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We consider wave packet propagation in a quantum wire with either an embedded antidot or an embedded
parallel double open quantum dot under the influence of a uniform magnetic field. The magnetoconductance
and the time evolution of an electron wave packet are calculated based on the Lippmann-Schwinger formalism.
This approach allows us to look at arbitrary embedded potential profiles and illustrate the results by performing
computational simulations for the conductance and the time evolution of the electron wave packet through the
quantum wire. In the double-dot system, we observe a long-lived resonance state that enhances the spatial
spreading of the wave packet, and quantum skippinglike trajectories are induced when the envelop function of
the wave packet covers several subbands in appropriate magnetic fields.
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I. INTRODUCTION

Recent progress in nanotechnology enables us to fabricate
various types of quantum systems embedded in nanostruc-
tures in which the charge carriers behave coherently.1 Elec-
tronic transport in these mesoscopic or nanoscopic size sys-
tems is phase coherent, and the universal quantization of the
dc conductance is one of the well-known features that was
measured in various semiconductor structures.2 The low-
temperature behavior of the conducting electrons becomes
dominated by quantum interference effects. For example, a
single impurity allows the electrons to make coherent elastic
intersubband transitions forming quasibound states nearby
the threshold of a subband bottom.3 One of the advantages of
electronic transport is its tunability by applying external
magnetic fields.4–10 Transport properties are affected by the
nature of current-carrying states in the leads connecting these
structures to electron reservoirs. The electronic transport un-
der influence of an external magnetic field has been utilized
in several aspects such as probing impurities in nanostruc-
tures under depleted conditions,7 studying magnetoconduc-
tance fluctuations,8 imaging magnetic focusing of coherent
electron waves,9 and realizing chiral coherent quantum
circuits.10

One of the typical and significant issues in mesoscopic
and nanoscopic systems is time-dependent transport.11–16 A
microelectronic system driven by an external time-dependent
potential allows charge carriers to make coherent inelastic
scattering. A number of time-dependent transport features
have been investigated such as time-dependent quasibound
states,11 nonadiabatic quantum charge pumping,12,13 current-
driven oscillations for nanomechanical rectifiers,14 and
charged particle motion in quantum rings.15,16 Blumenthal
et al. demonstrated that the pumped current of hundred pi-
coamperes can be generated and is proportional to the pump-
ing frequency up to 3 GHz.13 Szafran and Peeters performed
time-dependent simulation exploring the electron wave
packet trajectories in an open quantum ring by considering
the transport in the lowest subband and neglecting inelastic

scattering effects.15 They also suggested an experimental
setup in order to measure the Lorentz-force-induced asym-
metry in the Aharonov-Bohm effect in a three-terminal semi-
conductor quantum ring.17 Considerably earlier, Ancilotto
et al. used numerical methods to explore the time-dependent
tunneling of a Gaussian wave packet through a thick homo-
geneous barrier in a transverse magnetic field18 and subse-
quently used the model to analyze the lifetime of the reso-
nant state formed in a double barrier system.19

In the present work, our purpose is to elucidate how the
embedded quantum dots in a uniform perpendicular mag-
netic field affect the transport characteristics of the electron
wave packet in a broad ballistic two-terminal quantum wire
system. By transforming the embedded potential as well as
the scattering wave function into a momentum-coordinate
mixed representation,20 we demonstrate that the wave packet
transmission probability and the conductance can be ob-
tained using the Lippmann-Schwinger method.21 In order to
understand in detail, we shall consider embedded antidot and
double-dot systems in different magnetic fields for compari-
son. In magnetic fields, the propagating wave packet states
are shifted to the sample boundaries due to the Lorentz force.
Detailed information on the embedded nanostructures repre-
sents a key to the understanding of various features of the
magnetotransport of a wave packet.

The present paper is organized as follows. Section II de-
scribes wave packet magnetotransport in a nanostructure em-
bedded quantum wire. In Sec. III, we examine wave packet
propagation of the quantum wire with embedded quantum
dots and the robustness of the resonance features in appro-
priate magnetic fields. Concluding remarks and possible fu-
ture directions are summarized in Sec. IV.

II. THEORETICAL MODEL

The system under investigation is a two-dimensional
quantum wire containing an embedded nanostructure pen-
etrated by a perpendicular magnetic field B=Bẑ. The quan-
tum wire lies in the x-y plane, which is assumed to be con-
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fined in the y direction and transport is in the x direction. The
wire stretches into infinity in both directions, while the em-
bedded nanostructure is contained in a scattering region of
finite length in the middle of the wire. The Hamiltonian of
system contains an unperturbed Hamiltonian and a scattering
potential describing the embedded quantum dots, namely,
H=H0+Vsc�x ,y�. In this work, we shall explore the time-
dependent transport phenomena of embedded antidot and
parallel double-dot systems.

The considered embedded antidot is defined in the middle
of the quantum wire as shown in Fig. 1 and can be described
by a Gaussian-type potential

Va�x,y� = Va0 exp�− �a��x − xa�2 + y2�� . �1�

For performing numerical computation, the antidot related
physical parameters are selected as follows: potential height
of the antidot Va0=8 meV, the potential broadening param-
eter �a=10−2 nm−2, and the longitudinal coordinate center
xa=0, with aw being the effective magnetic length of the wire
to be defined later.

The parallel double-dot potential under consideration,
shown in Fig. 2, is described by a number of Gaussian-type
potentials

Vd = Vd0 exp�− �d�x − xd�2��
�=±

exp�− �d�y + �yd�2� . �2�

The strength of the coupling of the two parallel open quan-
tum dots is tunable by the separation parameter yd and the

strength of the magnetic field. In our numerical calculation,
we shall select the strength of the double quantum dot Vd0
=−5 meV, the broadening parameter �d=10−3 nm−2, the lon-
gitudinal center xd=0, and the transverse off-center param-
eter yd=1.5aw such that the two dots are separated by the
distance of 2yd.

In the Landau gauge for the vector potential, the unper-
turbed Hamiltonian can be written as

H0 =
�2

2m*�− i � −
eB

�c
yx̂	2

+ Vconf�y� , �3�

where −e and m* are the charge and the effective mass of an
electron, respectively. The confining potential Vconf�y�
= 1

2m*�0
2y2 is assumed to be parabolic. Using a mixed

momentum-coordinate representation20 and making Fourier
transform in time, the scattering wave function

��x,y,t� = 

−�

� d�

�2	



−�

� dp
�2	

ei�px−�t��̃�p,y,�� �4�

can be separated into the coefficient functions 
n and the
shifted harmonic-oscillator-type eigenfunctions �n for the

wire, namely, �̃�p ,y ,��=�n
n�p ,���n�y−yp�, where the
shifting center yp= paw

2 �c /�w is momentum dependent. In
the absence of magnetic field, this shifting center is identi-
cally zero. The effective magnetic length of the wire aw
=� /m*�w is related to the effective cyclotron frequency
�w=��0

2+�c
2, with �c=eB / �m*c� being the two-

dimensional cyclotron frequency. In the presence of a mag-
netic field, the quantized electron energy away from the scat-
tering region is given by4

En�p� = En
0 +

Uw

2
�paw�2, �5�

where En
0= �n+1/2�Ew are the transverse subband energy

levels, and the second term denotes the kinetic energy with
Uw= ���0�2 /Ew and Ew=��w.

To obtain the coefficient functions 
n, one defines the
momentum-coordinate space potential V�p−q ,y�, which is a
Fourier transform of the scattering potential Vsc�x ,y�. The
overlap integral in the momentum space can thus be ex-
pressed as

Unn��p,q�Uw = 

−�

�

dy�n�
* �y − yq�V�p − q,y��n�y − yp� ,

�6�

where Unn� is a dimensionless quantity. In the asymptotic
region away from the scattering region, the unperturbed
Green’s function can be expressed of the form Gn�p ,��
= ��kn���aw�2− �paw�2�−1, where the dimensionless wave vec-
tor kn���aw= ����−En

0� /Uw�1/2 describes the dispersion rela-
tion in the asymptotic regions. After some algebra, one can
obtain the Lippmann-Schwinger equation in the momentum
space,
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FIG. 1. �Color online� Schematic view of an antidot embedded
in a two-terminal quantum wire. Va0=8 meV, �a=10−2 nm−2, and
xa=0.
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FIG. 2. �Color online� Schematic view of a parallel double-dot
embedded in a two-terminal quantum wire. Vd0=−5 meV, �d

=10−3 nm−2, xd=0, and yd=1.5aw.
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n�p,�� = 
n
0�p,�� + Gn�p,��


−�

� dqaw

�2	
Unn��p,q�
n��q� ,

�7�

where 
n
0�p ,��=2	gn�p����−En�p� /�� is the coefficient

function of the asymptotic regions. Therein, the envelope
function of the incident wave packet gn�p� is assumed to
contain only positive p values such that the wave packet is
injected in the x direction. For a given subband n, the ex-
plicit form of the coefficient function can be expressed in
terms of the T matrix,


n�p,�� = 
n
0�p,��

+ Gn�p,���
n�



−�

� dqaw

�2	
Tnn��p,q,��
n�

0 �q,�� ,

�8�

where the T matrix is a solution of the integral equation

Tnn��p,q,�� = Unn��p,q�

+ �
m



−�

� dkaw

�2	
Unm�p,k�Gm�k,��Tmn��k,q,�� .

�9�

Solving this integral equation for the T matrix, one can ob-
tain the coefficient functions 
n for the scattering region and
construct the total wave function ��x ,y , t�=�0�x ,y , t�
+�sc�x ,y , t� containing an asymptotic part,

�0�x,y,t� = �
n



−�

�

dpgn�p��n�y − yp�exp�i�px − En�p�t/��� ,

�10�

with gn�p�=�nn� exp�−
�p− p0�2� being the envelop function
of the wave packet in momentum space, and a scattering
part,

�sc�x,y,t� = �
n�



E
n�
0

/�

�

d�e−i�t
�wgn��kn�����

�0
2�kn����aw�

��
n



−�

� dpaw

�2	
Gn�p,��exp�ipx�

�Tnn��p,kn������n�y − yp� . �11�

The transmission amplitude through the embedded quan-
tum dot system for an electron with energy E=�� entering
the scattering region from the channel n in the left lead and
leaving it via channel m in the right lead that can be ex-
pressed in terms of the T matrix is

tnm��� = �nm −
i

2km���
2m

�2 Tnm�kn���,km���� . �12�

The conductance, according to the framework of multichan-
nel Landauer-Büttiker formalism,22 is written as

G = G0 Tr�tnm
† ���tnm���� , �13�

where G0=2e2 /h is the universal conductance quantum and
tnm is evaluated at the Fermi energy. All the incident and
scattered propagating modes have to be taken into account.

III. NUMERICAL RESULTS

To investigate the magnetotransport properties of wave
packet propagation in a nanostructure system embedded in a
broad wire under a perpendicular magnetic field, we select
the confinement parameter ��0=1 meV. In our numerical
calculation, the magnetic field strengths are selected as B
=0.5 and 1.0 T with corresponding effective magnetic
lengths aw=29.3 and 23.9 nm, respectively. We assume that
the quantum wire is fabricated in a high-mobility
GaAs-AlxGa1−xAs heterostructure such that the effective Ry-
dberg energy ERyd=5.92 meV and the Bohr radius aB
=9.79 nm. Below, we shall explore the dynamic motion of
the electron wave packet in a quantum wire under an applied
perpendicular magnetic field with either an embedded antidot
or an embedded double open quantum dot.

A. Embedded antidot

Earlier work considering magnetotransport in an antidot
was carried out by assuming that magnetic field is so strong
that only the lowest Landau level is occupied.23 The antidot
can be formed by producing a potential hill with gates24 and
behaves effectively like an artificial quantum impurity. It is
thus warranted to devote further effort in developing numeri-
cal techniques in order to analyze the behavior of the elec-
tron wave packet propagation in a quantum wire with an
embedded antidot in a tunable magnetic field.

Since the effective magnetic length aw is a function of
magnetic field, we thus select the envelop parameters of the
wave packet in the momentum space as p0=1.2aw

−1 and 

=2.0aw

2 for B=0.5 T and p0=2.0aw
−1 and 
=1.0aw

2 for B
=1.0 T, such that the wave packets are of similar shapes in
momentum space as shown by the dotted blue curve in Fig.
3. The incident wave packet is selected to have contributions
from the lowest subband for clarity. The initial electron en-
velop function at t=0 is a Gaussian wave packet in the mo-
mentum space with width �pin=1/�
 such that the probabil-
ity density of the wave packet in the momentum space is
reduced by a factor of 1 /�e.

The energy dependences of the conductance for the trav-
eling wave packet in an ideal wire and an antidot embedded
wire are depicted in Fig. 3 by the dashed green and the solid
red curves, respectively. The general feature in Fig. 3 is that
the conductance is suppressed in the low kinetic energy re-
gime but approaches the conductance of the ideal wire in the
high kinetic energy regime. This is because the electron
waves with lower kinetic energy are easier to be backscat-
tered by the embedded antidot. For the case of B=0.5 T, the
conductance manifests a smooth transition region in the low-
est subband �n=0�. Low kinetic energy blocking phenom-
enon is significant at the third and the fifth conductance pla-
teaus. However, in the second and the fourth plateaus, the
Lorentz force pushes transversely the electron wave packet
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with intermediate kinetic energy and hence suppresses
slightly the conductance plateaus.

For the case of B=1.0 T, the conductance in the lowest
subband region exhibits clear transition between the back-
ward and the forward propagating energy regimes at around
E
Ew. A dip structure is clearly found at E
0.79Ew that
corresponds to a short-lived quasibound state with negative
binding energy. Such a dip structure becomes broader valley
structure at higher subbands shifted slightly to the higher
energy. This broadening indicates a shorter dwell time of the
localized state at higher subbands. Sharp dip structures at
E=2.56, 3.52, and 4.54Ew demonstrate the formation of qua-
sibound states with negative binding energy.25

In Fig. 4, we show the time evolution of the wave packet
traveling through the quantum wire with an embedded anti-
dot for the case of B=0.5 T. Before the electron wave packet
arrives at the scattering region, the wave packet center is
shifted slightly in transverse direction to y�0.8aw due to the
Lorentz force induced by the penetrating magnetic field as
shown in Fig. 4�a� for t=0 ps. To estimate the longitudinal
width of the incident Gaussian wave packet, it is convenient
to define a Gaussian function in the real space f�x�=e−x2/


with width �x such that x varies from 0 to ±�x /2, and f�x�
is reduced by a factor of e−1/2. By this definition, one can
estimate the width of the incident wave packet at t=0 being
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FIG. 3. �Color online� Energy dependence of the conductance in
an ideal wire �dashed green�, the conductance in an antidot embed-
ded wire �solid red�, and the envelop function of the wave packet in
momentum space �dotted blue� for the cases of �a� B=0.5 with
wave packet parameters p0=1.2aw
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2 and �b� B=1.0 T
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2 . The other
parameters are the same as in Fig. 1.
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FIG. 4. �Color online� Propagation of the electron wave packet
traveling through an embedded antidot for the case of B=0.5 T at
time t= �a� 0, �b� 8, �c� 15, and �d� 28 ps. The other parameters are
the same as in Fig. 1.
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�xin=2�
aw to obtain �xin�pin=2, which is compatible with
the Heisenberg uncertainty relation.

Figure 4�b� shows the time evolution of the wave packet
at t=8 ps, and it is found that the trajectory of the electron
waves with higher kinetic energy is closer to the wire edge
due to the magnetic field. Since the higher kinetic energy
electron waves contain larger group velocity, the shape of the
wave packet is skewed, an effect also seen by Ancilotto
et al.19 The electron wave packet is then scattered by the
antidot as shown in Fig. 4�c�. The electron waves with higher
kinetic energy can pass through the antidot but the lower
kinetic energy part of the wave packet is reflected. Due to the
Lorentz force, the backscattered wave packet is turned
around to the lower part of the quantum wire with wave
packet center at y=−0.6aw �see Fig. 4�c��. For longer evolu-
tion time t=28 ps, the scattered wave packets become
broader and then leave the scattering region, as is shown in
Fig. 4�d�.

In Fig. 5, we show the time evolution of the wave packet
traveling through the quantum wire with an embedded anti-
dot for the case of B=1.0 T. Before the electron wave packet
arrives at the scattering region, the wave packet has a shift-
ing center at y�1.8aw due to the Lorentz force as shown in
Fig. 5�a� for 0 ps. The wave packet is narrow in the x direc-
tion, that is, �xin=2aw. The electron wave packet is scattered
by the antidot at t=15 ps, as is shown in Fig. 5�b�. The part
with higher kinetic energy can pass through the antidot, but
the part with lower kinetic energy is predominately reflected.
Due to the magnetic field induced Lorentz force, the back-
scattered wave packet is turned around to the lower part of
the quantum wire with wave packet center at y=−1.2aw at
t=25 ps �see Fig. 5�c��. For longer time t=40 ps, the scat-
tered wave packets are getting broader—the reflected wave
packet has distribution length �xref�10aw and the transmit-
ted wave packet has even broader distribution length �xtran
�20aw, as is shown in Fig. 5�d�. The spreading of a wave
packet is a quantum diffusion phenomenon, which was uti-
lized for possible application in a quantum kicked rotor
system.26

In comparison with the incident wave packet in an applied
magnetic field B=1.0 T, the incident wave packet in B
=0.5 T has a wider longitudinal profile and a wave packet
center closer to the middle of the quantum wire. It turns out
that the group velocity of the wave packet for the case of
B=0.5 T is greater than that of B=1.0 T. We would like to
mention in passing that for a wave packet with momentum
envelop function covering more subbands, the electron wave
packet tends to form transversely skippinglike trajectories in
both the forward and backward scattered wave packets due
to the mode mixing interference between different subbands.

B. Embedded parallel double dot

Electronic transport through coupled quantum nanostruc-
tures is of fundamental interest for the understanding of
coherent resonant and superposition states. By coupling
two quantum dots in series27 or in parallel,28 a double
quantum dot is formed. Quantum transport through such
a double-dot system has attracted considerable attention due

to its versatility for various applications such as probing
entanglement,29 detecting microwave manipulation of a
single electron,30 analyzing dephasing rate,31 studying nona-
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FIG. 5. �Color online� Propagation of the electron wave packet
traveling through an embedded antidot for the case of B=1.0 T at
time t= �a� 0, �b� 15, �c� 25, and �d� 40 ps. The other parameters are
the same as in Fig. 1.
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diabatic transport under irradiation,32 and readout of the co-
herent superposition of trajectories.33 The interdot coupling
strength can be experimentally varied using gate
electrodes.28,34

Earlier works considering electronic transport in double
quantum dot systems were carried out using the Anderson-
type hopping model by assuming that the system is isolated
with weak coupling to the leads.35 Our previous work has
devoted effort in developing numerical computation of mag-
netotransport in a transversely hill-separated parallel double
open quantum dot system with strong coupling to the leads.36

It is thus appropriate to analyze the propagation behavior of
the electron wave packet in a quantum wire with an embed-
ded parallel double open quantum dot to get better insight
into the dynamical properties.

In Fig. 6, we show the energy dependence of the conduc-
tance in an ideal wire �dashed green�, the conductance in a
double-dot embedded quantum wire �solid red�, and the en-
velop function of the wave packet in momentum space �dot-
ted blue� for the cases of �a� B=0.5 T and �b� B=1.0 T. We
select the envelop parameters of the wave packet in the mo-
mentum space as packet center p0=1.0aw

−1 and 
=2.0aw
2 for

B=0.5 T and p0=3.0aw
−1 and 
=0.5aw

2 for B=1.0 T, such
that the wave packets are of similar shapes in momentum
space.

For the case of B=0.5 T, shown in Fig. 6�a�, we see that
a perfect conductance gap formed at the kinetic energy re-
gime �0.53�E /Ew�0.73� of the first subband. This fact in-
dicates that the embedded double-dot system may be appli-
cable as a quantum switch. The conductance gap is formed
due to the cyclotron motion of electron wave between the
two parallel dots. Fano line shapes in conductance at ener-
gies E=1.01 and 2.37Ew manifest the quantum interference
feature of the wave packet between the part forming quasi-
bound states inside the double-dot system and the part with
straight transmission. Furthermore, a sharp dip structure in
conductance at energy E=1.38Ew indicates the formation of
a quasibound state below the second subband threshold in
the lead. The transport properties of electron waves in the
second subband are very different to that in the first subband.
The overall feature is that the low kinetic energy electron
exhibits higher conductance. The strong suppression in con-
ductance at higher subband implies the better interdot cou-
pling enhancing backscattering.

Figure 6�b� shows the energy dependence of conductance
for the case of B=1.0 T. The gap feature in conductance at
the low kinetic energy of the first subband is narrower than
that induced by the magnetic field B=0.5 T. The dip struc-
ture in conductance related to the formation of quasibound
state at around the energy E=Ew is almost the same as the
case of B=0.5 T, but the dip structure at higher energy in the
first subband is shifted toward the lower energy. A new clear
sharp dip structure is formed just below the threshold of the
second subband. Since the wave function of the electrons
occupying the second subband in B=1.0 T fits the geometry
of the double dot system, the electron wave thus favors to
turn around through the double-dot, and then the conduc-
tance is strongly suppressed. The conductance at energies
higher than the third subband threshold for the case of B
=1.0 T is a little higher than that of B=0.5 T.

Figure 7 demonstrates the snapshots of the electron wave
packet propagation through an embedded parallel double-dot
system for the case of B=0.5 T at the time t= �a� 0, �b� 9, �c�
25, and �d� 38 ps. At time t=0 ps, we see that the incident
wave packet has a compact longitudinal distribution �xin
=2�2aw with height of 1.5. In Fig. 7�b�, at t=9 ps, the elec-
tron wave packet arrives at the upper open dot and forms a
clear quasibound state with packet height of 2.0. At this mo-
ment, both the backward reflection and the forward transmis-
sion are blocked by the double-dot system.

During the time evolution 0� t�9 ps, the higher energy
part of the electron wave packet is closer to the upper bound-
ary and traveling faster than the lower energy part of the
wave packet. This makes the electron wave packet to skew
with a clockwise rotation. Before being scattered by the
double-dot system, the spreading effect proceeds slowly.
When the electron wave packet is scattered by the double-dot
system, the forward scattered wave packet exhibits faster
spreading in the longitudinal direction manifesting a long-tail
behavior caused by the slow release of the probability by the
long-lived resonance state.

In Fig. 7�c�, at the time 25 ps, part of the wave packet is
clearly coupled to the lower dot, although part of the wave
packet has been forward scattered showing skippinglike tra-
jectories and traveling into the right asymptotic region. The
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FIG. 6. �Color online� Energy dependence of the conductance in
an ideal wire �dashed green�, the conductance in a double-dot em-
bedded quantum wire �solid red�, and the envelop function of the
wave packet in momentum space �dotted blue� for the cases of �a�
B=0.5 with wave packet parameters p0=1.0aw

−1 and 
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�b� B=1.0 T with wave packet parameters p0=3.0aw
−1 and 


=0.5aw
2 . The other parameters are the same as in Fig. 2.
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skippinglike behavior implies a significant intersubband mix-
ing due to the broad wave packet distribution in the momen-
tum space. At t=38 ps, the longitudinal distribution of the

forward scattered wave packet is getting broader, and the
localized part remains in the double-dot region with approxi-
mately a half packet height of the localized state formed at
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FIG. 8. �Color online� Propagation of the electron wave packet
traveling through an embedded parallel double-dot system for the
case of B=1.0 T at time t= �a� 0, �b� 11, �c� 21, and �d� 40 ps. The
other parameters are the same as in Fig. 2.

0.00

0.50

1.00

1.50

(a)

-40 -20 0 20 40
x/aw

-4

-2

0

2

4

y/
a w

0.00

1.23

2.47

3.70

(b)

-40 -20 0 20 40
x/aw

-4

-2

0

2

4

y/
a w

0.00

0.09

0.19

0.28

(c)

-40 -20 0 20 40
x/aw

-4

-2

0

2

4

y/
a w

0.00

0.06

0.13

0.19

(d)

-40 -20 0 20 40
x/aw

-4

-2

0

2

4

y/
a w

FIG. 7. �Color online� Propagation of the electron wave packet
traveling through an embedded parallel double-dot system for the
case of B=0.5 T at time t= �a� 0, �b� 9, �c� 25, and �d� 38 ps. The
other parameters are the same in as Fig. 2.
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t=9 ps as shown in Fig. 7�b�. We would like to mention in
passing that the reflection wave packet takes more time to
emerge than the transmission wave packet due to the forma-
tion of the quasibound states in the double-dot embedded
system.

We show, in Fig. 8, the snapshots of the electron wave
packet propagation through an embedded parallel double-dot
system for the case of B=1.0 T at the time t= �a� 0, �b� 11,
�c� 21, and �d� 40 ps. It is shown in Fig. 8�a� that, at time t
=0 ps, the incident wave packet has a compact longitudinal
distribution �xin=�2aw with probability density height of
1.2. A clear localized quasibound state feature is found at t
=9 ps, as is shown in Fig. 8�b�. The height of the probability
density of the localized state is twice the height of the initial
wave packet. At this moment, the backward reflection is
blocked and the forward transmission is relatively low.

The wave packet propagation at the moment t=21 ps is
depicted in Fig. 8�c�. The forward scattered wave packet ex-
hibits rich and robust transport behavior. Not only the skip-
pinglike wave packet flight is found, but also an interference
feature attributed to the intersubband mixing is significantly
manifested. At time t=40 ps shown in Fig. 8�d�, the skip-
pinglike trajectory is still significant but the interference fea-
ture is suppressed. In addition, the interdot coupling of the
wave packet in B=1.0 T is weaker than that in B=0.5 T due
to the stronger Lorentz force enhancing off-center shifting.
The localized state for the case of B=0.5 T covers two quan-
tum dots, whereas the localized state for the case of B
=1.0 T is mainly in the upper dot. This implies that the 0.5 T
magnetic field fits better to the length scales of the double-
dot system.

IV. CONCLUDING REMARKS

In this work, we have developed a theoretical model by
implementing the Lippmann-Schwinger formalism to dem-
onstrate and elucidate the transport properties of a Gaussian-
type electron wave packet traveling through a quantum wire
with embedded quantum dots under a homogeneous perpen-
dicular magnetic field. The magnetic field induces Lorentz
force, which enriches the dynamics of electron wave packet
propagation. We have found that quantum skippinglike oscil-
lation trajectory of a wave packet is induced in an appropri-
ate magnetic field when the wave packet envelop function
covers the lowest two subbands. This is a quantum forerun-
ner to the well-known skipping orbit motion of classical par-
ticles.

For the case of an embedded antidot, the electron wave
packet has been considered with momentum envelop cover-
ing the lowest two subbands. The wave packet propagation
exhibiting non-skipping-like trajectories implies that the sig-
nificance of the wave packet propagation stays in the lowest
subband. The part of the wave packet with high kinetic en-

ergy tends to go through the antidot system, but the part with
low kinetic energy is backscattered by the scattering region.
Quasibound state features with negative binding energies
have also been seen to play an active role in the scattering
process.

For the case of embedded double quantum dot, we have
found a robust trapping effect of the electronic wave packet
moving into the double-dot system and forming localized
states. If there are several bound states, the electrons make
multiple scattering in the coupled double quantum dot result-
ing in a superposition of these bound states, exhibiting oscil-
lating behavior in the double-dot system. The parallel
double-dot system enables the electron wave packet perform-
ing resonant coupling between two dots in an appropriate
magnetic field and then allows electron wave packet per-
forming interedge backscattering.

We have referred to resonance structures in the conduc-
tance as either dips in the conductance due to the formation
of quasibound states or simply as Fano resonances.37 In fact,
both are Fano resonances, and the line shape depends on the
relative weight of the continuum and the resonance channel.
Recently, this aspect has been clearly addressed by
Schánchez and Serra for a system with local Rasbha spin-
orbit interaction.38

The coherent motion of electron waves through open
nanostructures in a penetrating magnetic field may offer
promising approaches to semiconductor spintronics39 and
controlling the dynamics of coherent quantum states for
quantum information processing.40 To explore these direc-
tions, we need to track the motion of electron waves in an
applied magnetic field. The cooled scanning probe micro-
scope renders the possibility of imaging the electron wave
trajectories by using the scanning tip as a movable gate.41

Very recently, quantum dot embedded mesoscopic system
has been utilized for the coherent probing of excited quan-
tum dot states.42 We hope that our paper will stimulate ex-
perimental interest to nanostructure embedded quantum sys-
tems in the strong coupling regime, which may provide a
useful tool for the dynamical quantum manipulation of
charged carriers.
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