrated PL goes down
and up in dependence on B, since the ground state switches
between bright and almost dark behaviors. The authors have
used a ring model with zero width and rather close radii for
electron an hole. The latter seems to be decisive for the
blinking effect to occur. For the type II nanoring studied in
the present work, such a blinking cannot be expected since
the average electron and hole radii are rather different
�Re=12.1 nm vs Rh=4.4 nm�. Moreover, the blinking effect
predicted in Ref. 12 has been questioned recently by noting
that a better account of the Coulomb interaction is needed.17

VI. CONCLUSIONS AND OUTLOOK

We have derived the Hamiltonian for excitons in nano-
rings with finite width and arbitrary symmetry. Sorting its
matrix elements according to the symmetry point group of
the confining potential, we have shown how the different
wave function components are coupled. Two prototype sys-
tems of type I �GaAs /AlGaAs� and type II �InP /GaInP�
have been considered. The numerical investigations showed
the following. �i� The oscillation amplitude of the exciton
Aharonov-Bohm effect decreases when going from circular
to noncircular symmetry due to the additional localization of

the exciton. Moreover, the oscillation period in type II nano-
rings changes from relative-motion induced to being deter-
mined by periodic changes of the center-of-mass wave func-
tion. �ii� The exciton ground state in the noncircular
�eccentric� nanoring remains always optically active since
the total angular momentum is no longer a good quantum
number. However, its oscillator strength can be extremely
small in type II nanorings.

Further, we have investigated the exciton kinetics within a
model which includes acoustic phonon scattering and radia-
tive and nonradiative decays. Our study of a slightly eccen-
tric type II nanoring has revealed that the oscillations of the
excited states are clearly visible and that the amplitude of the
ground state oscillations is weaker than in the concentric
ring. Calculating temperature dependent occupations of ex-
citon states, we could show how the appearance and disap-
pearance of single lines in PL are related to their counterparts
in absorption. The presence of nonradiative decay is decisive
for the quenching of the integrated photoluminescence. If the
exciton-phonon scattering dominates over all decay rates, a
simplified description using a Maxwell-Boltzmann exciton
distribution works reasonably well.

One unexpected finding is that a small violation of the
circular symmetry improves the observability of the X-ABE
since here all states are optically active, and anticrossings
periodic with B can be easily seen in the second derivative of
the ground state energy. Nonradiative decay channels allow
us to see more lines in PL, thus improving the observability
of X-ABE for excited states even at low temperatures. There-
fore, a slightly asymmetric nanoring of type II seems to be
the best candidate for the experimental confirmation of the
exciton Aharonov-Bohm effect in linear optics, i.e., absorp-
tion or photoluminescence. From a practical point of view,
an exactly circular nanoring would be rather the exception
than the rule, given the uncertainties of nanostructure growth
on patterned substrate, not to think of self-organized ring
formation.

Quite recently, the possibility of implementing a flux qu-
bit in small nonsuperconducting rings has been discussed.50

Since a persistent current due to excitons can be initiated and
controlled optically,22 it can be speculated that an exciton
qubit in a nanoring can be formed whose function rests upon
the exciton Aharonov-Bohm effect.
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APPENDIX A: TECHNICAL DETAILS

The correlated one-particle densities are defined as condi-
tional probabilities,

n�
�e��re,	e� = ���re,r,	 = 	e − �,� =

	e + �

2
��2

,

�A1�
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n�
�h��rh,	h� = ���r,rh,	 = � − 	h,� =

	h + �

2
��2

,

�A2�

where the coordinates of the other particle are fixed at �r ,��.
Note that this definition differs from the previous one in Ref.
22 where an additional integration over r was performed.

The averaged Coulomb potential is for convenience ap-
proximated by51

VC�re,rh,	� = −
e2

4��0�S

1

bCLz
arcsinh�bCLz

r
� ,

where r=�re
2+rh

2−2rerh cos�	� and Lz is the width of the
quantum well �4 nm in our case�. bC=0.6 is an effective
parameter which has been fitted to give reasonable agree-
ment with the quantum well Coulomb potential.

The phonon matrix elements are defined as52

t��
q =� ��q

2s2�MV
� � dredrh��

*�re,rh�„Dc exp�iqre�

− Dv exp�iqrh�…���re,rh� , �A3�

where �M is the mass density, V the sample volume, and Dc
�Dv� the deformation potential for electron �hole�. Using the
single sublevel approximation and the expansion of the wave
function Eq. �5�, we obtain in cylindrical coordinates for the
three-dimensional momentum q,

t��
q =� ��q

2s2�MV
�
L,L�

e−i�L−L��	q
„SL,L�

��e �q��Ke�qz�Dc

− SL,L�
��h�q��Kh�qz�Dv… , �A4�

introducing the state dependent overlap functions S
L,L�
��e�h��q��

and a z-dependent contribution,

SL,L�
��e�h��q�� = �

l
�

0

�

dreredrhrhul,L,��re,rh�

�ul��L−L��/2,L�,��re,rh�JL−L��q�re�h�� , �A5�

Ka�qz� =� dzva
2�z�e−iqzz. �A6�

Here, JL−L��x� are Bessel functions of the first kind, va�z� is
the confinement wave function in the z direction, and the
symmetry S

L,L�
��e�h��q��=S

L�,L
��e�h��q�� holds. In order to get the

scattering rate ���, the matrix element t��
q squared has to be

integrated over q. The integration over qz is performed using
the energy conserving delta function in Eq. �25� which gives

	���	=�sq with the energy difference between states
���=E�−E�. Defining the overlap sum,

W��
ab �q�� = �

LMN

SL,L−N
��a �q��SM,M−N

��b �q�� , �A7�

the final expression is obtained as

��� =
nB��������

2��2s3�M
�

0

q dq�q�

�1 − q�
2/q2

�W��
ee �q��Ke

2�qz�Dc
2

+ W��
hh �q��Kh

2�qz�Dv
2 − 2W��

eh �q��Ke�qz�Kh�qz�DcDv� ,

�A8�

where qz=�q2−q�
2. Note that both phonon emission and ab-

sorption processes �first and second terms in Eq. �25�, re-
spectively� are included here, since ��� can have both signs.

In order to simplify further, an approximation introduced
in Ref. 23 is adopted here, too. The strongest confinement is
found in the growth direction z which allows to put
Ka

2�qz��Ka
2�0�=1. Further, a rapid decay of W��

ab �q�� is as-
sumed, well before the integration limit q is reached. Then,
the integral in Eq. �A8� can be approximated by

�
0

q dq�q�

�1 − q�
2/q2

�¯� � �
0

�

dq�q��¯� ,

which allows us to integrate over q� analytically using53

�
0

�

dq�q�JN�raq��JN�rbq�� =
1

ra
��ra − rb� .

The general expression �Eq. �A8�� reduces to

��� =
nB��������

2��2s3�M
�X��

ee Dc
2 + X��

hh Dv
2 − 2X��

eh DcDv� ,

�A9�

introducing the following abbreviations:

X��
ab = �

LMN
�

0

�

drr�LL−N
��a �r��MM−N

��b �r� ,

�LL�
��e�r� = �

l
�

0

�

dr�r�ul,L,��r,r��ul−�L−L��/2,L�,��r,r�� ,

�LL�
��h�r� = �

l
�

0

�

dr�r�ul,L,��r�,r�ul+�L−L��/2,L�,��r�,r� .

The detailed balance equation �Eq. �26�� can be checked in
Eq. �A9� quite directly.
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