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Pump-probe �PP� and four-wave mixing �FWM� signals from a single quantum dot are presented which are
based on a four-level quantum dot model, accounting for the fine structure splitting as well as for the biexciton
binding and phonon-induced pure dephasing. We have derived closed form analytical expressions for the PP
and FWM polarization components in the time domain after excitation with a pair of ultrafast laser pulses. The
solutions are exact within this model. We discuss the dependence of the signals on the polarization of the
exciting pulses. We show that for PP spectra after excitation with collinearly polarized pulses and for FWM
spectra after cocircular excitation changes in the line shape are entirely due to the polaron formation leading to
a fixed shape when this process is completed. For PP spectra after cocircular excitation and FWM spectra after
collinear excitation in general periodic modulations of the shape are superimposed which persist even on long
time scales and reflect quantum beats due to the fine structure splitting or the biexciton binding energy.
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I. INTRODUCTION

The concept of quasiparticles which incorporate parts of
the collective interaction among particles is a fruitful concept
in condensed matter physics to simplify the description of
interacting many-body systems. Prominent examples are
phonons, excitons, plasmons, or polarons. Under external ex-
citation their constituents may rearrange to minimize their
interaction energy which then leads to the formation of a new
stable complex, a new quasiparticle. For ultrafast impulsive
excitations this “dressing” of the “bare” particle states is not
instantaneous. The buildup of the new quasiparticles or el-
ementary excitations occurs on a characteristic time scale of
the many-body interaction, reflecting memory effects that are
caused by quantum coherences in the system.1,2 Thus, moni-
toring the formation of such an elemantary excitation gives a
deep insight into quantum mechanical many-particle interac-
tions. A powerful tool for this purpose is ultrafast laser spec-
troscopy which has already been successfully employed to
monitor the buildup of screening in GaAs.3,4 There an ini-
tially excited bare electron gets “dressed” by the other elec-
trons and holes which eventually results in the formation of a
plasmon resonance.5

In this paper we will analyze another example, the forma-
tion of a quantum dot �QD� acoustic polaron after impulsive
excitation. QDs are distinguished systems for studying fun-
damental quantum mechanics in solid state systems since
they resemble artificial atoms due to their atomiclike energy
structure. Furthermore QDs attract great interest because of
versatile possibilities to use them in optical devices such as
quantum dot lasers,6 single-photon sources,7 or potentially as
qubits in quantum computers.8–12 For these applications a
good knowledge of the optical properties and also of the
decoherence mechanisms is vital. Besides the characteriza-
tion of photoluminescence and absorption, in particular, non-
linear optical signals are instructive, e.g., pump-probe13,14

�PP� and four-wave mixing15–18 �FWM� measurements.
Among the various types of QDs self-assembled QDs re-
semble most closely the ideal of an artificial macroatom, due

to a strong carrier confinement and a resulting large energy
level separation. Because of the typically high density of
dots in the grown samples and the small dipole moments,
which lead only to weak optical signals, first experimental
studies of self-assembled QDs have been made on ensembles
of these nanostructures. Meanwhile improvement of the fab-
rication of QDs and of the detection techniques has made it
possible to experimentally study linear and nonlinear optical
signals from single self-assembled QDs.19–29 Although PP
signals from single interface QDs, due to their larger dipole
moments, had already been obtained,30–36 only most recently
PP37 and FWM38 signals from single self-assembled QDs
have been reported manifesting new progress in this field.
Since QDs, unlike real atoms, are embedded in a solid state
matrix they are more strongly exposed to influences from the
environment that destroy quantum mechanical coherences.
However, differently from higher dimensional semiconductor
systems, where transitions mediated by the coupling to
phonons are a major decoherence mechanism, these pro-
cesses are strongly suppressed in QDs when the phonon en-
ergy does not match the electronic transition energy—an ef-
fect commonly called phonon bottleneck. As a consequence
pure dephasing processes which do not change the electronic
occupations become more important. Indeed pure dephasing
processes due to the interaction with longitudinal acoustic
�LA� phonons have been found to be the main cause for
decoherence of the optical interband polarization on short
time scales of about a few picoseconds in typical III-V QDs
of small size, i.e., with large level separation.28,39–42 Within
these few picoseconds a polaron complex is built up, physi-
cally corresponding to a lattice distortion that minimizes the
interaction energy between the phonons and the excited car-
rier pair. Theoretically pure dephasing processes are de-
scribed by the independent boson model. Many studies have
investigated the influence of pure dephasing on the optical
properties of QDs, e.g., on the spectral shape of the linear
absorption,40 on Rabi oscillations43–45 and on FWM signals46

where quantitative agreement with experimental results has
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been found.42 In most of these works only the lowest exciton
state of the QD has been taken into account. This is a good
approximation for circularly polarized excitation of strongly
confined QDs with nearly cylindrical symmetry, i.e., with
large level spacing and vanishing fine structure splitting.
Then only one spin-polarized exciton eigenstate is excited
and the QD is effectively reduced to a two-level system.
However, within that description the dependence of nonlin-
ear optical signals on the polarization of the exciting pulses,
observed, e.g., in time-integrated FWM experiments,47 can-
not be explained. We have recently extended the theory to a
model where not only one exciton, but two orthogonally po-
larized bright exciton eigenstates and the biexciton state are
included.48 Thus, also effects of the fine structure splitting
and the biexciton binding are taken into account. It is well
known that the presence of biexcitons has a considerable
influence on the optical properties of QDs.49–51 With regard
to device applications a thorough understanding of these
properties is required, especially when biexcitons are the cru-
cial part of the device, for instance, as sources for entangled
or squeezed photons52–54 or as quantum computing
devices.30–55

In this paper we concentrate on the influence of phonon-
induced pure dephasing on PP and FWM signals from single
strongly confined QDs. We demonstrate that the line shape of
phonon-induced background spectra in dependence on the
delay time monitors the polaron dressing process. The calcu-
lation of the signals is based on the theory presented in Ref.
48. There a recursion formula for the exact analytical solu-
tion for all density matrix elements of the coupled QD-
acoustic phonon system under excitation with an arbitrary
series of ultrafast laser pulses has been provided. Here we
derive closed form expressions for the case of two-pulse ex-
citation either in a PP or in a FWM setup.

The paper is organized as follows: In Sec. II we specify
our model. In Sec. III A we present results for PP signals
after collinear as well as after cocircular excitation consider-
ing both positive and negative delay conditions. We give the
analytical formulas and discuss the resulting phonon back-
ground spectra. Section III B is dedicated to the FWM sig-
nals after two-pulse excitation. We treat the same excitation
conditions as for the PP case and give the respective analyti-
cal formulas and some of the corresponding spectra. The
results are compared to the findings within the two-level
model.46 Section IV then summarizes our work and draws
some conclusions.

II. THEORY

We consider a QD in the strong confinement limit mod-
eled by an electronic four-level system coupled to phonons
and to an external laser field. The four electronic eigenstates
are the ground state of the unexcited dot, �0�, the two linearly
polarized single exciton states, �x�= ���+�+ ��−�� /�2 and �y�
=−i���+�− ��−�� /�2, and the biexciton state, �B�
=c−1/2

† d3/2
† c1/2

† d−3/2
† �0�. Here the angular momentum states are

defined as ��+�=c−1/2
† d3/2

† �0� and ��−�=c1/2
† d−3/2

† �0�, where c�
†

�d�
†� denote the creation operator of an electron in the lowest

conduction band state �a hole in the heavy hole band state�

with angular momentum quantum number mJ
e �mJ

h� indicated
by the subscript. The single exciton states are split by the fine
structure splitting ��ex resulting from the long-range part of
the electron-hole exchange interaction.20 Here we have as-
sumed that the exchange potential is independent of the spin
polarization which implies that the linearly polarized exciton
states may be written in the above mentioned superposition
of the spin basis states. For the angular momentum states the
usual selection rules imply that �+-polarized light couples
the mJ

h= +3/2 hole to the mJ
e=−1/2 electron and

�−-polarized light couples the mJ
h=−3/2 hole to the mJ

e

= +1/2 electron. Thus the optical interband polarization
of the QD can be written in the electronic eigenbasis
���= �0� , �x� , �y� , �B� as

�P̂� =
M0

*

�2
��C0x − iC0y + CxB − iCyB�e�+

+ �C0x + iC0y + CxB + iCyB�e�−� , �1�

where M0 denotes the dipole matrix element between va-
lence and conduction band states and e�± are the unit vectors
along the �± polarization components. C���= ��������� denote
the electronic coherences between the states ��� and ����,
which are given by the elements of the density matrix in the
electronic eigenbasis. The linearly polarized components of
the optical polarization are then obtained by transforming to
the Cartesian unit vectors ex/y according to e�±

= �ex± iey� /�2. We determine the density matrix elements
with the help of generating functions. The general technique
as well as its application to a four-level QD model are ex-
plained in detail in Ref. 48. Here we will present and discuss
the results for nonlinear optical signals after excitation by
two laser pulses.

To set up the equations of motion we have employed the
Hamiltonian in the electronic eigenbasis

H = 	
�

��������� − 	
���

�M̄���������� + 	
�

���b�
†b�

+ 	
��

��g�
�b� + g�

�*b�
†������� , �2�

where ���=E� is the energy of the eigenstate ��� �cf. the
sketch of the energy scheme in Fig. 1�. For the interaction
with the phonon system we concentrate on pure dephasing
processes as described by the independent boson model.56

The coupling strength between the electronic state ��� and
the phonon mode with energy ��� is determined by the ele-
ment g�

�. In our calculations we assume g�
�= �g�

e−g�
h�n� with

n� denoting the number of electron-hole pairs in the state,
which holds for the strong confinement limit where correla-
tions with higher electronic states can be neglected, and we
consider for the coupling matrix elements of electrons and
holes, g�

e/h, the usual deformation potential coupling elements
for carrier-LA-phonon interaction42,43,46 where Gaussian
wave functions for the carriers have been assumed. Since
moderate changes in the geometry would not lead to a quali-
tative difference in the results,57 we use the same carrier-
phonon coupling elements also when nonvanishing exchange
splitting is taken into account, although this is usually con-
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nected with wave functions deviating from cylindrical sym-
metry. The same standard GaAs material parameters as in
Ref. 44 have been employed and the localization length of
the Gaussian electron wave function is chosen to be 4 nm.

The coupling of the excitons to an external laser field is
described by the matrix

M̄ =

0 �x

* − �y
* 0

�x 0 0 �x
*

− �y 0 0 − �y
*

0 �x − �y 0
� , �3�

with �x= ���+ +��−� /�2 and �y =−i���+ −��−� /�2. The in-
stantaneous Rabi frequencies ��± for the dipole transitions
from the ground state to the spin-polarized ��±� exciton state
are given by

��± = M0E�±/� = 	
j=1

2 f j�±

2
ei	j�±
�t − tj� , �4�

where the summation refers to the two exciting pulses. We
model the time dependence of the �± component of the laser
field amplitude, E�±, by a 
 function. This description holds
in the limit of pulses shorter than the characteristic electron-
phonon coupling time, which is typically about 1 ps. In the
following the jth pulse arriving at time tj will be character-
ized by its pulse area f j and its phase 	 j. In the case of �+-
��−-� circularly polarized excitation we have f j = f j�+ �f j

= f j�−� and the respective phase 	 j =	 j�+ �	 j =	 j�−�. For lin-
ear polarization we set f j =2f j�+ =2f j�− with the correspond-
ing phase 	 j =	 j�+ =	 j�− for x-polarized light and 	 j =	 j�+

=	 j�− +� for y-polarized light. These definitions of the pulse
areas f j ensure that both for circularly and linearly polarized
excitation a � pulse results in maximally occupied single
exciton states.

III. RESULTS

A. Pump-probe signals

PP signals provide information about the system’s answer
to a test �probe� pulse in dependence on a pump pulse. From
the general two-pulse solution for the optical polarization in

the time domain we have extracted the PP signals by collect-
ing the contributions which are proportional to exp�i	t, with
	t being the phase of the test pulse. Since usually the test
pulse is assumed to be weak, we have linearized the signals
with respect to this pulse. As usual we refer to positive de-
lays when the pump pulse, characterized by the pulse area fp,
precedes the test pulse with pulse area f t.

Let us first concentrate on the excitation by two col-
linearly polarized pulses. To be specific x polarization has
been chosen. Then, for positive delay the x component of the
PP polarization reads

�P̂xx
PP�x = i

M0
*

2�2
��t�f t��C̄0

xK0
E − C̄x

xKx
E�e−i�xt

+ �C̄x
xKx

B − C̄B
x KB

B�e−i�Bxt , �5�

where we have set the arrival time of the pump pulse to t
=− and that of the probe pulse to t=0. Here, as in the
following formulas, we have omitted the phase factor
exp�i	t that was used to identify the PP signal component.
The signal consists of two parts corresponding to the ground
state to exciton transition �GET� with frequency �x and the
exciton to biexciton transition �EBT� with frequency �Bx
=�B−�x, respectively. The contributions are determined by
the occupations of the electronic levels right after the pump

pulse, C̄�
x =lim�→0+C���−+��, times a function K�

�. The oc-

cupations C̄�
x depend only on the pulse area fp as follows:

C̄0
x = cos4 fp

4
, C̄x

x =
1

2
sin2 fp

2
, C̄B

x = sin4 fp

4
. �6�

The upper index x indicates that we are considering x
linearly polarized excitation. The functions K�

�=K�
��t ,� de-

pend on the real time t, on the delay time , and on the
properties of the phonon system, i.e., the phonon energies
��� and dimensionless electron-phonon coupling elements
��= �g�

e−g�
h� /��. The upper index � is E for the functions

contributing to the GET or B for the functions contributing to

the EBT. All functions K�
� have the structure K�

�= K̃�
�e��t�

with

��t� = − 	
�

����2�2N� + 1��1 − cos ��t� , �7�

N� being the thermal phonon occupation number, and K̃�
� are

time-dependent phase factors given by

K̃0
E�t,� = K̃0

E�t� = e−i	�����2 sin ��t, �8a�

K̃x
E�t,� = ei	�����2�2 sin ��+sin ��t−2 sin ���t+��, �8b�

K̃x
B�t,� = ei	�����2�2 sin ��−sin ��t−2 sin ���t+��, �8c�

K̃B
B�t,� = ei	�����2�4 sin ��+sin ��t−4 sin ���t+��. �8d�

For delay times longer than the typical carrier-phonon in-
teraction time p, which is of the order of 1 ps �see below�,
the sums over the -dependent oscillations in Eqs. �8a�–�8d�
average to zero. Thus, the functions become independent of 

|B�

|0�

|y�|x�

yx

yx

� h̄∆ex

h̄∆B � EB = 2EX − h̄∆B

Ey = EX + h̄∆ex/2
Ex = EX − h̄∆ex/2

E0 = 0

FIG. 1. �Color online� Sketch of the four-level system consisting
of the ground state �unexcited QD�, the two linearly polarized
single exciton states, and the biexciton state.
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with K̃0
E= K̃x

B and K̃x
E= K̃B

B. Consequently, also the shape of
the spectra does not change anymore. Physically this limit
means that the lattice has reached its new equilibrium posi-
tion when the second pulse arrives. In Fig. 2 we have plotted
the phonon background spectra of the EBT and the GET for
=4 ps, i.e., a delay time which satisfies �p, at tempera-
ture T=1 K for three different pump pulse areas. These PP
spectra have been obtained as the imaginary part of the Fou-
rier transform of Eq. �5�. Since we do not include further
decay mechanisms,58–60 e.g., radiative decay, the long-time
value of the polarization is nonzero, leading to unbroadened
zero phonon lines �ZPLs�. For the numerical calculation of
the spectra we have eliminated the ZPLs by subtracting the
final long-time value of the polarization for each transition.
As a guide to the eye the ZPLs are indicated by vertical lines.

The physical origin of the spectra can be easily under-
stood with the help of the three-level system sketched in the
inset of Fig. 2�a� �since we consider only x linearly polarized
pulses, the state �y� is never excited�. Due to the carrier-
phonon interaction each electronic state is accompanied by a
phonon sideband, in the sketch indicated by the hatched ar-
eas. At low temperatures these sidebands are almost empty
such that the probe pulse induces mainly transitions starting
from the zero phonon state at the bottom of each sideband.
Then, for excitation energies higher than the zero phonon
transition energy the laser pulse can only generate transitions
into the sideband of the energetically higher state while for
excitation energies below the ZPL the transition has to end
up in the phonon sideband of the energetically lower state.
Thus at low temperature the spectra always exhibit gain on
the left and absorption on the right hand side of the corre-
sponding ZPL. This behavior may be nicely read off from the
analytical formulas.

After a weak pump pulse with fp=� /100 �Figs. 2�a� and

2�b�� the occupation of the ground state, C̄x
0, is still much

stronger than the exciton occupation, C̄x
x, and the biexciton

occupation, C̄x
B, is negligible. Thus we can see from the for-

mula that the GET signal is essentially proportional to the
ground state occupation and the EBT signal proportional to
the single exciton occupation. The shape of the spectra
agrees with the linear absorption spectrum40 which is given
by the Fourier transform of K0

E. For zero temperature K0
E is

proportional to

�K0
E�T=0 � exp�	

�

����2e−i��t� � 1 + 	
�

����2e−i��t,

where in the second form we have assumed that the lower
exponential can be expanded in powers of the carrier-phonon
coupling constant. This expansion up to second order is valid
for not too strong carrier-phonon coupling. In particular, it is
a good approximation for GaAs material parameters. It
shows that in the low temperature limit the Fourier compo-
nents are nonzero only for excitation frequencies higher than
the zero phonon transitions which define the zero of the fre-
quency scale. Thus in Figs. 2�a� and 2�b� only absorption but
no gain is visible. Since because of the very small occupation
of the single exciton state the EBT signal is much weaker
than the GET signal, it has been multiplied by a factor of
6000.

For stronger pump pulses �Figs. 2�c�–2�f�� we have no-

ticeable occupations of the exciton �C̄x
x� and biexciton �C̄B

x �
states. In that case also the terms with Kx

E and KB
B in Eq. �5�

contribute noticeably to the spectra, however, with a negative
sign indicating gain. For long delay times and T=0 K these
phonon functions have the form

�Kx
E�T=0 = �KB

B�T=0 � 1 + 	
�

����2ei��t �9�

and lead to nonzero spectra on the left hand side of the ZPL.
For a pulse area of the pump pulse fp=� �Figs. 2�c� and

2�d�� we have C̄0
x =0.25, C̄x

x=0.5, and C̄B
x =0.25 and we ex-

pect predominantly gain on the GET and absorption on the
EBT, which is indeed observed. The ratio of the amplitudes
of gain to absorption is determined by the occupations of the

dressed states after the pump pulse, C̄B
x : C̄x

x=0.25:0.5 in Fig.

2�c� and C̄x
x : C̄0

x =0.5:0.25 in Fig. 2�d�. Accordingly, for a

pump pulse with fp=3� /2 �Figs. 2�e� and 2�f�� with C̄0
x

=0.02, C̄x
x=0.25, and C̄B

x =0.73 both transitions are strongly
inverted and gain dominates in both cases.

For higher temperatures the phonon sidebands are consid-
erably occupied up to an energy of about kBT above the zero
phonon state leading to transitions mediated by thermal
phonons which result in absorption also for excitation ener-
gies lower and emission also for excitation energies higher
than the zero phonon transition energy. For temperatures of
about T=20 K or higher the signals become dominated by
the thermal phonons, i.e., by the thermal occupation number
N� in Eq. �7�, which is common to all K�

�. Thus the phase
factors become irrelevant and the spectra become symmetric
with respect to the ZPLs, as can be seen in Fig. 3, where we
have plotted the same spectra as in Fig. 2 but for T=77 K.
The sign of the spectra is determined by the occupations
after the pump pulse, i.e., by the inversion of the respective
transition. It is equal to that of the ZPL.
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FIG. 2. �Color online� PP spectra for collinear �xx� excitation at
long delay times and different pulse areas fp of the pump pulse at
low temperature �T=1 K�.
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When the phase factors K̃�
� become irrelevant obviously

the dependence on  in the PP polarization completely van-
ishes. Thus, at elevated temperatures the phonon spectra be-
come independent of . For this reason in the following,
when discussing the  dependence of the PP spectra we will
concentrate on low temperatures.

The spectra at long delay times could be well understood
in terms of the occupations of the eigenstates of the coupled
exciton-phonon system. It should be noted, however, that the
excited zero phonon states in this picture are not the pure
electronic eigenstates entering the Hamiltonian in Eq. �2�,
but they are dressed by the phonons and thus constitute po-
laronic states. The light field, on the other hand, directly
couples to the pure electronic states. In the case of an ul-
trafast optical excitation initially these undressed states are
populated. Then the phonon system reacts and the polaronic
states build up within a characteristic electron-phonon inter-
action time, which depends on the phonon frequencies and
the coupling matrix elements. This can be interpreted as the
polaron dressing time p. The buildup of the polaron in the
region of the QD is associated with the emission of a phonon
wave packet that carries away the energy which is released
by the polaron formation.61

If  is smaller than p the spectral shape cannot be ex-
plained in terms of the occupations of the dressed states. In
Fig. 4 we have plotted a series of spectra for EBT and GET
with different delay times starting from =0 ps up to 
=1.8 ps. The pulse area of the pump pulse is fp=� /100.
Since in the case of such weak excitation the GET spectrum
is strongly dominated by the linear spectrum of the unexcited
QD, in Fig. 4�b� we have plotted the differential absorption
spectrum obtained by subtracting the linear spectrum from
the PP spectrum.

We observe a pronounced  dependence of the spectra
which reflects the polaron dressing process. For =0 ps the
shape of the spectra is independent of the pulse area fp, since
the phonon system has not yet reacted to the pump pulse
excitation. In that case the phonon functions for the respec-

tive transition coincide, K0
E�t ,0�=Kx

E�t ,0� and Kx
B�t ,0�

=KB
B�t ,0�, and thus can be taken out of the brackets in Eq.

�5�. This leaves the pulse-area dependent occupations as
mere scaling factors which, however, can have either sign.
With increasing  the spectral shape changes until it reaches
its final shape at a delay time of about �1.5 ps. Thus, for
the present structural and material parameters this time can
be interpreted as the polaron dressing time p. During the
buildup of the polaron the lattice is in a dynamic transition
state when the probe pulse arrives which gives rise to a mix-
ing of absorptive and dispersive features in the spectra re-
sulting in a complex shape with long tails extending to en-
ergies quite far from the ZPL. �The zero level for each
spectrum is indicated by a dotted horizontal line.� At �p
the long-time limit discussed in Figs. 2�a� and 2�b� is
reached.

Let us now turn to negative delay time, where the pump
pulse arrives after the probe pulse. Here we use the conven-
tion that the probe pulse arrives at t=−�� and the pump pulse
arrives at t=0. Then the PP polarization for collinear excita-
tion reads

�P̂xx
PP�x

− = i
M0

*

2�2
��t + ���f t�K0

E�t + ���e−i�x�t+���

����− t� + ��t�cos
fp

2
cos2 fp

4
�

+ KB
−�t,�e−i�Bxt��t�

2
sin2 fp

2
e−i�x��� , �10�

with KB
−�t ,�= K̃B

−�t ,�e��t+��� and

K̃B
−�t,� = e−i	�����2�sin ���t+���+2 sin ��t�. �11�

Again we have two contributions, one associated with the
GET, which starts at the arrival time of the probe pulse and is
modified when the pump pulse arrives, and the other associ-
ated with the EBT which only starts after the pump pulse has
arrived. This is because the signal is linear with respect to the
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FIG. 3. �Color online� PP spectra for collinear �xx� excitation at
long delay times and different pulse areas fp of the pump pulse at
elevated temperature �T=77 K�.
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probe pulse and in linear order the probe pulse alone cannot
create an EBT signal.

Figure 5 shows the PP background spectra for weak x
linearly polarized pump and probe pulses. For the GET we
have plotted again the differential spectra. We observe that
with increasing �� the spectra decrease and become superim-
posed with symmetric coherent spectral oscillations around
the zero phonon transition. Such spectral oscillations appear-
ing at negative delay times are a rather general feature and
have been observed in many higher dimensional semicon-
ductor systems62–65 as well as in quantum dots created by
interface fluctuations in thin quantum wells.31 Their period is
given by 2�� /. The oscillations are caused by the instanta-
neous jump of the optical polarization at the arrival time of
the pump pulse which reflects the perturbed free induction
decay due to the nonlinear interaction of the pump pulse with
the polarization excited by the preceding probe pulse. Here
this nonlinear interaction leads to a jump in the GET polar-
ization and the buildup of the EBT signal.

Let us conclude the discussion of the PP signals with
some remarks about the cocircular excitation conditions. The
mathematical structure of the signals is similar to the case of
collinear excitation consisting of pulse-area dependent occu-
pations and phonon functions. However, in general there are
four contributions corresponding to the four possible transi-
tions �cf. Fig. 1�, two transitions from the ground state to the
linearly polarized single exciton states and two transitions
from these exciton states to the biexciton state. The explicit
formulas both for positive and negative delays are given in
the Appendix �Eqs. �A1� and �A2��. Each transition consists
of a ZPL and a phonon background. The distance between
the ZPLs for the GETs and between the ZPLs for the EBTs is
determined by the fine structure splitting ��ex. If in a QD
this fine structure splitting vanishes the two single exciton
states are degenerate. A circularly polarized excitation cre-
ates circularly polarized excitons which in this case are elec-
tronic eigenstates as well. Then, due to the selection rules the
biexciton cannot be excited. The PP signal exhibits only a
GET contribution which agrees with the result obtained for a
two-level QD model.

Real QDs typically exhibit some finite exchange splitting.
Then in general all four contributions are present in the PP

spectra. Even for cocircular excitation with �+ pulses the PP
polarization has a �− component �cf. Eq. �A1��. However, the
fine structure splitting of the two GET ZPLs as well as of the
two EBT ZPLs is usually less than about 150 �eV.20,25,66

This energy difference is so small that the respective back-
ground spectra with an energy scale of a few meV practically
coincide. This can be seen in Fig. 6 where the �+ compo-
nents of differential GET and EBT background spectra are
plotted with a fine structure splitting of 90 �eV for different
values of . The ZPLs are indicated by vertical lines. On the
energy scale of the figure their separation is hardly visible.
All delay times chosen are longer than the polaron dressing
time p. Here we see a major difference compared to the
collinear case. While there the spectra did not change any-
more after the polaron formation, we now observe a pro-
nounced time dependence on a much longer time scale. At
the shortest time, =2 ps, the differential GET signal is es-
sentially symmetric and similar to the case of collinear exci-
tation �cf. Fig. 4�b��. However, an EBT signal does not ap-
pear. With increasing time an EBT signal builds up and the
part below the ZPLs in the GET signal diminishes. The two
contributions exhibit an oscillatory behavior with a period of
about 44 ps.

The oscillations of the excitonic and biexcitonic contribu-
tions in the �+ component can be physically explained as
follows. The �+-polarized pump pulse excites the spin-
polarized exciton state ��+� which, for nonvanishing ex-
change coupling, is not an eigenstate but a linear combina-
tion of the two linearly polarized excitons. Thus it oscillates
between the two spin polarizations with a frequency deter-
mined by the exchange splitting, and at the arrival of the
second pulse the state of the system is described by the su-
perposition

����� � cos��ex

2
���+� + i sin��ex

2
���−� . �12�

For short delay times or  of about an oscillation period the
system is almost in a pure ��+� state. Then, due to the Pauli
blocking, the second �+-polarized pulse cannot excite the
biexciton. Thus in Fig. 6 for =2 ps and =45 ps there is no
EBT signal and the GET background spectra show absorp-
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tion on the right and gain on the left hand side of the ZPLs.
If the second pulse, however, comes after half an oscillation
period, the system is in the ��−� state and the second pulse
yields a maximum biexciton contribution manifested in ab-
sorption on the right hand side of the EBT’s ZPLs. This
corresponds to vanishing gain in the GET spectrum.

Indeed, from Eq. �A1� it can be seen that the contributions
which are responsible for the low-energy part of the GET
signal ��Kx

E� and for the EBT signal ��Kx
B� involve oscilla-

tory factors as a function of  with an oscillation period
2� /�ex determined by the fine structure splitting. For the
�+-detection component, which is the relevant one for PP
detection, the contributions from the two fine structure split
transitions essentially add up.

B. Four-wave mixing signals

The two-pulse FWM signal corresponds to those parts of
our analytical solution that are proportional to exp�i�2	2

−	1�. In higher dimensional systems FWM signals are
given by the radiation from the sample into the 2k2−k1 di-
rection, where k1 and k2 are the wave vectors of the pulses.
For quantum dots, which radiate equally in all directions, the
FWM signal may be detected with the help of phase
modulations.38,67 We speak of positive delay when the pulse
with phase 	2 arrives second. A detailed theoretical analysis
of FWM signals from single QDs and QD ensembles within
the two-level model has been published in Ref. 46 examining
positive delay conditions, because within the two-level sys-
tem there is no FWM signal for negative delay. In that work
it was found that for low temperature the spectra, generally
and independently of the details of the carrier-phonon cou-
pling, evolve from an asymmetric shape for vanishing delay
between the pulses to a symmetric one for delay times longer
than the characteristic carrier-phonon interaction time p.
Within the present four-level QD model we obtain the fol-
lowing analytical formula for the x component of the FWM
polarization in the time domain for positive delay and collin-
ear �xx� excitation:

�P̂xx
FWM�x = − iM0

*��t���D̃1
xC̃x0

x Gx0
E �t,�ei�x

− D̃2
xC̃Bx

x GBx
E �t,�ei�Bx�e−i�xt − �D̃2

xC̃x0
x Gx0

B �t,�ei�x

− D̃1
xC̃Bx

x GBx
B �t,�ei�Bx�e−i�Bxt , �13�

where again the identifying phase factor, here exp�i�2	2

−	1�, has been omitted. The structure of the signal is simi-
lar to that for the PP polarization in Eq. �5�. The terms pro-
portional to exp�−i�xt and exp�−i�Bxt correspond to the
GET and EBT, respectively. The dependence on the pulse
areas is contained in the coefficients

C̃x0
x = sin�f1/2�cos2�f1/4�/�2, �14a�

C̃Bx
x = sin�f1/2�sin2�f1/4�/�2, �14b�

D̃1
x = sin2�f2/2�/2, �14c�

D̃2
x = cos�f2/2�sin2�f2/4� . �14d�

The coefficients C̃���
x are determined by the moduli of the

off-diagonal elements of the density matrix of the system,
C���, right after the arrival of the first pulse. The upper index
x again refers to x linearly polarized excitation. The func-
tions G���

� �t ,� depend on the real time, on the delay time,
and on the properties of the phonon system, similar to the
functions K�

� in the PP signal. They have also the structure

G���
� = G̃���

� e��t,� with

��t,� = − 	
�

����2�2N� + 1��3 − 2 cos ��t − 2 cos ��

+ cos ���t + �� �15�

and time-dependent phase factors

G̃x0
E �t,� = ei	�����2�2 sin ��−sin ���t+��, �16a�

G̃Bx
E �t,� = ei	�����2�6 sin ��+2 sin ��t−3 sin ���t+��, �16b�

G̃x0
B �t,� = ei	�����2�2 sin ��−2 sin ��t−sin ���t+��, �16c�

G̃Bx
B �t,� = ei	�����2�6 sin ��−3 sin ���t+��. �16d�

As in the PP case here the phonon functions for the GET as
well as those for the EBT coincide for zero delay, Gx0

E �t ,0�
=GBx

E �t ,0� and Gx0
B �t ,0�=GBx

B �t ,0�, such that the spectral
shape of the FWM signal is independent of the pulse area for
=0 ps, provided that there is no spectral overlap between
GET and EBT.

Figure 7 shows a series of EBT �a� and GET �b� back-
ground spectra for low temperature and different delay times.
Note that since the FWM signal is in a background-free di-
rection here the spectrum is given by the absolute value of
the Fourier transform of the polarization. Solid and dashed
lines refer to different choices of the pulse areas. The solid
lines show the results for f1= f2=�. The choice of f1=�
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assures that the coefficients C̃0x
x and C̃xB

x are both nonzero;

f2=� yields D̃2
x =0. Thus only one term in Eq. �13� contrib-

utes to the GET, which in that case equals the solution for the
two-level model.46 Also one contribution to the EBT van-
ishes. The spectra for the EBT in the left panel and the GET
in the right panel have different shapes at =0 ps. Then the
spectral shape changes with  until for �p it becomes
fixed and symmetric around the position of the respective
ZPL, in agreement with what has been found previously for
the GET within the two-level model. In the calculations of
the spectra plotted with dashed lines we have kept the first

pulse area f1=� but set f2=2�. In that case we have D̃1
x =0

and again two of the four terms in Eq. �13� vanish. Starting
with the same spectral shapes as before GET and EBT
evolve with increasing  into asymmetric shapes, in qualita-
tive difference to the previous case and also to the result for
the two-level model, where at long delay times the spectra
are necessarily symmetric. However, for both choices of the
pulse area the spectral shapes of the GET and EBT are mirror
symmetric for long delay times. This is a general result valid
for arbitrary pulse areas, as can be seen from the long delay-
time behavior of the phonon functions

Gx0
E = GBx

B � exp�	
�

����2�ei��t + e−i��t�� , �17a�

GBx
E � exp�	

�

����2ei��t� , �17b�

Gx0
B � exp�	

�

����2e−i��t� . �17c�

In both cases the spectral shape for GET and EBT be-
comes fixed for long delay times. Note, however, that ac-
cording to Eqs. �14a�–�14d� vanishing coefficients represent
a special case and that generally there are two nonzero con-
tributions to both GET and EBT in Eq. �13�. These two con-
tributions have different dependencies on , one oscillating
with the frequency �x and the other with �Bx. Thus the FWM
spectra exhibit an oscillatory  dependence of the spectral
shape with a periodicity determined by the biexciton binding
frequency �B��x−�Bx. Although the Fourier transform of
each of the phonon functions does not change anymore with
, the weight of their contribution does. This can be seen in
Fig. 8, where we have plotted the GET spectra at four dif-
ferent delay times from 6.8 ps up to 8.0 ps for pulse areas of
f1=� and f2=� /2 �Fig. 8�a�� or f1=� and f2=3� /2 �Fig.
8�b��. The oscillation period is TB=2� /�B�1.25 ps. Obvi-
ously, the first and the last spectra with a delay difference of
1.2 ps almost coincide while in between the shape differs
significantly. So, in contrast to the PP signals after collinear
excitation, which acquire a fixed final shape for long delay
times, we find for the same excitation conditions in the FWM
signal changes of the spectral shape due to the biexciton
binding even for delay times much longer than the time p
needed to build up the phonon dressed state.

For negative delay the analytical formula for the x com-
ponent of the signal after collinear excitation is given in the
Appendix �Eq. �A3��. The signal is built up from the biexci-

tonic coherence created by the first pulse, as can be seen
from the factor exp�−i�B�� in Eq. �A3�. There are no spec-
tral oscillations since there is no FWM signal before the
arrival of the second pulse and the modulus of the Fourier
transform does not depend on the time zero point chosen.
Again the spectra of the GET and the EBT are mirror sym-
metric. Since they do not exhibit any pronounced feature
which is different from the spectra already discussed we do
not show a figure.

Finally, let us comment on the FWM signal after cocircu-
lar excitation with two �+ pulses, considering both the �+ as
well as the �− component. The formulas are given in the
Appendix �Eq. �A4��. For QDs with zero exchange coupling
where �x=�y, the �− component vanishes, leaving only the
�+ component nonzero. The result then exactly coincides
with that for the two-level model. However, even for nonva-
nishing fine structure splitting there is no biexciton contribu-
tion in the FWM signal, in contrast to the case of PP signals.
The reason is that here the second pulse creates the transient
grating from which it is diffracted. The grating is formed by
the interference of the polarization created by the first pulse
with the electric field of the second pulse. Thus, only the �+

component of the polarization of the first pulse can contrib-
ute to the grating which also explains why at delay times
given by half integer multiples of the fine structure beat pe-
riod, when the QD exciton created by the first pulse is in a
��−� state �cf. Eq. �12��, there is no FWM signal at all. As a
function of  the FWM signal oscillates with the fine struc-
ture beat period. The polarizations in Eq. �A4� contain only a
single phonon function as a common factor. Thus, in contrast
to the FWM signals after collinear excitation, but similar to
the PP signals after collinear excitation, there are no changes
of the shape of the phonon background for delay times
longer than p. The �+ and �− components of the FWM
polarization only differ by the sign in front of the �y�-exciton
contribution. As a consequence, in the time domain the
�−-polarization component builds up only after about half a
fine structure beat period. In the spectral domain two ZPLs

f2 = π/2
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separated by the fine structure splitting can be found. The
phonon background which has typically a much broader en-
ergy scale �cf. Fig. 6� almost cancels in the �− component of
the spectrum whereas it adds up in the �+ component. The
reduced background in the �− component can be ascribed to
the extremely slow rise of the signal on the time scale of the
fine structure period, which is therefore close to the adiabatic
regime. Because of the small value of the fine structure split-
ting in real QDs the deviations from the behavior of a two-
level system are very small explaining the excellent agree-
ment of measured FWM signals for cocircular excitation
with theoretical results obtained for a two-level QD model,42

in particular, at times shorter than the fine structure beat pe-
riod. Since a circularly polarized pulse cannot create a biex-
citonic coherence, there is no FWM signal for cocircular
excitation at negative , at least within our limit of ultrafast
pulses. This is again in agreement with the behavior of a
two-level model. Because of the similarity with the exten-
sively discussed two-level results,46 we do not show FWM
spectra for the cocircular case.

IV. SUMMARY AND CONCLUSIONS

We have presented a detailed analysis of PP and FWM
signals from single strongly confined quantum dots. Taking
into account the two angular momentum states of electrons
and holes the QD was described by a four-level model. In
contrast to the previously treated two-level model this has
allowed us to address the polarization dependence of the
nonlinear optical signals.

PP signals after collinear excitation at long delay times
could be well understood in terms of transitions between
polaron dressed states. Due to the finite response time of the
lattice, however, a finite time is required to build up these
polaron states after an ultrafast optical excitation. At low
temperature this polaron dressing process is directly reflected
in the delay time dependence of PP signals which after the
completion of the polaron dressing become independent of
the delay time.

For cocircularly polarized pulses, on the other hand, the
scenario strongly depends on the fine structure splitting. For
a vanishing splitting the system is effectively reduced to a
two-level system. Otherwise the pump pulse creates a super-
position of the linearly polarized single exciton states giving
rise to quantum beats. As a result, the PP spectra still exhibit
a time dependence even after the buildup of the polaron due
to contributions oscillating between excitonic gain and biex-
citonic absorption.

The general characteristics of FWM signals are similar to
PP signals. On the time scale of the polaron dressing process
the spectral shape changes as in the PP case. When looking
at the details, however, we find pronounced differences be-
tween PP and FWM signals and even sometimes a comple-
mentary behavior. In general the FWM spectra after collinear
excitation exhibit an oscillatory delay time dependence of
their shape with an oscillation period given by the biexciton
binding energy. These periodic changes in the phonon-
induced background spectra last on even after the polaron
dressing process. For cocircular excitation, on the other

hand, the spectral shape is constant for delay times longer
than the duration of the polaron dressing. Only the magni-
tude oscillates with the fine structure beat period which is
typically much longer than the electron-phonon interaction
time. In contrast to PP signals, in FWM signals after cocir-
cular excitation we never find a biexcitonic contribution even
when the fine structure splitting is finite.

In this paper we have restricted ourselves to nonlinear
optical signals of a single QD. Of course, signals obtained
from an inhomogeneously broadened ensemble of such QDs
can easily be constructed from our results. Indeed, such cal-
culations well reproduce the measured time-integrated FWM
signals both for collinear and cocircular excitation
conditions,47 in particular, the presence of biexciton quantum
beats for collinear excitation and fine structure quantum
beats for cocircular excitation.68 Experimental results for PP
or FWM signals from single QDs to date have mainly been
reported for weakly confined QDs resulting from interface
fluctuations,30–36 where typically other dephasing mecha-
nisms than pure dephasing are dominant. With such measure-
ments performed on strongly confined QDs one should be
able to directly monitor the buildup of a quantum mechanical
quasiparticle, the polaron, involving both electronic and lat-
tice degrees of freedom.
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APPENDIX

In this appendix we summarize the results for the PP and
FWM signals which have not been explicitly given above.
The PP polarization after cocircular ��+�+� excitation for
positive delay reads

�P̂++
PP�± =

iM0
*f t

4
��t��e−i�xt�C̄0

+K0
E�t,� − C̄x

+Kx
E�t,�

��1 + ei�ex�� ± e−i�yt�C̄0
+K0

E�t,�

− C̄y
+Kx

E�t,��1 + e−i�ex�� + e−i�BxtC̄x
+Kx

B�t,�

��1 − e−i�ex� ± e−i�BytC̄y
+Kx

B�t,��1 − ei�ex� .

�A1�

For negative delay we obtain

�P̂++
PP�±

− = i
M0

*

4
��t + ���f t�K0

E�t + ����e−i�x�t+��� ± e−i�y�t+����

����− t� + ��t�C̄0
+� + ��t�KB

−�t,��C̄x
+e−i�Bxt

� C̄y
+e−i�Byt��1 − e−i�ex���e−i�x�� , �A2�

with K�
� and KB

− defined in Eqs. �8� and �11�. Here the upper
sign refers to the �+ component and the lower sign to the �−

component of the signal. The signals are mainly determined
by the occupations of the electronic levels after the pump
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pulse, which depend only on its pulse area fp according to

C̄0
+=cos2�fp /2� and C̄x

+= C̄y
+= 1

2sin2�fp /2�.
The FWM polarization for collinear excitation at negative

delay conditions, i.e., when the pulse with phase 	2 precedes
the pulse with phase 	1, is given by

�P̂xx
FWM�x

− = − i
M0

*

4�2
��t�sin2 f2

2
sin

f1

2
cos2 f1

4
e−i�B��

��e−i�xtGE
−�t,� − e−i�BxtGB

−�t,� �A3�

with G�
− = G̃�

−e�−�t,� and

G̃E
−�t,� = e−i	�����2�2 sin ���t+���+2 sin ����−sin ��t�,

G̃B
−�t,� = e−i	�����2�2 sin ���t+���+2 sin ����+sin ��t�,

�−�t,� = − 	
�

����2�2N� + 1��3 − 2 cos ���t + ���

− 2 cos ���� + cos ��t� .

The �± component of the polarization after cocircular exci-
tation reads for positive delay

�P̂++
FWM�± = − i

M0
*

�2
��t��e−i�xt ± e−i�yt�D̃+C̃x0

+ Gx0
E �t,�

��ei�x + ei�y� , �A4�

where the pulse area dependent coefficients are C̃x0
+

= 1
2�2

sin�f1� and D̃+= 1
2sin2�f2 /2�.

For negative delay conditions, i.e., when the pulse with
phase 	2 precedes the pulse with phase 	1, there is no FWM
polarization after cocircular excitation, at least in our limit of
ultrashort pulses.
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