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Dissipative processes in nonequilibrium many-body systems are fundamentally different than their equilib-
rium counterparts. Such processes are of great importance for the understanding of relaxation in single-
molecule devices. As a detailed case study, we investigate here a generic spin-fermion model, where a two-
level system couples to two metallic leads with different chemical potentials. We present results for the spin
relaxation rate in the nonadiabatic limit for an arbitrary coupling to the leads using both analytical and exact
numerical methods. The nonequilibrium dynamics is reflected by an exponential relaxation at long times and
via complex phase shifts, leading in some cases to an “antiorthogonality” effect. In the limit of strong system-
lead coupling at zero temperature we demonstrate the onset of a Marcus-like Gaussian decay with voltage
difference activation. This is analogous to the equilibrium spin-boson model, where at strong coupling and high
temperatures, the spin excitation rate manifests temperature activated Gaussian behavior. We find that there is
no simple linear relationship between the role of the temperature in the bosonic system and a voltage drop in
a nonequilibrium electronic case. The two models also differ by the orthogonality-catastrophe factor existing in
a fermionic system, which modifies the resulting line shapes. Implications for current characteristics are
discussed. We demonstrate the violation of pairwise Coulomb gas behavior for strong coupling to the leads.
The results presented in this paper form the basis of an exact, nonperturbative description of steady-state

quantum dissipative systems.
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I. INTRODUCTION

Over the past several decades, tremendous effort has been
put forth to understand the dynamics of a small quantum
entity coupled to a thermal bath.! Important problems that
can be distilled to this form include the interaction between
localized magnetic impurities and itinerant electrons (the
Kondo problem),>? electron transfer in aqueous
environments,* and proton tunneling in biomolecules.>® The
study of such quantum dissipative systems cuts across tradi-
tional disciplines and impacts fields from biology to quantum
information theory.!

Our detailed understanding of quantum dissipative sys-
tems is essentially confined to problems which involve a
single thermal reservoir.’ In this case, traditional measures of
dynamical interest are equilibrium correlation functions or
simple measures of the decay of one-time quantities when
the initial condition is not one of thermal equilibrium for the
global system. While important for the understanding of
various experimental situations, this latter form of nonequi-
librium behavior is well understood and generically takes the
form of an asymptotic exponential decay to the thermal equi-
librium state or the ground state (at zero temperature).'-”-

A less well understood type of nonequilibrium behavior
may manifest when a small quantum system is coupled to
more than one reservoir.>>* Here, the generic situation is
one of a nonequilibrium steady state, regardless of the initial
preparation. Given the fact that this multibath scenario is
standard for prospective single-molecule devices>>?* as well
as more general problems, it is imperative to understand the
fundamental relaxation motifs that emerge in such nontrivial
nonequilibrium cases. Recent work raises the question of
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whether standard tools borrowed from typical equilibrium
quantum dissipative systems are useful in the steady-state
nonequilibrium case. For example, the simple equivalence
between bosonic and fermionic baths (as obtained via
bosonization??7) is lost in the multibath case, while mean-
field approaches are fraught with danger due to the fact that
a voltage bias may assist tunneling even at zero temperature,
rendering the meaning and stability of Hartree-Fock minima
unclear,'028-31

While several recent papers have taken up the task of
describing the steady state, nonequilibrium dynamics in dif-
ferent model problems, our goal here is a step toward a de-
tailed and systematic understanding of dissipative relaxation
in the simplest model problems resulting from coupling a
small quantum system to several baths, namely, generalized
spin-boson models.’~!! It should be noted that the term “spin-
boson” is a misnomer; the interesting and relevant case is
that of fermionic reservoirs, which dramatically differ from
the case of bosonic reservoirs when the system interacts with
more than one bath with different chemical potentials. On the
other hand, as in the standard spin-boson model, it is the
physics of the x-ray edge singularity3>= that forms the fun-
damental building block of the description of dynamic ob-
servables. Here, it is the recently studied nonequilibrium
x-ray edge problem3*~*? that lies at the core of the relaxation
behavior of standard correlation functions. The more com-
plex physics of the nonequilibrium edge behavior allows for
a richer range of dynamical behavior than in the well-studied
equilibrium case.

In this paper, we will confine our discussion to calcula-
tions that are perturbative in the bare tunneling matrix ele-
ment of the system but allow for arbitrarily strong coupling
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to the leads. We will employ both analytical and numerical
techniques to describe the dynamics. The numerical ap-
proach involves a computational solution of the nonequilib-
rium x-ray edge problem that is numerically exact on all
relevant time scales. This will allow us to describe the full
crossover behavior from the regime where equilibrium ef-
fects dominate to that where the full nonequilibrium behav-
ior (such as bias-induced dephasing and complex phase
shifts) is manifested. This is crucial, since the full frequency
dependence of relaxation rates and generalized fluctuation-
dissipation ratios depend on the entire time history of the
dynamics."!

We will demonstrate that interesting behavior occurs in
specific parameter regimes that lead to antiorthogonality ef-
fects and bias-induced tunneling. In particular, the bias-
induced tunneling regime at zero temperature may display a
very broad Gaussian decay of the polarization at strong
system-lead coupling. In this regime, the relaxation behavior
shows interesting similarities to the usual high-temperature
Marcus (or semiclassical polaron) behavior,*** with poten-
tial bias playing the role of temperature, although crucial
differences exist that make these analogies imprecise. Lastly,
we investigate the crucial question of the accuracy of the
pairwise Coulomb gas decomposition for nonequilibrium
steady-state systems. We note that the methods discussed in
this work form the basis of a numerically exact path-integral
description of quantum dissipation in such nonequilibrium
problems.*

This paper is organized as follows. In Sec. II, we describe
our model system (the out-of-equilibrium spin-fermion
model). Section III presents an overview of the analytical
results for the nonequilibrium dynamics, along with the re-
lation to the nonequilibrium x-ray edge problem, while Sec.
IV presents numerical results. In Sec. V, we present the im-
plications for the tunneling rate. Our results imply a break-
down of the Coulomb gas picture at intermediate times, de-
scribed in Sec. VI. In Sec. VII, we conclude.

II. MODEL

Our model system consists of a biased two state system
(spin) coupled to two electronic reservoirs n=L,R held at
different chemical potentials. In what follows, we assume
that the temperature is zero and investigate the possibility of
voltage activated excitation between the spin states. The ex-
tension to nonzero temperature is straightforward, both ana-
lytically and numerically. The total Hamiltonian is the sum
of three terms:

H=Hg+HY) + HY). (1)

The spin system Hg consists of a two-level system (TLS)
(creation operators df_,) with a bare tunneling amplitude A
and a level splitting B. The reservoir term Hg) includes two
noninteracting metallic leads n=L,R, where a nonequilib-
rium state occurs when the leads have different chemical
potentials Ap=pu; —ugp # 0. The system-bath interaction Hg’g
couples the spin with scattering processes inside the leads
(diagonal coupling) and in between each lead (nondiagonal
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coupling), and we choose conventions such that only one of
the spin levels couples to the leads,

Hs=5 ER

o _ ¥
HP =2 €y Ak ns
k.n

Hf= X Vk,n;k’,n’az,nak’,n’nd("')- (2

’ ’
k.k".n.n

Here, n,(+)=(I+0,)/2 is the number operator, with / as the
identity operator.*’ The operator “Z,n (ay,,) creates (annihi-
lates) an electron with momentum k in the nth lead. In this
paper, we focus on the model presented in Ref. 36, where the
momentum dependence of the scattering potential is ne-
glected. System-bath scattering potentials are then given by
V> Where n,n'=L,R are the Fermi sea indices. Our main
conclusions, however, are valid for more general cases.

We assume that the reservoirs have the same density of
states p(€), typically modeled using a Lorentzian function

1 D)2
P(E)—W<&)z+€2’ 3)
2

where D; is a bandwidth parameter. We typically work in the
limit of wide bands, D; > Apu; therefore, to a good approxi-
mation, p(uz) = p(ug).

Note that we ignore the spin degree of freedom of the
reservoir electrons in our discussion. In what follows, we
refer to the energy difference B as a magnetic field in order
to distinguish it from the voltage bias Au. We also define
two auxiliary Hamiltonians H, that will be useful below,

Hi=i§+H§fl)g[nd=i]+H§,ﬁ. 4)
Explicitly, H. includes the electronic reservoirs and system-
bath interaction, given that the subsystem is in the = state.

Model (2) contains much of the physics of the Kondo
model? while lacking direct coupling of the reservoir degrees
of freedom to spin-flip processes. It also contains the spin-
resonant-level model of Ref. 11 with a particular choice of
system-bath couplings. We discuss the spin-resonant-level
model in more detail in Appendix A. The out-of-equilibrium
spin-fermion model can be realized in different systems. For
example, the relevant effects might be observed within a
molecular-based device comprising a molecular chain
strongly coupled to the leads with an internal two state sys-
tem, e.g., different conformations*® or a spin impurity.** An-
other possible experimental setup is a semiconductor micro-
structure consisting of two coupled quantum dots, simulating
a double-well potential, interacting with a current carrying
quantum point contact.>®

Crucial parameters of the model are the L and R scattering
phase shifts. In equilibrium, the phase shifts are given by32-3¢
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1
tan o, = 5{(% +ap) +[(a) - az)z + 4|V|2]1/2}, (5)

where v and a, (n=L,R) are dimensionless system-bath cou-
pling strengths,

ay = mp(€p) Vi s
(6)
and p(eg) is the density of states at the Fermi energy of the L,

R reservoirs. Out of equilibrium, Ap # 0, the phase shifts are
complex numbers given by3°

v=mp(ep) Vig, = p(er) Vi

2

R L
tan oy = +i—/—,
l-ia,
[v?
tan fp=a, —i——. 7
ORI e, @)

Since the reservoir density of states weakly varies around the
Fermi energy, D; > Apu, the phase shifts are approximately
energy independent and are all calculated at the Fermi energy
€3¢ For simplicity, throughout the paper, we typically con-
sider the case of = a;=a, <v and take V, ,/ to be real. We
note, however, that our main results, in particular, the appear-
ance of Marcus-type behavior in the nonequilibrium regime
at strong coupling, can be rederived using other variants of
this model system with no limitations on the strength of the
diagonal V, , interactions, as well as for the spin-resonant-
level model of Ref. 11, see Appendix A.

Under these simplifications, the nonequilibrium phase
shifts are given by

tan &, = V(i — a),

tan Sg=— (i + a). (8)

For a=0, the inverse tangent in Eq. (8) has a branch cut,
conventionally placed at (—ic0,—i] and [i,ie). For this spe-
cial case,

1 (1+47
5L=—5R=51n -2/ 9)

The weak potential limit therefore corresponds to &,=-4_
~vand & =-8~ir% so |5, z|<|d.|. However, as v—1,
6y r diverges, whereas the equilibrium phases J, are finite.

An important quantity that will be useful below is the sum
of the phase shifts squared, y=—(&; + 8y)/ 7. While for the
general model Eq. (7) yields complex numbers when the
system is symmetric (a;=a,), the phase shifts are complex
conjugates and ¥ is real, although possibly negative. We dis-
cuss the implications of this result in Sec. IV C.

For the sake of completeness and comparison, the equi-
librium spin-boson model is discussed in Appendix B. In the
nonadiabatic limit, this model yields the classical Marcus
rate at high temperatures when the system-bath interaction is
strong. We analyze the analogous behavior in the nonequi-
librium spin-fermion model (2) in Sec. V.
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III. NONADIABATIC DYNAMICS
A. Overview

We are interested in the reduced density matrix p,() in
the space of d occupancy. This is defined in terms of time
evolution from an initial condition p; at time =0,

Pd(t) = Trleadx[e_thpieth] . (10)

If the parameter A in Eq. (2) vanishes, the problem is just
electrons in a time-independent potential, and a closed-form
analytical solution exists. If A # 0, p,(r) may be expressed as
an expansion in A. Evaluation of any term in the expansion
entails solving a problem of electrons in a time-dependent
field. In equilibrium, an essentially exact closed-form solu-
tion exists, and the main problem is to resum the series in
A3152 For nonequilibrium problems, an analytical expres-
sion is not known. In this paper, we present a detailed nu-
merical evaluation of some low order terms in the expansion
for A. The essential features are revealed by the golden rule
decay rate, obtained by assuming that (i) n,(+)=0 at time ¢
=0, (ii) p; is the density matrix corresponding to the ground
state of H with n,(+)=0, and (iii) that an expansion to O(A?)
suffices. This level of description is equivalent to the “non-
interaction blip approximation” in the standard spin-boson
model!7>3 and yields the (nonadiabatic) Fermi’s golden rule
for the forward (+) and backward (—) transition rates be-
tween the spin levels as*34-5¢

A\? <
1";—2 = (E) 2 Re fo eilBth(t)dl‘,

t
Cf:eiE_l Texp<— if dTH.(S%(T’nd: +))
0
- <e—iH+reiH,z> = e_q’f(’), (11)

where T denotes time ordering, Hé@(r):eng)ngge"’ng ! and
E_ is the ground state energy of the two uncoupled reser-
voirs. The Hamiltonians H, are defined in Eq. (4), Re refers
to the real part of the integral, and the trace is performed
over the electronic degrees of freedom. For convenience, the
term including the energy bias B is taken outside the trace.

The object of our calculation is therefore the correlation
function C f(t), which should be evaluated for nonequilibrium
conditions covering time scales from Dt~ 1 up to Aur>1.
D, an energy of the order of the Fermi sea bandwidth, and
the potential drop Au specify two inverse time scales in the
problem, where we typically work in the limit of Au<<D.
Note that, unlike the equilibrium case, there is no exact ana-
lytical approach to calculate C(r) valid for all time scales.
Approximate analytical approaches and exact numerics may
be performed, as discussed below.

B. Short- and long-time asymptotics: Nonequilibrium x-ray
edge problem

The correlation function C((t) [Eq. (11)] is a crucial ele-
ment in the theory of the x-ray edge problem, an effect origi-
nating from the many-body response of a Fermi system to
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the fast switching of a scattering potential, e.g., the creation
of a core hole.?>3 The x-ray edge Hamiltonian is a simpli-
fied version of the spin-fermion model, Eq. (2), with a static
subsystem that is either empty or populated,

HO = H(Bf) + Eddfd,

— i i
Hgp= E Vk,n;k’,n’ak,nak’,n’d d,
k,n=L,R

Hedge=H0+HSB' (12)

Here, d' and d are creation and destruction operators of the
core electron, and a,in (ay,) creates (destroys) an electron in
the nth lead with momentum k. The single band x-ray singu-
larity problem was originally solved exactly in the
asymptotic limit by Nozieres—De Dominicis (ND).3?

In the last ten years, there has been a growing interest in
understanding the x-ray edge effect in the mesoscopic
regime®*3 and for nonequilibrium systems,’*~4> where the
core hole couples to more than one Fermi sea at different
chemical potentials. Standard equilibrium techniques, e.g.,
bosonization,>>~2’ cannot be simply generalized to handle
these nonequilibrium systems (see Appendix C). The first to
address the nonequilibrium problem was Ng, who general-
ized the Nozieres—De Dominicis solution to include more
than one Fermi sea with different chemical potentials.’® Ng
demonstrated that the edge singularity could be described by
generalized phase shifts which are real for equilibrium sys-
tems and complex when the system is driven out of equilib-
rium. Physically, complex phase shifts reflect the finite life-
time of a nonequilibrium system. More recently,
Muzykantskii et al3*#° formally solved the out-of-
equilibrium problem using the Riemann-Hilbert approach.
The result, given in terms of the scattering matrix, was later
generalized to include finite temperature effects.*! An exact
formal determinant solution was presented in Ref. 42 for the
study of tunneling in a nonequilibrium electron gas.

A formal solution for C/r) is obtained from the linked
cluster theorem (valid also for nonequilibrium problems),2-3¢

1
D(1) =- f ax Tr V(O GMt,1), (13)
0

with GMz,#") the matrix Green’s function in the space of the
leads for Eq. (1), but with Hgz— NHgp. For this model, G
solves the Dyson equation

g)\(tl’h) = S(IIJZ) + f dTg(tl’T)‘:/)\(T)g)\(T’IZ)’ (14)

with VM(7)=V,,,/ny(+)(7) and the unperturbed Green’s func-

n,n
tions

TP gitsnti=snrty) (15)
1—h

gn,n’(tl’tZ) = t

p is the reservoir density of states taken to be the same for
the L and R leads.
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In equilibrium, ND showed* that this equation can be
solved exactly and the coupling constant integral performed,
leading to

Cy{t) ~ (D), (16)

with D an energy of the order of the Fermi sea bandwidth,
B=(82+68")/ 7, and &, defined in Eq. (5). For the a=0
model studied explicitly,

arctan(v)

2
A

Equation (16) also holds for the nonequilibrium problem at
times Aut<<1.

At long times, Aut> 1, the equation was solved by Ng;3¢
see also Ref. 39. The coupling constant integral may simi-
larly be performed, leading to

CAt) ~ e TAH(Aur)?, (18)

with T'=|8] - 8y|/2m, y=—(5;+68p)/ 7%, and &, given by
Eq. (8). Here, &8, (n=L,R) refers to the imaginary part of the
phase shift. For the model studied numerically (a=0), we

have
r—il{”"z] 19
Tom 1= (19)
and
1 1+
Y_Zﬂ'zln[l—vz] (20)

C. Intermediate time

Although the long-time and short-time behaviors are
known essentially exactly, a transparent nonperturbative ana-
lytical expression for C((t) that encompasses all time scales
Apt and coupling strengths pV has not been developed. In-
deed, in this work, we argue that at strong coupling (v— 1),
a different functional form dominates at intermediate times
Apt~1-10, where a prominent Gaussian decay emerges,
CA1) ~e"‘(A’“)2(Dt)‘B. We first offer a perturbative calcula-
tion which suggests this result and then present exact nu-
merical simulations which prove this behavior. The domi-
nance of the Gaussian behavior at intermediate times
translates into a Marcus-type rate in frequency domain, with
bias voltage activation (see discussion in Sec. V), instead of
temperature activation, as in the classical Marcus rate (see
Appendix B).

The correlation function C(#) can be evaluated using the
cumulant expansion.44 Note that unlike the bosonic case, all
cumulants contribute,

[

CAn) =exp 2 K, (1),

n=1
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(-

n

K, (1) = ?n J dr, f diy- f tdtn<TF(t1)F(t2)---F(tn)>c,
: 0 0 0

(21)

where T denotes time ordering, F=2; .V, .1 ,ap u,
and (---). denotes a cumulant average. The first cumulant

yields an energy shift, while the second term is given explic-
itly by (Dt>1, a=0)

o 2/
Ky ()=~ % J dn f dt(TF(t))F (1)), = - =) In(Dr)
0 0

1 — cos(Aur)
Aput

+ In(Aur) — Ci(Aur)]. (22)

V2 2
- 2;AW{Si(Am) - + 2;[%

For details, see Appendix D. The sine and cosine integrals
sin(r)
are defined as Si(x)=[¢——dr and Ci(x)=7,+In(x)

cos(t)-1

+[o——dt, and v,=0.5772 is the Euler-Mascheroni con-
stant.

This expression reproduces the weak coupling limits of
the analytical results, Egs. (16) and (18) at short and long
times, respectively, and provides an interpolation between
the two times. In particular, the second term describes how
the long-time dissipation I"Aut term is “turned on” as Aput
increases from a small value to values much greater than
unity. The first and last terms describe how the equilibrium
orthogonality is turned off as Aut increases: [v,+In(Aur)
—Ci(Aut)=1In(Dr)] is a function which interpolates between
In(7) for 1/D<t<1/Ap and a constant at Aur> 1. Note that
in this model, the leading logarithmic term at long times is
~1*, consistent with the cancellation of logarithmic terms in
the long time limit of Eq. (22), i.e., with the absence of a
term which “turns on” the nonequilibrium power law. This
cancellation does not necessarily occur at order »” in other
models, e.g., the spin-resonant-level model, see Appendix A.

We can clearly distinguish between three regimes in Eq.
(22):

t—2V2/11'2 Aut <1
CAr) ~ e AP 22 A g~ ] (23)
eV Builm Aut>1.

While the first (equilibrium) limit and the third regime are
well established in the literature, 33940 o the best of our
knowledge, the intermediate domain leading to an interesting
dynamic has not been discussed before. In the strong cou-
pling limit, the Gaussian behavior may have a dominant ef-
fect on the relaxation, as discussed below. We would like
therefore to phenomenologically extend the second cumulant
expression, Eq. (22), to larger phase shifts (strong coupling).

Perturbative expressions analogous to Eq. (22) motivated
Mitra and Millis'® to propose an interpolation function con-
structed by replacing the factors of 1? in the expression
above by the exact phase shifts. For the model considered
here, their procedure leads to
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D(1) = + 19— ol 62;25%' (Aut)| Si(Aut) - 1- CijtAm)
+ @[ln(l +iDt) — y,+ Ci(Aut) — In(Apur)]
+ @[% - Ci(Aut) +In(Aur)]. (24)

Note that our approximation for the scattering potentials,
a=a,=0, implies that there is no Fumi energy shift. At the
short time limit, Auzr<<1, the factor [In(Awr)+v,—Ci(Aut)]
dies out, leading to the correct equilibrium behavior [Eq.
(16)]. In contrast, at long times, the cosine integral dimin-
ishes, which implies that the dynamics is ruled by an expo-
nential decay with a rate constant Aul” [Eq. (19)] modified
by a power-law term 7 [Eq. (20)].

Our numerical results, to be presented below, show that at
weak to moderate coupling, »<<0.5, the correlation function
and the resulting transition rates are well described by ex-
pression (24). However, Eq. (24) is found to be a poor ap-
proximation at strong coupling. Instead, at intermediate
times, Auz~ 1, we return to Eq. (22) and replace the weak
coupling phase shift by the equilibrium strong coupling
phase shift, v— arctan(v). The physical picture is that on
these time scales, the phase shifts are essentially still the
equilibrium ones. Only at longer times Auz>1 the nonequi-
librium dynamics is reflected in the complex phase shifts
[Eq. (8)]. This conjecture yields

D (Aut~1) =D, (1) + D, (1) +iE, (25)

where the equilibrium function is the same as in the zero bias
case,?

®,,(t) = B1In(1 +iDy),

(5f+53)_ arctan’(v)
B= ) =2 pEa

while the nonequilibrium term provides a quadratic time de-
cay,

(26)

D, (1) = K(Apr)?,

B (5i+ &) B arctan’(v)
T 2w

Notice that the prefactor « depends only on the scattering
potential V, .. The last element in Eq. (25) is the energy
shift E,. We assume that it is given by the equilibrium limit
of the Fumi’s theorem,

27

E,= 9[5_ +8,]. (28)

For a=0, the energy shift is zero.

Similar to expressions (25)-(28), Eq. (24) gives the first
correction to the equilibrium result which is proportional to
(Aut)?, but in contrast to these equations, the coefficient in-
volves the nonequilibrium exponent and, in fact, does not
provide a wide regime of 7> behavior. Our numerical simula-
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tions, presented below, support expressions (25)—(27) in the
broad window Aut~ 1-10. We have not been successful in
constructing a general analytical expression, valid on all time
scales and coupling strengths. It is possible that consider-
ation of the fourth cumulant may yield some insight here.

IV. NUMERICS
A. Methods

The fermionic correlation function C((#) can be directly
calculated by expressing the zero temperature many-body
average as a determinant of the single particle correlation
functions,*-7

Cyl) = (e M1y = det[d’k,n;k’,n'(t)]k<k;;k'<k}%’ ,

G (D) = (konle™ ek n'). (29)

Here, H,.=>h,, where h, are the single particle Hamiltonians
for the individual conduction electrons. |k,n) are the single
particle eigenstates of H(f), and the determinant is evaluated
over the occupied states. k;’ is the Fermi energy of the nth
reservoir. In our numerical calculations, we have used a
Lorentzian density of states, with tails that are long enough
to eliminate artificial reflections from the boundaries. The
Lorentzian function is centered around the equilibrium Fermi
energy with a full width at half maximum D;, Eq. (3). This
quantity sets energy and time scales in our simulations. We
have typically used D;=4.5 for the two reservoirs, Au/D;
< 0.1 and v=0.1-1. We also take the diagonal coupling to be
zero (a=0) in all of our simulations, unless otherwise stated.
For these parameters, we have found that for short-time evo-
lution (Auz<15), even for strong coupling, it is satisfactory
to model the fermionic reservoirs using ~400 states per bath,
where bias is applied by depopulating one of the reservoirs
with respect to the other.

We can also employ the renormalization group (RG)
method, originally developed by Wilson for the calculation
of the thermodynamic properties of the Kondo problem,>® for
the numerical solution of the nonequilibrium x-ray edge
problem. In equilibrium, Oliveira and Wilkins>® and Yoshida
et al.®® have used the RG technique to calculate the x-ray
absorption spectrum. This study can be generalized to in-
clude two reservoirs with different chemical potentials by
following a three-step procedure: (i) Define the conduction
bands on a logarithmic scale. (ii) Convert the (isolated) res-
ervoir Hamiltonians into semi-infinite tight binding chains,
as is done in Refs. 59 and 60. In this representation, the
impurity couples the chains’ first levels. (iii) Build the
Hamiltonians H. in the new basis, first including the occu-
pied levels of the L and R reservoirs and then adding the
empty levels. The determinant (29) is performed over occu-
pied levels only.

In equilibrium, the RG technique is highly advantageous
over constant and/or Lorentzian discretization methods, as it
converges rapidly to the continuum limit even for gross dis-
cretization. For small voltage differences (Au/D<1072),
this method nicely reveals the crossover of C((t) from equi-
librium to nonequilibrium behavior with increasing bias. In
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In Dot

FIG. 1. Decay of C/(#) as computed by both the RG approach
and standard linear discretization for »=0.1. Constant discretization
with 200 states per band, Au=0 (dotted), showing an artificial rise
of the correlation function due to discretization errors; logarithmic
discretization (RG) with 100 states per band, A=1.1, Au=0 (full);
logarithmic discretization (RG) with 100 states per band, A=1.1,
Ap=0.007 (dashed). A is a logarithmic scale parameter, where for
each conduction energy there are states with energies e€/A™, m
=1,2,.... Inset: The finite bias case exhibits an exponential decay
at long times. The slope agrees with the theoretical value, Eq. (19).
The Fermi sea bandwidth is 2D, in all plots with Dy=1.

contrast, for large bias, the Lorentzian discretization is more
convenient, since energies far from the Fermi energy are not
well represented within the RG technique. We present a nu-
merical example in Fig. 1, demonstrating the strength of the
RG approach over standard linear discretization for systems
in equilibrium. The RG technique provides stable dynamics
for long times (full line), where constant discretization fails
(dotted line), yielding an artificial rise of the correlation
function due to discretization errors. The theoretical value of
B=2 arctan®(v)/ 7m>=0.0020 for v=0.1 nicely agrees with the
numerical slope of 0.0019. Deviations are due to the sharp
energy cutoff used at Dy=1, with the conduction band ener-
gies extending from —Dj, to D,. We also present the results of
an RG calculation with a very small voltage drop (dashed
line), where linear discretization would require a very fine
grid.

In this work, we typically focus on systems far from equi-
librium, Au/D~0.1. Since the RG method samples the
Fermi sea states predominantly near the Fermi energy while
high energy states are underrepresented, we find the Lorent-
zian discretization to be more convenient.

B. Results: C((¢)

Representative results are displayed in Fig. 2. The main
plot presents the logarithm of the correlation function |C f(t)|
at strong coupling »=0.95 for an applied voltage Au=0.24.
Three different regimes are clearly identified: a power-law
decay at short times Aur<1, see lower left inset (a), an
exponential decay at long times Aut> 1, and remarkably, an
intermediate regime 1 < Aut=< 10 of approximately Gaussian
behavior [upper right inset (b)]. The short- and long-time
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Aut

FIG. 2. The correlation function C#) for Au=0.24, v=0.95,
manifesting (a) a power-law decay at short times Aur<<1 (notice
the log-log scale), (b) a Gaussian decay at intermediate times Agur
~1-10, and an exponential decay at long times Aur> 1.

behaviors are consistent with the theoretical results. The
intermediate-time quasi-Gaussian regime is an interesting
finding with important consequences. We analyze the short-
time dynamics Aut<<1, enlarged in Fig. 2(a), by fitting the
data to the analytic expression In C((t) ~—p In(Dt). This pro-
vides an effective bandwidth D=6 and a decay constant 8
=0.13 consistent, within numerical errors, with the theoreti-
cally expected B=2[arctan(v)/7]*~0.12. We can also fit the
intermediate-time behavior, shown in Fig. 2(b), by a Gauss-
ian function In C{r) ~—xAu** which yields the prefactor
k=0.03.

Figure 3 presents a more detailed examination of the
Gaussian behavior, showing that at both short and interme-
diate times, the data can be well described by the approxi-
mate function

Inf|C,(t)| (DY”]
R

FIG. 3. Evidence for the Gaussian decay at intermediate times
Apt~1-10 and strong coupling v=0.95, Ap=0.16 (full), Au
=0.24 (dotted), and Aw=0.32 (dashed-dotted). The inset, which in-
cludes the three lines one on top of the other, reveals that C_f-(t)tB
e B’ B=013, with x~0.03.
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Aut

FIG. 4. Time dependence of the correlation function |C/(t)| for
Ap=0.24, v=0.95. The fitting function yG=e"‘(A’“)2(Dt)‘B (dotted)
with k=0.03, D=6, and B=0.13 compared to exact numerical so-
lution (full). The Gaussian (dashed-dotted) and the power-law
(dashed) parts of y are also displayed separately.

y(t) = (D) B bu)’, (30)

with B the theoretically predicted short-time (equilibrium)
exponent ( 5i+ &%)/ . The inset proves that the data follow
the same linear trend when plotted as a function of (Aur)?,
with a slope of k~0.03. This value nicely agrees with the
constant predicted by Eq. (27), x=arctan(v)?/27>=0.029
(v=0.95).

Figure 4 provides more insight by deconstructing the ob-
served time decay of C((t) into the equilibrium power-law
and nonequilibrium Gaussian components. Another impor-
tant observation deduced from Figs. 2—4 is that the correla-
tion function decays to ~0.1 its initial value by the time the
exponential decay begins to dominate. This implies that the
Gaussian behavior governs the rate constant at strong enough
coupling, leading to a voltage activated regime analogous to
the high-temperature semiclassical polaron transport regime.
We call this “fermionic Marcus” behavior.

Figure 5 presents the evolution of the correlation function

0 0 0
= v=0.1 v=0.5 v=0.7
o-
=002 0.5 -1
-0.04
0 N 3
v=0.9 v=0.95 v=0.98
z -1 -2
o -2
£ 2
-4
-3 -4
0 5 10 0 5 10 O 5 10
Aut
Aut Aut

FIG. 5. The correlation function C/r) for different coupling
strengths v, manifesting the increasing dominance of intermediate-
time Gaussian behavior at strong coupling. Au=0.24 in all plots.
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FIG. 6. Testing the validity of Egs. (19) and (27) for describing
the long-time and intermediate-time behaviors, respectively. Top:
The relaxation rate I". Numerical results calculated from the slope
of ln[Cf(t)tﬁ] vs Aut at long times (squares); analytical results us-
ing Eq. (19) (dashed line). Bottom: The coefficient x. The numeri-
cal slope of ln[C/(t)tﬁ] vs Au’f at intermediate times (squares);
analytical results using Eq. (27) (dashed line). These data were
computed with Au=0.24, and B was extracted from the short-time
dynamics for each value of ».

C(1) as coupling strength v is varied from weak to strong.
All other parameters are the same as in Fig. 2. For all cou-
pling strengths, the short-time logarithmic and the approxi-
mate long-time exponential behaviors are observed. How-
ever, as the coupling strength is increased, increasingly wide
intermediate regime is observed. We have verified, by an
analysis similar to that shown in the lower left inset of Fig. 2,
that the short-time behavior is always a power law with the
theoretically predicted exponent B=2[arctan(v)/m]>. Also,
note that while at weak coupling (¥<<0.5) the correlation
function weakly decays before the turnover to an exponential
decay takes place, for very strong coupling, »=0.9, the dy-
namics is critically controlled by the Gaussian form, as the
correlation function has decayed to zero before the exponen-
tial decay takes place. This implies that the resulting decay
rate [Eq. (11)] essentially shows different characteristics in
these two regimes.

We now systematically explore the Gaussian decay at in-
termediate times and the exponential decay rate at long times
and compare the numerical coefficients I" and « with the
theoretical values, Egs. (19) and (27), respectively. This is
done by calculating the correlation function C((#) for cou-
pling strengths v=0.1-0.95 (see Fig. 5), and then extracting
both the quadratic intermediate slope xAu? and the long-
time exponential slope I'Au. Figure 6 presents these coeffi-
cients showing excellent agreement with the values predicted
from the phenomenological ansatz, Eqs. (25)-(27).

Next, in Fig. 7, we examine the crossover to the analytic
long-time behavior, Eq. (24). We compare the numerical cor-
relation function with two functions: the approximate fitting
function y; defined above and the long-time perturbation
theory result of Ref. 11, given by exponentiating Eq. (24).
We refer to this second function as y,. We see that y, de-
scribes the data well at long times, but that as the coupling
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= 0.96+
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Aut

FIG. 7. The turnover from a Gaussian decay to an exponential
relaxation. Top: Comparison between the numerical correlation
function Cy(¢) (full) and the fitting functions y; (dotted) and yg
(dashed) defined in the text, »=0.1, Au=0.24. Inset: Exposing the
turnover by taking away the short-time and intermediate-time terms
Pe AW with B=0.002, xk=5% 107, Bottom: Same with v
=0.95, leading to 8=0.13, k=0.03. While y; explicitly includes the
Gaussian decay, correct to At~ 10, the function yy captures the
correct slope at longer times.

strength is increased, the range over which the Gaussian de-
scription applies increases. This feature can be qualitatively
described by the approximate crossover function

clerr(n) (TAur)? + N L (31)
~ expd — L L
! P # 4K* 2k’

which captures the crossover from a Gaussian dynamics to
an exponential decay. An increase of v leads to a strong
enhancement of I', while « reaches saturation, resulting in a
counterintuitive lengthening of the range of the intermediate
Gaussian dynamics with increased I

In summary, we have shown that the crossover between
equilibrium (Aur<<1) and nonequilibrium (Auz> 1) behav-
iors is described by a regime of Gaussian relaxation negli-
gible for weak coupling, but for strong coupling extending
over the wide range 1<Au=<10, with parameters deter-
mined by the equilibrium exponents. In Sec. V, we examine
the consequences for spin relaxation.

C. Orthogonality and antiorthogonality

We focus next on the power-law contribution to Eq. (18).
Unlike the standard equilibrium case, where the system al-
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FIG. 8. Orthogonality and antiorthogonality effects in the non-
equilibrium system Au=0.4. [(a) and (b)] v=0.3, @=0.5, manifest-
ing the standard orthogonality effect (¥<<0). [(c) and (d)] »=0.8,
a=0, revealing the antiorthogonality effect (7> 0).

ways experiences dephasing, y<<0,°' in our model, the
power-law term in Eq. (18) acquires a positive exponent y
>0, enhancing the correlation function, see Eq. (20). We
refer to this situation as an “antiorthogonality” effect. For a
general system-bath coupling model, Eq. (24) reveals that

CAAut> 1) ~ 27 5=— (5] + S, (32)
with complex, nonequilibrium phase shifts given by Eq.
(7).36 1t is clear that in the special limit of zero diagonal
interactions (@=0), the phase shifts &; x are purely imaginary
and (5i+ 51%) <0 for all values of v, leading to ¥>0. In con-
trast, for large diagonal coupling, we typically find that y
<0, which is the standard orthogonality behavior. The antio-
rthogonality effect is therefore a footprint of a nonequilib-
rium situation.

We next turn to a numerically exact exploration of the
antiorthogonality effect. Figure 8 shows the correlation func-
tion Cy(t) at long times Aut> 1 when expression (24) holds.
We numerically extract the long-time slope I'Au and recover
the weak power-law dependence by multiplying the correla-
tion function by the inverse of the exponential decay. The
standard orthogonality effect is presented in panels (a) and
(b) for @=0.5 and v=0.3, for which y=-0.038. When a=0
and v=0.8, the antiorthogonality effect clearly manifests it-
self with =0.12 [(c) and (d)]. Interestingly, the correlation
function at long times shows a complicated behavior, more
complex than that predicted in Eq. (24), as evidenced by the
mild deviations from strict power-law behavior displayed in
Fig. 8(d).

Figure 9 presents an “orthogonality-antiorthogonality”
map as a function of the diagonal («) and nondiagonal (v)
couplings using the general expressions of Eq. (7) with «
=a;=a,. We find that for large a, —1/2 < ?¥<0, manifesting
the standard orthogonality effect. For large nondiagonal in-
teractions, typically antiorthogonality may be observed.
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L

10g,()

FIG. 9. Map of orthogonality [(8; + 8z) > 0] and antiorthogonal-
ity [(§i+ 5;e)<0] behaviors using expression (7) with a=a;=ay.

In addition to the long-time exponential decay and antio-
rthogonality behavior, nonequilibrium dynamics may be re-
flected in the appearance of complex power-law exponents.3
When the spin impurity is symmetrically coupled to the two
leads (@ =a,), the phase shifts are complex conjugates, see
Eq. (7), and ¥ is always real. This situation was discussed
above. In contrast, asymmetric systems may acquire a com-
plex coefficient with y=7%+i%", a direct outcome of a non-
equilibrium situation.

The imaginary contribution to ¥ is resolved in Fig. 10.
Since at weak coupling the imaginary term 3’ is very small,
we investigate a strong coupling system with »=0.95. Moti-
vated by Eq. (24), we assume the generic form Cy(1)
=|C/(1)|e'e’? ™. We numerically extract the phase factor e,
and then plot the function 1(1)=C(1)/|C(r)|e™' for different
diagonal coupling strengths. As expected, in symmetric situ-
ations, I(z)~1. In contrast, asymmetric systems (@, # a,)
reveal an additional decaying contribution which is expected
to oscillate at longer times. We did not succeed in fitting 1(z)
to the stretched-oscillatory function el It indicating that at
strong coupling, the dynamics is more involved. Finally, we

0.8

0.67 ., S

Re I(t)

0.4r *,

0.2f ‘\j

0 5 10 15
Aut
FIG. 10. Resolving the complex part of the power-law exponent
y. a;=0, a,=0 (full); a;=0.1, a,=0 (dashed); a;=0.2, a,=0
(dashed-dotted); a;=0.2, a,=0.2 (dotted); Au=0.24 and v=0.95 in
all plots.
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note that, consistent with our observations above, equilib-
rium effects dominate up to Aut~10. Only at longer times
() begins to deviate from unity due to the emerging influ-
ence of the imaginary term .

Though the imaginary term %’ can strongly affect the cor-
relation function C((#), (Fig. 10), its practical contribution to
the golden rule rate is small. We find that for weak to inter-
mediate coupling, y<<1, leading to I(tf)~1. On the other
hand, for strong coupling, ¥’ manifests itself only at long
times, Aut>10, when the correlation function has essen-
tially decayed to zero.

V. RELAXATION
A. Qualitative discussion

In this section, we present calculations of the nonadiabatic
relaxation rates I'} #(w) defined in Eq. (11). The given physi-
cal model corresponds to two states separated by an energy
o which depends on the bare level splitting B and on renor-
malizations arising from the coupling to the leads. F;(w
< 0) corresponds to the up-scattering rate describing transi-
tions from the lower level to the upper level, while F}“(w
>0) corresponds to down-scattering. In equilibrium at 7=0,
F}(w<0)=0, i.e., there is no up-scattering. At temperature
T> 0, the detailed balance relation of equilibrium thermody-
namics implies I'f(-w)/T'}(w)=¢~'". In this section, we ex-
amine the rates in the nonequilibrium situation. We show that
the Gaussian form of the correlation function C/#) which
occurs at strong coupling has important consequences for the
physics.

Before discussing our results in detail, we establish the
relevant energy scales. The general expression, Eq. (11), may
be written (neglecting overall factors) as

“ o dt 4
+ — iwt—A(1)
I'}(w) =Re fo (iDt)ﬁEff(’>e . (33)

Here, 8,//1) is an effective exponent which changes from the
equilibrium power B, Eq. (17), to the nonequilibrium value
Byeq [defined as (—y) in Eq. (20)], as Aut changes from less
than unity to much great then unity. w is the physical energy
level difference, given by the sum of B [Eq. (2)] and the
level shift arising from the system-bath coupling, and D is an
energy scale of the order of the Fermi sea bandwidth.

The naive assumption!? is that the only important energy
scale is the relaxation rate given by the current flow across
the system, I'A u. In fact, the numerical and analytical results
presented in the previous sections indicate that the situation
is more subtle. At short times, A(f)=~ k(Aut)?, whereas at
long times, A(r) —I'"Aut. The interplay of «, which is pro-
portional to coupling strength 1> at weak coupling but satu-
rates at strong coupling [Eq. (27)], and I', which is propor-
tional to 7 at weak coupling but diverges at strong coupling
[Eq. (19)], gives a richer behavior.

Appendix E gives details of an asymptotic analysis of Eq.
(33). This analysis reveals that to discuss the relaxation rate,
one should distinguish strong and weak couplings. In the
weak coupling limit, there are two relevant scales, I'Au and
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Ap (the latter multiplied by various factors which are in
practice fairly close to unity). For w>Apu, we get the equi-
librium down-scattering rate; for |w|<Au, we find a non-
trivial approximately Lorentzian behavior, and for o <-Apu,
we reproduce the e~(“/AN(@A%) hehavior found by Mitra er
al.'® Specifically,

IHw)=T(1- B)sm(wﬁ)<D> e
FAp Ap
T = a2 “ior @ <4k
f((l)) (1)2 + FZAMZ 1n F w ,LL
TH(w) ~ e~ (@Awin(@dw () < ﬂ (34)
! ’ Inl”

Here, T'(x) is the complete gamma function. Note that the
formulas match at w=Apu because in weak coupling, B
=I"<1 leading to I'j(w~ Au) = 1/ w. In the strong couplmg
limit, two frequency scales turn out to be important: \kAu
and 'Au. We find

(o) = F(I—B)SIH(W'B)<D) . 0= \VkAu, (39)

TH(w) = e Lo’

= B
I[(1 - B)2]cos % ( I AM) 5

2VkA m D

lo| = \r’T(A,u,, (36)

_[w2/4K(A#)2]COS(7Tﬁ) ( 2kAu? )B

I(w)=
flw)=e Do

2VkAp
~-TAusw=- \&A,u, (37)

[j(w) ~ e"@arint@/bn) ) < —TAp. (38)
The Gaussian behavior found at intermediate frequency
scales is a consequence of the wide regime of > behavior
found in the time evolution function and may be roughly
understood as the Fourier transform of e"‘(A“’)z, although as
the results of Appendix E show, this argument must be
treated with some care.

We call Egs. (36) and (37) the “fermionic Marcus rate,”
the analog of the classical Marcus result for spin-boson sys-
tems [Eq. (B12)], which holds in nonequilibrium situations
at strong coupling. This expression indicates that the voltage
activates the absorption rate, similarly to the role of tempera-
ture in the bosonic case. The result differs from the bosonic
solution (Appendix B) in some important aspects: (i) In the
fermionic case, the Gaussian decay is modified by a weak
power law term. (ii) For bosonic systems, the activation fac-
tor depends on the temperature as In T'jo 7', while for fer-
m10n1c systems, we get a voltage squared activation, In T’
o A2, Therefore, there is no simple linear mapping be-
tween temperature and voltage drop in the strong coupling
regime. We note, however, that the classical Marcus rate is
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FIG. 11. Golden rule relaxation rate calculated for the weak
coupling limit »=0.5 (8=0.043, '=0.08); Au=0 (dashed line),
Ap=0.24 (solid line), and Au=0.48 (dotted line). The inset pre-
sents an expanded view of low frequency regime.

applicable in the high temperature limit (see Appendix B),
while we typically assume here that Ay <<D. Therefore, in
our system, the energy window for reorganization processes
is the bias voltage, rather than the full bandwidth D. Thus,
we may interpret the kAu? factor in the denominator of the
Gaussian decay [Eq. (37)] as a reorganization energy of the
nonequilibrium fermionic system, Ay~ xAu, multiplied by
the driving force Fy=Au. In contrast, in the equilibrium
spin-boson model, reorganization energies are of order of the
cutoff frequency, A\, w,., and the driving force for absorp-
tion processes is temperature F,=7. Qualitatively, both
models then recast to the familiar Marcus-like form, I

o g~ 0"INF 62 Further, both the fermionic and the standard Mar-
cus behaviors share similar qualitative features such as the
existence of an inverted regime, as discussed in the next
section.

B. Numerics: Rates, population, and current

We numerically evaluate integral (33) using the coeffi-
cients I', y, B, and « as determined by the coupling strengths,
Egs. (19), (20), (26), and (27), respectively. For convenience,
we disregard the multiplicative factor A%/2.

The main panel of Fig. 11 shows on a semilogarithmic
scale the relaxation rate computed numerically for the rela-
tively weak coupling »=0.5 (8=0.043, I'=0.08, and non-
equilibrium exponent S,,,=-y=0.013) and two choices of
chemical potential, Ax=0.24 and Au=0.48. Also shown as
the dashed line is the 7=0 equilibrium result. The inset
shows an expanded view of the small frequency regime,
demonstrating the Lorentzian behavior. We clearly observe
the three regimes as discussed in Eq. (34): For small frequen-
cies (large bias voltage), the spin levels are approximately
degenerate, and the rates are symmetric around w=0 (inset).
In the opposite |w|> A limit, the absorption rate is practi-
cally zero, while the emission rate approaches the equilib-
rium limit. In between, a voltage activated excitation behav-
ior is revealed.

We analyze next the strong coupling limit. Figure 12
shows that the excitation process is activated by a finite po-
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FIG. 12. Fermi’s golden rule rate, Eq. (33), as a function of
frequency. k=0.03 and B=0.13 (¥=0.95). Inset: Voltage activated
excitation rate (w<<0).

tential difference as prescribed by Eq. (37). More quantita-
tively, the inset verifies that the relationship In F/T.(w<0) o
—(w?/Ap?) holds. Similar to classical bosonic Marcus rate,*’
an inverted regime appears for the fermionic system. How-
ever, in the present case, the rate in the inverted regime de-
cays weakly as a power law rather than as a Gaussian. At
large frequencies, w> Ay, equilibrium behavior is observed
where T’ }'(w<0) approached zero and I‘;(w>0) becomes
insensitive to voltage. We have also calculated the golden
rule rate using the numerical correlation function (depicted,
e.g., in Figs. 2 and 3), instead of the approximate analytical
function in Eq. (33), and find that the results agree perfectly.

We now turn to a study of the spin polarization. In the
incoherent tunneling regime, for small tunneling parameter
A, the populations of the two levels obey a Markovian bal-
ance equation

P,=T;P_-TjP,, P_+P,=1, (39)

with the absorption and emission rates given by Eq. (33).
VY]
T
manifests a transition from a fully polarized system (o)~
-1 to an unpolarized system (o,)~0 as Au is increased.
Typically, we find that the crossover takes place when the
energy bias @ becomes comparable to the bias voltage.
While at high frequencies, |w|>Apu, F;(w<0) ~0, leading
to full polarization, at very large bias, the emission and ab-
sorption rates are comparable, resulting in equal populations
of the two levels and zero polarization. The Gaussian activa-
tion term in Eq. (37) is therefore reflected in the enhance-
ment of polarization with bias voltage.

It is also interesting to note that the electron current
through the system, calculated at the level of mean-field
theory, I Au(n,(+))?, is strongly suppressed for weak bias,
Ap<w, see inset of Fig. 13. In contrast, for very large bias,
(ng(+))=1/2, and the current increases linearly with Au.
Therefore, it is the intermediate regime of w~ A that mani-
fests prominent nonlinear current-voltage characteristics,
emerging due to the interplay between the Gaussian relax-

The polarization {o,)=P,—P_ shown in Fig. 13,
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FIG. 13. Spin polarization as a function of potential bias Au for
different energy biases w=0.1 (full), ®=0.2 (dashed), and w=0.3
(dashed-dotted) for x=0.03, £=0.13 (»=0.95). Inset: Mean-field
calculation of the current /o {n (+))*Au for the same frequencies as
in the main plot.

ation and the power-law dynamics. We can compare our re-
sults to the weak coupling Bloch-type rate equations of
Gurvitz® which yield (o,)=0 at long enough times, indepen-
dent of voltage drop and energy bias. In contrast, Fig. 13
reveals a rich dynamics in the strong coupling regime with a
prominent dependence on system energetics and the non-
equilibrium conditions.

VL. BEYOND ©O(A?%): COULOMB GAS BEHAVIOR

In this section, we discuss a crucial ingredient of the
physics of our model that allows for a description beyond the

sz 2e42j [t e
(+ |pd(t)|+>=22(_l)(k+j)<é) Jf dan dty,
0 0

k=0 j=0 2

X ( oH+ e—iH_t.) cen (eiH_tzke—iH+fzk)]_

Here, |*) are the up and down spin states, and H, is defined
in Eq. (4). This expression was derived assuming that at ¢
=0, the spin is in the pure state |+), and the (isolated) reser-
voirs are in their respective ground states (7=0). It can be
easily generalized to describe other initial conditions. Each
time variable in Eq. (41) marks a particular spin-flip event.
While the second order correlation function couples nearest
neighbor events only, higher order correlations couple distant
spin flips, yielding a multiparticle interaction term. In equi-
librium, this interaction can be exactly written in terms of
pairwise contributions, Ti[---]xexp[Z; j(—l)k+fCI>f(tk—tj)],
significantly simplifying the computational problem. This is
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FIG. 14. Schematic representation of spin-flip events on the
Keldysh contour. Plotted are examples for particular two, four, and
six spin-flip processes, respectively.

golden rule [O(A?)] level. A formally exact solution for the
impurity spin problem (2) can be written by a power series in
the tunneling matrix element A.% Here, we restrict ourselves
to an exact numerical investigation of the electronic correla-
tion functions that appear in this power series to see if the
usual “Coulomb gas” behavior is observed even when the
system is out of equilibrium. In particular, the reduced den-
sity matrix of the spin impurity p,(z) is given by

py(t) = TrLe™'p(0)e™], (40)

with forward and backward time evolution branches. Here, p
is the total density matrix, and the trace is performed over
the reservoir electronic states. We decompose the propaga-
tors, including all spin-flip events along the time ordered
contour, and obtain, e.g., for the spin up population,’%*

! 52j-1 ) ) , .
f dSl . J dszj Tr[(elH*'Szje‘_lH‘xzj) . (ezH_sle—1H+s'1)

0 0

(41)

the celebrated Anderson-Yuval-Hamann (AYH) result, which
leads to the interpretation of the Kondo problem as a one-
dimensional Coulomb gas system.®> In contrast, in the gen-
eral nonequilibrium case, the exact structure of the interac-
tion is not known for all times, and it is not clear whether
higher order correlations can be exactly decomposed into
pairwise contributions.'?

Using the numerical technique discusses in Sec. IV, we
can exactly calculate, term by term, the correlation functions
in Eq. (41). Specifically, we study three examples of the
processes of the order of AZ A% and A°, depicted schemati-
cally in Fig. 14,
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Cz(tl ,12) — <eiH_t1eiH+(12—t1)eiH_(t—tz)e—iH_t>

C4(t1,l‘2,l‘3,t4) — <eiH_t,eiH+(t2—t1)eiH_(z3—t2)eiH+(z4—t3)eiH_(z—t4)e—iH_t>

Cé([],t2,t3,t4,t5,t6) — <eiH—t1eiH+(t2—f1)eiH-(13—f2)eiH+(’4—f3)eiH-(f5—14)eiH+(fe—ls)eiH-(f—lﬁ)e—iH-l>, (42)

and compare the results to the Coulomb gas expressions

Cy(ty,1) = Colty,19) = Cot,— 1),

_ Cylty = 1) Cyty = 1)) Cylt3 = 15) Cy 14— 13)

64(t1’ ’t4) -

Cy(t3—1)Colty - 1))

Cy(te — 1)) Co(ts — 1) C(te — 15) Co(ts — 14) Co(t6 — t5)

s

56(t1, cslg) = 64(f1, ooty

In particular, our calculations were performed assuming a
regular interval 7 between spin flips.

We have robustly checked that the AYH decomposition®
holds precisely at all times (greater than D7>1) and cou-
pling strengths in equilibrium, as well as for all times out of
equilibrium, for weak to intermediate coupling strengths, see
Figs. 15 and 16. Interestingly, the AYH decomposition
breaks down for the strong coupling out-of-equilibrium situ-
ation, precisely in the time window where C/(f) shows a
broad Gaussian decay with time, as depicted in Fig. 5. Even
in this regime, the pairwise AYH decomposition holds as-
ymptotically for long and short times.

An important outcome of this observation is that the AYH
Coulomb gas expression,®> which is exact in equilibrium,
cannot be justified for intermediate times Au~1-10 for
strong coupling to the leads in the out-of-equilibrium situa-
tion. This is because at strong coupling, the effective short-
time behavior (which cannot be described by the Coulomb
gas picture) practically extends to longer times of order

0 0 0

-2

-4

0

-5

-10

0 5 10
Aut Aut Aut

FIG. 15. Testing the Coulomb gas picture for out-of-equilibrium
situations. Comparison between the exact fourth order correlation
function Cy4(t,,1,,13,14), Eq. (42) (full), and the pairwise approxi-
mation Cy(t,.15.15.14), Eq. (43) (dashed). 7=1,,,—1, is the distance
between spin-flip events. All other parameters are the same as in
Fig. 5.

(43)

Cy(ts = 1)) Cylte = 15) Cyts = 13) Colte — 1)

Apt~1-10. The Coulomb gas expression still holds for
weak to intermediate coupling strength and at long times.
This investigation lays the groundwork for an exact evalua-
tion of the spin dynamics via path-integral techniques valid
even when the Coulomb gas decomposition does not hold.
This work will be reported in a future publication.*®

VII. SUMMARY

In this paper, we have undertaken a detailed study of the
nonequilibrium dynamics of a small quantum system
coupled to two electronic leads. This problem is of great
interest for understanding dissipative effects in prospective
single-molecules devices. The model studied here is generic
enough to capture range of relevant relaxation motifs while
being simple enough for detailed investigation. Our analysis
combines analytical results with exact numerics, rendering a
detailed and clear picture of the dissipative behavior on all

Aut Aut Aut

FIG. 16. Testing the Coulomb gas picture for out-of-equilibrium
situations. Comparison between the exact expression sixth order
correlation function Cg(t;,t5,13,14,15,15), Eq. (42) (full), and the
pairwise approximation Cg(t;.t2.13.14.15.16), Eq. (43) (dashed). 7
=t;,1—1; is the distance between spin-flip events. All other param-
eters are the same as in Fig. 5.
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time scales for arbitrary strong coupling to the leads.

While previous works have studied the nonequilibrium
dynamics in the long time limit,''*%3° we have provided in-
formation in the intermediate-time domain, where exact ana-
lytical results are not available. In the nonadiabatic limit for
strong system-lead coupling, we have discovered a nonequi-
librium regime with a Marcus-like spin relaxation rate that,
to the best of our knowledge, has not been discussed before.
Here, while the nonequilibrium dynamics is qualitatively
similar to the equilibrium dynamics at a finite temperature,
the analogy is not complete. In particular, a simple linear
mapping between temperature and bias voltage does not ex-
ist, in contrast to the electrically damped harmonic oscillator
model.%*%” The Marcus-like relaxation rate exhibits highly
nonlinear current-voltage (/-V) characteristics: The current is
practically suppressed at small bias voltage and is strongly
enhanced at intermediate bias (of the order of the energy
difference between spin levels B), while for large bias, linear
I-V behavior emerges.

In the long time limit, a nonequilibrium situation gener-
ates complex scattering phase shifts which are reflected in
the dynamics through different effects: (i) onset of an expo-
nential decay for the spin polarization, (ii) appearance of a
power-law term in the relaxation dynamics, with a complex
exponent, and (iii) the possible existence of an antiorthogo-
nality regime. The effects presented in this paper are not
limited to the specific model utilized here but can be red-
erived for other systems, e.g., the resonant level model of
Appendix A, where the polarization of a spin impurity
couples to the resonant level occupancy.!!

Going beyond the nonadiabatic limit, we have studied
multiple spin-flip events with the aid of exact numerical cal-
culations. Interestingly, we have found that the Anderson-
Yuval-Hamann treatment of the equilibrium Kondo effect®
can be extended to the out-of-equilibrium regime, but only
for weak to intermediate system-bath couplings does the
standard pairwise Coulomb gas behavior hold qualitatively
for all time scales.'®> Deviations occur precisely in time in-
tervals where the Gaussian decay of the correlation function
C((?) is prominent.

Several future directions are worthy of investigation.
First, we have restricted ourselves in this work to zero tem-
perature. Including the effect of finite temperature is straight-
forward both analytically and numerically.’” In particular, the
mapping ¢— tanh(wkzTt) (Ref. 41) transforms all analytical
expressions to those valid at finite (but low kzT<Au) tem-
peratures. Similarly, the numerical approach of Sec. IV A
may be generalized to arbitrary temperatures. The simple
model studied here can be extended in several important
ways, including coupling of the quantum subsystem to vibra-
tional degrees of freedom.

Lastly, we have delineated the precise set of regimes
where the standard Anderson-Yuval-Hamann Coulomb gas
behavior is quantitatively accurate. This lays the groundwork
for future exact numerical studies of the spin dynamics for
the models discussed here. In particular, standard influence
functional methodology may be directly applied in regimes
where pairwise Coulomb gas behavior is exhibited.!? In re-
gimes where deviations exist, numerically exact Monte Carlo
without the pairwise assumption may be performed. Both of

PHYSICAL REVIEW B 76, 195316 (2007)

these approaches are currently being pursued.
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APPENDIX A: SPIN-RESONANT-LEVEL MODEL

We present here a variant of the model system (2) leading
to dynamics analogous to Egs. (34)—(38). The model was
presented in Ref. 11 for the analysis of the generalized
fluctuation-dissipation relation for out-of-equilibrium sys-
tems. It describes a spin system coupled to a spinless reso-
nant level (creation operator d'), which is itself coupled to
two electron baths n=L,R,

H=Hg+HY +HY),

B
H¢=—0,+—-0o,,
2 02

Hg) = E ekalz,nak,n + E Vk,n(az,nd + dTak,n) 5
k.n k.n

J.d (A1)

i L) I+o )
2

Here, B and A are the spin parameters, describing the
energy gap and the tunneling splitting, respectively. J, re-
flects the strength of system-bath interaction, and V, is the
coupling element of the resonant level to the nth electronic
reservoir. I is the identity operator. The relation of this model
to the generic Hamiltonian (2) is revealed by diagonalizing
Hg) and rewriting Eq. (A1) in terms of the new operators as
follows:

Hg) = E Ekcli,nck,n’

k.n
"
g«fB—z(l+O') 2 anVk/ "CrnCk! n' >
knk'n'
E Mienzk’ ' €k ' > d= E VinCkon- (A2)
k'’
WiEIl1 n,n'=L,R. The coefficients v, and 7, , are given
by
_ Vk,n
Vien = V2 s
k'm
€~ E ;
Ko €k € i
Vk nVk' n'
Mk,nsk! 0! = 51( k’51 n' — ;L (AS)
€—€+id

where o goes asymptotically to zero. Next, we assume that
the resonant level-lead coupling is a constant, independent of
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momentum. The phase shifts, complex numbers in nonequi-
librium situations, then become

5 . \ sin?(6)

=arctan ———,

L 1 =i\ cos?(0)
\ cos?(6)

1+ i\ sin*(6) (A4)

O = arctan
Here, \ is a dimensionless coupling strength and tan(6) de-

termines the asymmetry with respect to coupling to the L and
R sides,

2J _—
A= “—,  @=arctan(NI';/Tp),
r,+Ty

(A5)

l“n=27TVﬁp is the hybridization of the resonant level with the
nth reservoir and p is the reservoir [Eq. (Al)] density of
states. When the system is symmetric, ', =g, 6=m/4, we
obtain the following relations:

8,y = O + G =arctan(\),

1
|5L’—5,;|=51n(1+)\2),
1 2y _ Lo 2
52"'512?:5 arctan )\—Zln (T+N) |,

1 1
26,0 = E{arctan2 N+ 1 In%(1 + )\2)} . (A6)
At weak coupling, the correlation function can be derived
using the cumulant expansion, as done through Egs.
(21)-(23),
A2
D(1) = = In(1 + iDt) + iE ¢

2

A
+ —A,ut{Si(A,u,t) -

1- cos(A,ut)}
21

At

2
- ;—ﬂl[% +In(Awt) - Ci(Apn)], (A7)

with E;.=D\/ . By following the derivation which leads to
Eqgs. (19), (20), (26), and (27), for the present case, we obtain
the spin-resonant-level correlation function at strong cou-

pling,

(D), Aut <1
CHt) ~ { (Dr)Perbwt’ Apt~1-10  (A8)
(D0)y B(Apr)Ye™ A Apr>1,

with the coefficients

B=arctan’(\)/7?,

1
F'=—1In(1+\?),
4ar
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_arctanz()\)
s

1 1
y=—| arctan® \ + 2 In*(1 +A?) |. (A9)

27
We note that the orthogonality-antiorthogonality transition
takes place when the exponential (& +&5) changes sign at
% In(1+\?)=arctan()).

APPENDIX B: DERIVATION OF THE CLASSICAL
MARCUS RATE IN THE SPIN-BOSON MODEL

In this appendix, we derive the classical Marcus behavior
of a two-level system coupled to an oscillator bath and com-
pare the result to the nonequilibrium Marcus-like behavior
found in the main text. The classical Marcus result* emerges
in the high temperature limit of the asymmetric spin-boson
model in the nonadiabatic regime.' The Hamiltonian is given
by

H=Hg+HY + HY), (B1)

where the spin system Hy includes a two-level system (TLS)
with a bare tunneling amplitude A and a level splitting B.
The reservoir Hg’) includes a set of independent harmonic
oscillators, and the system-bath interaction H(S%) is bilinear in
the reservoir coordinates and the spin polarization,

H¢= EO‘Z +—-o,

2

770

HY =2 wblb;
J

N
HY) = E —21(b]1 +b))0..
J

(B2)

Here, b;f,bj are bosonic creation and annihilation operators,
respectively. In the nonadiabatic regime, the excitation rate

can be calculated within Fermi’s golden rule as**

AN (7 ,
Fi= (E) f dieP'Cy(r),  Cylr)=e M,

A\ . :
(I)b(t) = 2 _é[(l + 2}1]) - (1 + nj)e_’“’.it - I’ljelet]

j Y
“dwJ(w) it ., 0t
= —— | - +4n(w)sin® — |, (B3)
0 T ® 2

with spectral function J(w)szj)\fﬁ(w—wj). Here, n(w)
=[e“*8T— 177! is the Bose-Einstein distribution function with
T as the temperature of the bosonic reservoir and kg the
Boltzmann constant. The case relevant to the present paper is
the Ohmic spectral density: a continuum of bosons with
J(w)=27maw at low frequencies and J(w)—0 for w greater
than a cutoff scale w,.. A conventional choice is
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J(w) = 2mawe™, (B4)

but most of the results do not depend on this choice. It is
useful to decompose ®,, into two contributions,

D,\(1) = Dy (w.1) + Dy(wt;Tt). (B5)
Here,
“doJ(w) ~
(Dl = f — 2 (1 - lwt)&
0 m W
sin® ot
“dowJ(w) 2
CDZZ J;) 7 w2 ew/kBT_ 1 . (B6)

The first term gives the bosonic analog of the zero tempera-
ture power-law dependence In(1+iDf) found in the main
text,

A2
D (ws<1)~iNt, \= ~L=2a0,
i @i
D (wit>1)~2aln(iwt), (B7)

where N is the solvent reorganization energy. The second
term gives the analog of the exponential and/or Gaussian
behavior. For kzT> w,., the canonical Marcus result is ob-
tained. In this limit, one approximates e**5"~1 — ;7 leading
to

<I>’2””’““S=4kBTf — . (B8)

0 T W w
At w, <1, we approximate sin® % ~ @”*/4 and obtain
DY 1 <€ 1) = ky TN, (B9)

For w.t> 1, we may set J(w)=27aw and get a linear behav-
ior,

DY gy 1 5 1) = 2wk, T (B10)

The crossover scale is '=1/w,, with the value ®Y*“(¢")
~2akyT/ w,.. Thus, for any «, at large enough kz7/w,., P,
becomes large enough that a Gaussian relaxation results.

The analogy between the high-temperature Marcus behav-
ior and the results we have found in the nonequilibrium fer-
mionic model is not complete, since in the latter case we
typically assume that the electron bands are wide relative to
the potential bias. We therefore consider next the analogous
equilibrium limit of kz7<w,. In this case, the short time
limit [sin(w?/2) — wt/2] of Eq. (B6) obeys

o} -
wlo,

- SR we B
D) (.t <1)=2ar fo dwgw/kBT_l

T
3 b
(B11)

while the long time limit reduces to Eq. (B10). We thus
obtain a short-time ¢> and a long-time #-linear behavior. The
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crossover occurs at ¢ ~1/kzT and ®i(¢")=m"a/3~3a.
Thus, for @ much smaller than 1, the relaxation integrals are
dominated by the long-time region where ® ~1, leading to
an exponential relaxation. For a>0.5 however, the power-
law prefactor ensures that the integral is dominated by short
times, of order w;l, so that the frequency dependence is sig-
nificant only on the scale of the cutoff scale ..

We compare next this behavior to the nonequilibrium
Marcus-like behavior found in the main text. The mathemati-
cal essence of the nonequilibrium result is that the time de-
cay function behaves as ®,~ k(Aut)? at short times and as
®;~T'Aput at long times; the crossover between these two
regimes occurs at © ~I'/«kAu and the value at 1 is ®(1")
~T?/k. In the weak coupling limit I'~«, " ~1/Ax and
CD_,(t*) ~T?2/k~1?<1, so the > behavior is not important for
the relaxation rates. However, in the strong coupling limit
I'/k>1, '>1/Ap and <I)f(t*)>l, so that by the time ¢
reaches * the evolution function has become negligibly
small. In this circumstance, the /2 behavior controls the re-
laxation (for all relevant energy differences), leading to the
Gaussian behavior discussed in the text. In the nonequilib-
rium case, the key parameter is therefore I'2/k, and as this
becomes larger than unity, Gaussian behavior results. In con-
trast, in the classical (high temperature) Marcus limit, the
role of I'?/k is replaced by 2akyT/w,, while for kyT< w,,
the role is played by a. If this is small, one has exponential
relaxation, while if this is larger than 1/2, the kinematics is
different and the frequency dependence is controlled by the
bandwidth scale w.. Thus, the nonequilibrium Marcus-like
rate discussed here is really another phenomenon.

We proceed and calculate the classical Marcus rate in the
high temperature limit. We substitute Eq. (B9) and the short
time limit of Eq. (B7) into Eq. (B3), perform the Fourier
transform, and recover the Marcus relation for the nonadia-

batic rate,
2
_ (é) | T ~(F B+ N ANkGT) (B12)
2 NkgT

The temperature dependence of the rate constant shows an
activated regime for |[\+B|# 0, while in the absence of the
barrier, —B=N\, the rate decreases with T. The excitation rate
I', and the emission rate I'} are related to one another
through an activation factor as

r

S+

[,/ = e BksT, (B13)
For completeness, we include here other results of the spin-
boson model in the nonadiabatic limit: The golden rule rate
to lowest order in kzT/w, and B/ w, yields (B>0) (Ref. 1)

. A2< o, )1‘2“|f(a—iB/2kaT)|2 sy
- e .

b= 4w \2mkyT F'2a)
(B14)

Here, ['(x) is the complete gamma function. For weak damp-
ing, «<<1, this expression reduces to
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_ 2mkgT 2a
I, = A
eff

waAgff
[2amkyT)* + B*] BT —

. (B15)

where A, is an effective tunneling element (a«<1),
A= A[T(1 = 2@)cos(ma)]"21-9(A/w,) 1=,
(B16)

At zero temperature, we can calculate the rate exactly for an
arbitrary cutoff frequency (B>0),

A2 B 2a-1
rHr=0)= f—(—) eBlo,
2I'2a)w, N Pe
I, (r=0)=0. (B17)

As expected, at T=0, there are transitions only from the up-
per level to the lower state.

APPENDIX C: BOSONIZATION OF THE
NONEQUILIBRIUM FERMI EDGE HAMILTONIAN

We briefly present here some of the relations between
bosonic and fermionic operators and transform our fermionic
system-bath Hamiltonian into its bosonic analog via
bosonization?® and discuss the issues involved in bosonizing
the nonequilibrium version of the model. For simplicity, in-
stead of the spin-boson Hamiltonian [Egs. (1) and (2)], we
discuss here the x-ray edge Hamiltonian (12), describing the
interaction of a localized core hole with two (possibly out of
equilibrium) metal leads,

H= X fkaz,nak,n"' >

kn=L,R kk' n=LR

Vs nd'd

+2 [VL,RaZ,Lak',R + VR,Laz,Rak’,L]de . (CD)

k.k'

The first term includes two isolated Fermi baths. The second
and third terms describe intrabath processes (diagonal cou-
pling) and interbath interactions, respectively. d (d') are an-
nihilation (creation) operators of the core hole. We consider
bands of width D and a constant density of states p.

To solve the equilibrium problem, one proceeds as fol-
lows. First, one defines new fermion operators (V; z=Vg )

0 .0

@, =COS —dy g+ SiN —ay ., (C2)
) 2 > 2 >
Q. =—sin Eak’R + cos Eak’b (C3)
with
2V,

tan = ——2K — (C4)

RR=VLL

in terms of which Eq. (C1) becomes
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> Veal,a,d'd, (C5)

kk' n=+—

[ Vra=Vin)? . . .
with V.= V”‘;VRRi - I = +VZ,R. Crucially, in equilib-

rium, the new fermion variables obey the usual Fermi statis-
tics,

¥
H = E ekak,nak,l‘l +
k.n=+,—

<ali,nak',n’> = 6k,k’ 5}1,'1'f(€k/kBT)’ (C6)

with f(€,/kgT) as the Fermi-Dirac distribution function. For
this reason, each channel can be bosonized, leading to the
standard result of Schotte and Schotte for the Fermi edge
singularity problem.? In a nonequilibrium situation, while
the change of basis can be made, the different distribution
functions for the left and right leads mean that Eq. (C6) does
not hold, preventing bosonization in the transformed basis.
One may attempt to proceed by defining the density operator

pul@) =2 af,y i, (n=L.R), (€7)
k

which creates particle-hole excitations in the n lead with mo-
mentum ¢g. We use it and define bosonic creator and annihi-
lator operators that obey the bosonic commutation relation

2
pio= = >0),
="\ Lqpn(q) (g>0)
2
by, =\ —p,(- >0).
“ Lqp( q) (g>0)

The distance L is related to the density of states through p
=L/2mvy, with vy as the velocity at the Fermi energy, taken
to be the same for both reservoirs. The fermion field opera-
tors,

(C8)

1 1
V== ag. V==X, (C9)
VL & VL 7
can be expressed in terms of the boson operators as*
F 2m .
W, = lim —=exp| 2 \| —¢ (b, - b)) |.
a—0 \27a 7 Lg '
(C10)

Here, F,, (F jl) are the Klein factors that lower (raise) the total
fermion number in the n reservoir by 1. The chemical poten-
tial difference is therefore concealed inside these factors. « is
an arbitrary cutoff that regularizes the theory and mimics a
finite bandwidth. Using these expressions, the fermionic
Hamiltonian (C1) translates into a bosonic expression as fol-
lows:

H=Hz+ (A, +A,)d'd. (C11)
H includes the isolated reservoir term
Hy =2 vpqb] b, (C12)

q.n

and diagonal (A,) and nondiagonal (A,) contributions
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gL
A=V, ;(b;,, +by),

q,n

Ahz(VL,RULU;e‘*VR,LURUD' (C13)
Here,
U,=F, exp<— Snb, - bq’”)) (n=L.R).
q
2
Ny =\ e, (C14)
Lq

All the prefactors are absorbed into the coefficient ‘7L R

27m 7—V; r- Equation (C11)—(C13) reveal that for a nonequi-
librium system, bosonization yields a nonlinear Hamiltonian
with a highly nontrivial form. Compared with the solution in
the fermionic picture (Appendix D), bosonizing the Hamil-
tonian does not simplify the calculation, as it does in equi-
librium. It should be noted, however, that the use of Eqs.
(C11), (C13), and (C14) yields second cumulant expressions
identical to those derived in Appendix D.

APPENDIX D: DERIVATION OF THE SECOND
CUMULANT EXPRESSION

We derive here the details of the weak coupling correla-
tion function Eq. (22). The second cumulant is given by

Ky(t) = fdf1f dt(TF(t,)F(t,)),, (D1)

where F=3 1, n,n/a,t’nak/,n/ ,{***). denotes a cumulant
average, and T denotes time ordering. For simplicity, we dis-
regard diagonal interactions, V; ; =V z=0. The integrand is
calculated using Wick’s theorem** to yield

L Dy
Cy(7) =(TF(7)F(0)).= (pVL,R)Zl f” delf dezei(el—ez)f

KR Dy )
+f dfzf dfle_l(el_ez)q— .
—Dg My

Here, 2D, is the bandwidth, p is the energy independent
density of states, and u; (ug) is the chemical potential at the
L (R) lead. This expression assumes zero temperature. As-
suming wide bands, ug <D, the integrals in Eq. (D2) can be
trivially performed producing

(D2)

1= e—lDoT 2 Dy>1
CZ(T) =- Z(PVL,R)Z — COS(A,LLT) _
T

D}
——— cos(Au7),
(1+iDyr)? (Au7)

with the voltage difference Au=u; — ug. In equilibrium, the
correlation function is therefore given by

2(pV,p)? (D3)
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(PVL,R) °D %

C5(1) = .
20 (1+iDy1)?

(D4)
We substitute this expression into Eq. (D1) and obtain the
second cumulant approximation for equilibrium situations,

K5(1) = - (pV,p)* In(1 + D?). (D5)

This is the standard result for Tomonaga’s model.” In non-
equilibrium situations, Au# 0, the correlation function in-
cludes an oscillatory function, Eq. (D3), which can be de-

composed into its equilibrium and nonequilibrium
contributions as follows:
C3%(r) = C57(1) + C3(0),
2 2 2
Cé“(t) (pL—R)Z[ os(Aur) —1]. (D6)
(1 +iDgt)

The equilibrium term yields Eq. (D5). We proceed with the
nonequilibrium part. For Au<<D,, Dot > 1,

cos(Au(t; —1,) = 1)

t t
K3*(1) ~ (pVL,R)2f dtlf dr,
0 0

(t;—1p)*
sin(Au(t, — 1))
== (pVLr) A,U«J dflfdz lt 2
)
! tood Au(ty—1,)) -1
+ (pVL,R)zf dt]f dt2_|:cos( /*l’( 1 2))
0 0o dn =1

(D7)
Exact integration leads to
K3*(1) == 2(pV, o) {Aut Si(Apr) - [1 - cos(Aun)}
+2(pVy, ®)[ve + In(Aur) - Ci(Aun)]. (D8)
in t)

s

Ci(x)= ye+ln(x)+fx dt and y,=0.5772 is the Euler-
Mascheroni constant. In deriving Eq. (D8), we have used the
following  identities: [Si(x)dx=cos(x)+xSi(x) and

[y 4=Si[(x-a)B]-Si(aB). The sum of Egs. (D5)
and (D8) is our expression for the second cumulant [Eq.
(22)] with v=mpV, . After exponentiating, the first term
provides an exponential relaxation at long times, while the
second term yields a power-law contribution.

APPENDIX E: APPROXIMATE ANALYTICAL
EVALUATION OF RATE CONSTANTS

In this appendix, we present a derivation of the rate con-
stants in the important limiting cases. We begin from the
basic expression [Eq. (33)]

cdt .
+ — iwt—A(t)
Ff(a)) Rej0 (iDt)Beff(’)e . (E1)

Here, D is an energy scale of the order of the bandwidth, and
B.sr is an effective exponent which changes from the equi-
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librium power S to the nonequilibrium power S,,,. The re-
sults of Sec. IV imply that

Au)=g¢(§), (E2)
with ¢ defined such that ¢(x—0)—x> and ¢(x —»)—x.

This implies that the coupling constant g and characteristic
time ¢ are

1‘*2

g=—), (E3)
K

" r

== E4
A (E4)

In the weak coupling limit (v<1), ['~k~1? so g<1 and
£ ~(Awp)7!, while in the strong coupling limit (v~1), I’
— oo while & saturates so g1 and > (Au)~'. We define a
dimensionless time coordinate u=t/t" and frequency "
=wt" in terms of which the dimensionless relaxation rate
DT’} becomes

* du Lo
DF+ =R — (D * I_Beff(u) iw u—g(ﬁ(u).
@) eﬁ)um&mw(f) ¢

(E5)

The analysis of the integral in Eq. (E5) requires some care
because the scales which dominate the integral may not be
the scales which dominate the real part of the integral. To
isolate the contributions to the real part, we deform to con-
tour into the complex plane. Writing u=x+iy, we deform the
integration contour into two parts, one running along the
imaginary axis (x=0) to the point y=y" at which iw"
—gd¢p/dy=0 and another running parallel to the real axis
along the contour u=x+iy*. Thus, we have

DF}—((D) =Il +12, (E6)
with
Yo (DY P
I;=Im f dy——"F—=—e"® V780, (E7)
: 0 (-y )Bﬂﬂ( Y

. s e * l—BL,-(x+iy*) B B
[2 — e—\w v Re J dxueiw x—gp(x+iy")
o lixm e

(E8)

Here, Re refers to the real part of the integral and Im to the
imaginary part. We analyze these equations first in weak cou-
pling g<1. Let us begin with ;. Inspection of the second
cumulant formula shows that y* <0 if @<0. In this case, the
integral does not have any imaginary part so for w<<0, I;
=0. Next consider small positive w, where we may approxi-

mate ¢(y)=y> implying

=—-= . (E9)

Thus, for o <I'Au, we may use the equilibrium exponent
and approximate ¢=y? obtaining
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wl2TAp .
& -0y’

I, = (w)sin(ﬂ'ﬁ)(Dt*)l_'Bf
0

(E10)

At the endpoint ;’—g, the argument of the exponential is mini-
(@")? o2 Lo

mized; the minimum value is ~Thg ST aa Substituting the
maximum value w=T"Ag and noting that in weak coupling
I'~ k<1, we see that the argument of the exponential is

negligible over the entire range w <I'Au, and we get

sin(Tr,B)( Dw )l_ﬁ
1-8 \2I'Au?
For o>T'Ap, y“>1, and we must consider the form of ¢ for

large imaginary argument. Inspection of the second cumulant
formula shows that

@liy) ~ cosh(y) ~ e,

implying y*~In(w"/g). In this case, the value of the argu-
ment of the exponential at the upper limit of integration is
-~ In(w’/g) ~—(w/Ap)In[w/(I'Aw)]. Thus, for w= F(Allfr_)’
the upper limit of the integral may be set to infinity, and for
= Ap, the integral is dominated by y<<1 yielding

I, = 0(w) (E11)

(E12)

DI'f(w) =Im(- 1)#(Dr")'~# f f—ge-w*z (E13a)
0

D\'"P
:sin(wﬁ)(;) I'aa-p). (E13b)
Here, T'(x) is the complete gamma function. Equation (E13b)
is simply the usual equilibrium result. Therefore, in weak
coupling, 7, is given by Eq. (E11) for o<Au/InT~" and by
Eq. (E13b) for = A, with a rather broad crossover regime.

We next turn to [, which is nonzero for both signs of .
The frequency regimes are as for ;. For o <Au/InT~!, the
integral i§ dominated by large x, where ¢=x and the prefac-
tor e71@ v | is negligible, so that we find

e_iWBneq/Z :|
(iw—TAp) Preq |
(E14)

12 =~ (D)I_Bm;qf(l - IBI’qu)Re|:

Note that we have replaced 8 by the long-time nonequilib-
rium value S, In the weak coupling limit, S,.,~ <.
Setting B,,,— 0 yields a Lorentzian behavior

DI'A
I Jad

= . El5
: o+ A u? (E15)

Note that for w>0 I, only becomes smaller than /; for w
~TAp/sin Br~Au. As o becomes of the order of
Au/InT~!, the prefactor begins to be important and I, de-
cays proportional to e~(“@/AWIN@/AL) a5 found by Mitra et al.'®

To summarize, for weak coupling, we find a rate which
for small frequencies, w<<Au/InT~!, is approximately
Lorentzian, with decay constant ['’Agx. On the emission
(positive frequency) side, the Lorentzian decay is overcome
by the contribution of /; and eventually crosses over the
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equilibrium rate, Eq. (E13b), while on the absorption (nega-
tive frequency) side, the rate crosses over to into the
e~ (@AmIn(@AL) relaxation.

We now take up the strong coupling (g>1) limit. For w
<T'Apu, Eq. (E10) still applies, but now at the endpoint of
the integration reglon the argument of the exponential can
be large. For o <yg (i.e., o< \KA,u) the variation of the
exponent is not important, and we get

(mB) 1-f -
I = () L o] < VA
(0)—— _p ZKA,LL o] < VkAu

(E16)
In contrast, in the opposite high frequency limit, we can set

the upper limit of the integration to infinity and drop the y?
term. This yields

D\'"F_ -
18 = ®(w)sin(77,3)<—) [(1-B), o> VkApu,
w
(E17)
which is again the equilibrium (Ax=0) result. This continues

to apply even for w>T'Au. We next turn to I,. For w
<TApu, we again approximate ¢=(x+iy")> and find
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L= (@ 4"A"z)(Dt*)l"B Re f dx o8

0 ( w )’8
YT orau

The important x are of order \E, so that for o< \s";A,u, we
may neglect the w in the denominator and get

I = cos 7T_Be—(w2/4KA;L)< D >I_BF[(1 - B)/2]
2 2 ’

(E18)

VA o

o] < VkAp. (E19)

we neglect x in the de-
nominator and find

2\ B
I(ZB) —(w2/4KA,u, ) COS(’]TIB) D (2KA/*L ) ’

A/'L Dw

|| > VrAp. (E20)

For the emission rate w>0, the Marcus rate given by Eq.
(E20) goes over to the equilibrium power law behavior, Eq.
(E17), when I(B becomes smaller than I , which happens
for w slightly larger than 2 KA,u

Finally, if " >g (0>TApu), then the approximation ¢
=y? does not apply and the rate goes over the ¢~ '™ ® form
discussed above. However, by this time, the rate is so small
that this behavior is not relevant.
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